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It is well established that the tumor microenvironment (TME) contributes to cancer

progression. Stromal cells can be divided into mesenchymal, vascular, and immune.

Signaling molecules secreted by the tumor corrupts these cells to create “activated”

stroma. Equally, the extracellular matrix (ECM) contributes to tumor development and

invasion by forming a biologically active scaffold. In this review we describe the key

structural, cellular and signaling components of the TME with a perspective on stromal

soluble factors and microRNAs (miRNAs).
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Introduction

The relationship between tumor and stroma is symbiotic. Stromal cells are corrupted by malignant
epithelium, creating a permissive microenvironment which drives cancer progression (Hill et al.,
2005). Unlike cancer cells which transform through a series of genetic mutations, stromal cells are
mostly genetically intact (Boehm et al., 1997; Allinen et al., 2004). Targeting this component of
the tumor microenvironment (TME) should therefore be considered in cancer therapy. There has
been an exponential rise in research into this field (reviewed in Witz, 2009). Table 1 summarizes
the important studies.

There is a difference between TME and stroma that should be defined at the outset. The stroma
is a histological unit consisting of peri-tumoral cells within an extracellular scaffold. The TME is
a functional ecosystem of tumor and stromal elements that interact through signaling molecules
(Figure 1). This review provides a compositional description of TME components which are
relevant to cancer progression. Additionally we have listed the signals provided by the stroma
that effect cancer cells, including cell-extracellular matrix interactions, soluble factors such as
cyto/chemokines and extracellular vesicles such as exosomes.

Mesenchymal Cells

Cancer-associated Fibroblasts
Cancer-associated fibroblasts (CAFs) are the predominant cell type in the stroma, responsible for
the structural architecture of the extracellular matrix (ECM; Kalluri and Zeisberg, 2006). They
modulate the ECM by expressing several key proteins such as periostin (Kikuchi et al., 2008)
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TABLE 1 | Key findings which have defined the TME.

Era Key finding: relevance to TME Reference(s)

Late 1800s “Seed and soil” hypothesis: a specific microenvironment is required for tumors to establish at a

secondary site.

Paget, 1889

Early 1970s Tumor angiogenesis factor isolated: birth of angiogenesis. Folkman et al., 1971

Mid 1970s Macrophages first identified in TME of solid tumors: characterization of immune TME. Hersh et al., 1976; Russel et al., 1976

Early 1980s Tumor cells shown to digest extracellular matrix components: the importance of the extracellular matrix

in tumor invasion.

Jones and DeClerck, 1980

Early 1980s Soluble factors from tumor cells stimulate colony formation of normal cells: the role of transforming

growth factors in the TME.

Moses et al., 1981; Nickell et al., 1983

Mid 1980s Fibroblasts shown to exchange genetic material with HeLa cells in vitro: a mechanism for stromal-tumor

interaction identified.

Delinassios and Kottaridis, 1984

Mid 1990s Extracellular matrix induces β-casein gene expression in mammary cells: TME elements can alter gene

expression in tumor cells.

Roskelley et al., 1994

Mid 2000s MicroRNAs are shuttled between cells in extracellular vesicles: novel cell-cell communication in the TME. Valadi et al., 2007

Mid 2010s Exosomes from fibroblasts alter breast cancer cell polarity and induce invasion and therapy resistance. Boelens et al., 2014

This table chronologically lists key findings and their relevance to our understanding of the TME.

and tenascin-C (De Wever et al., 2004). In normal physiology,
α-SMA positive fibroblasts (myofibroblasts) have a contractile
function to close a wound. In the cancer setting, myofibroblasts
remain persistently activated, facilitating cancer progression
(Marsh et al., 2013). Desmoplastic tumors characterized by a
dense stromal reaction do not always contain myofibroblasts
(Chang et al., 2011), suggesting that not all CAFs are
myofibroblasts.

It is not clear how CAFs contribute to tumourigenesis
but studies have demonstrated neoplastic transformation in
their presence (Hayward et al., 2001). Olumi et al. (1999)
showed that when human prostate CAFs were co-cultured
with normal prostate epithelial cells, they stimulated rapid
epithelial growth and altered histology. Moreover, simulation
of CAF signaling by Wnt-1-transfected fibroblasts caused
morphological transformation in mammary epithelial cells (Jue
et al., 1992). Importantly, secretion of soluble factors such as
transforming growth factor-β (TGF-β) and hepatocyte growth
factor by stromal fibroblasts was shown to induce malignant
transformation (Kuperwasser et al., 2004)

In early cancer, the host tissue is remodeled to accommodate
the developing tumor. Microscopically this is characterized by
compositional changes and stiffening of the ECM (Bonnans
et al., 2014). For this to happen, collagen is cross linked with
other ECM molecules such as elastin, a process catalyzed by
lysyl oxidase (LOX; Erler et al., 2006). CAFs produce LOX
and collagen in sufficient quantities to facilitate this process
(Levental et al., 2009). Importantly, LOX inhibitors such as
beta-aminopropionitrile and magnolol synergistically reduce
migration and invasion of MDA231 breast cancer cells (Chen
et al., 2012).

CAFs play an important role in angiogenesis. When
CAF-secreted fibroblast growth factor-2 (FGF-2) is inhibited,
angiogenesis is reduced (Pietras et al., 2008). Furthermore,
brivanib (a dual VEGF/ FGF tyrosine kinase inhibitor) effectively
blocks angiogenesis in a pancreatic neuroendocrine tumormodel
(Allen et al., 2011). This is of particular interest because selective
inhibition of VEGF alone with bevacizumab leads to drug

resistance (Lieu et al., 2013). Targeting stromal and cancer-
driven angiogenic signaling in combination may present a
more effective treatment option. Importantly, the angiogenic
effects of CAFs are not limited to their local environment. For
example, fibroblast expression of stromal cell-derived factor-
1 (SDF-1/ CXCL12) acts as a systemic chemotactic signal
for circulating immature endothelial cells (ECs), leading to
breast cancer vascularization and metastasis (Orimo et al.,
2005).

There is growing evidence suggesting that CAFs induce
invasiveness and metastatic capability of cancer cells. Epithelial-
mesenchymal transition (EMT) is a cellular programme that
induces cancer cell metastasis (reviewed in Kalluri andWeinberg,
2009). CAFs promote this transition inmultiple cancers (Yu et al.,
2014; Zhou et al., 2014). Moreover, there is evidence to suggest
that CAFs guide metastatic cells to prime the secondary site for
colonization (Xu et al., 2010).

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are defined by their adherence
properties, ability to differentiate into different cell types and
surface markers (CD73, CD90, and CD105; Dominici et al.,
2006). At least 20% of CAFs originate from MSCs and
recruitment is dependent on TGF-β and SDF-1 (Quante et al.,
2011). CAFs abundantly express these chemotactic signals.
Additionally, cancer cells can induce differentiation of MSCs
to CAFs. Indeed, the exposure of human MSCs to conditioned
media from MDA231 breast cancer cells stimulated expression
of myofibroblast markers such as α-SMA (Mishra et al.,
2008).

Weinberg and colleagues marked the importance of MSCs for
breast cancer metastasis. Once recruited to the TME, stromal
MSCs secrete CCL5 (RANTES) and enhance the metastatic
capability of breast cancer cells (Karnoub et al., 2007). Similarly,
HS-5 human bone marrow stromal cells increased proliferation,
migration, and invasion of Huh7 hepatocellular cancer cells.
These functional effects were attenuated by knocking downCCL5
(Bai et al., 2014).
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FIGURE 1 | A top down view of the tumor microenvironment. This

scheme gives an outline of the cellular and acellular components of the

tumor microenvironment and their contribution to tumorigenesis. ECM,

extracellular matrix; APC, antigen presenting cell; NK, natural killer; Treg,

regulatory T cell; Th, helper T cell; CAF, cancer-associated fibroblast; MSC,

mesenchymal stem cell.

Immune Cells

Immune cells in the TME can have pro- or anti-tumor
effects. Tumor progression can be stunted or inhibited by
immunosurveillance but established tumors and metastases have
the ability to modify the TME in order to escape immunity
(Vesely et al., 2011). The immune response produced by
M1 macrophages, T helper-1 cells, cytotoxic T cells, antigen
presenting cells (APCs), and natural killer (NK) cells supports
tumor rejection; whereas, M2 macrophages, regulatory T cells,
and T helper-2 cells support tumor progression (Verbeke et al.,
2011).

Macrophages
Macrophages are phagocytic cells that play a critical role in
innate and adaptive immunity. They are classified into pro
inflammatory M1 and anti-inflammatory M2 subtypes. M1
macrophages take part in immunosurveillance. Through the
release of pro-inflammatory cytokines such as interleukin-
1 and tumor necrosis factor alpha (TNF-α), they inhibit
tumor progression (Noy and Pollard, 2014). Conversely, M2
macrophages release immunosuppressive cytokines such as
interleukin-10 and allow tumor progression (Mantovani et al.,
2002; Solinas et al., 2009); hence they are called tumor-
associated macrophages (TAMs). TAMs have been shown to
facilitate tumourigenesis and tumor progression in colonic
(Liu et al., 2011a) and renal cell (Daurkin et al., 2011)
carcinomas, respectively. The effects of TAMs are not limited to
immune modulation. In melanoma, TAMs promote endothelial

recruitment and angiogenesis via the release of adrenomedullin
(Chen et al., 2011). In another study, TAMs directly enhanced the
invasiveness of SKBR3 breast cancer cells by exporting a certain
microRNA (miR-223) in extracellular vesicles (Yang et al., 2011).

T-lymphocytes
CD8+ cytotoxic T cells induce growth arrest, necrosis, and
apoptosis in tumor cells by the release of various cytokines
including interferon gamma (IFN-γ; Matsushita et al., 2015).
The residual protein components of the apoptotic cells are then
phagocytosed by APCs and exposed to maturing lymphocytes in
lymphoid organs (Chiang et al., 2015). This potentiates tumor
suppression. Conversely, regulatory T cells (Tregs) promote
immune tolerance by expressing a cytokine profile that attenuates
the proliferation of CD8+ cells, inhibits APCs and macrophages
and reduces the lytic activity of NK cells (Facciabene et al.,
2012). This potentiates tumor progression. Indeed, Tregs have
been found in higher numbers in various cancers such as liver
(Gao et al., 2007) and breast (Bates et al., 2006). In theory,
therapies that increase the proportion of CD8+ cells to Tregsmay
attenuate tumor progression. For example, lympho-depletion
followed by autologous transfusion of tumor-infiltrating CD8+
cells in patients with metastatic melanoma prompted clinical and
radiological regression of metastases in 18 of 35 human subjects
(Dudley et al., 2005). More recently, the anti-CD25 monoclonal
antibody daclizumab has been shown to suppress Tregs and
enhance anti-tumor response (Ohmura et al., 2008). In another
study, daclizumab depleted CD25-high Tregs and allowed an
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enhanced IFN-γ-mediated CD4/ CD8+ response in metastatic
breast cancer patients (Rech et al., 2012).

There are several classes of CD4+ helper T (Th) cells but
Th1 and Th2 are functionally prominent in cancer progression
(Knutson and Disis, 2005). Th1 cells are necessary for the
activation and persistence of CD8+ cells. Indeed, intravenous
injection of antigen-specific Th1 cells induced CD8+ cell-
mediated tumor regression in a fibrosarcoma model (Surman
et al., 2000). The role of Th2 cells is less clear but in patients
with renal carcinoma and melanoma, circulating CD4+ cells
display Th2-polarized (IL-5) responses to MAGE-6 epitopes in
active disease and Th1-polarized (IFN-γ) responses in remission
(Tatsumi et al., 2002). Similarly, CD4+ cells from patients with
stage I renal carcinoma showed predominantly Th1-polarized
responses to EphA2, whereas CD4+ cells from later stages
showed progressively more Th2-polarized responses (Tatsumi
et al., 2003). Overall, the presence of Th2 cells marks poor
prognosis compared to Th1 cells.

Antigen-presenting Cells
APCs process and display antigens with MHC proteins to naïve
T cells. MHC I-expressing cells stimulate CD8+ cells whereas
MHC II-expressing cells stimulate CD4+ cells. In general, APCs
are classified into professional and non- professional cells. The
most important professional APCs are dendritic cells (DCs).
Fibroblasts are an example of non-professional APCs which do
not constitutively express MHC II but can stimulate T-cells by
expressing IFN-γ (Sprent, 1995).

APCs from the TME of rat colonic carcinoma did not
stimulate CD8+ cells as well as non-tumor APCs (Chaux et al.,
1997). This was attributed to a lack of co-stimulatory factor B7,
suggesting that cancer cells make APCs functionally deficient.
Human renal and pancreatic cancer cell lines express interleukin-
6 and macrophage colony stimulating factor, which alter the
differentiation of APCs from CD34+ to CD14+ progenitors.
CD14+ cells express little MHC II and cannot evoke a
significant immune response, thereby lacking APC function and
allowing tumor escape (Menetrier-Caux et al., 1998; Bharadwaj
et al., 2007). Furthermore, in the presence of malignant cells,
APC progenitors differentiate into immature myeloid-derived
suppressors (Almand et al., 2001) and TAMs (Cortez-Retamozo
et al., 2012), both of which are immunosuppressive.

Natural Killer Cells
NK cells are innate immune cells which are important in halting
tumor progression (Eguizabal et al., 2014). NK cells destroy
tumor cells in animal models of several human cancers (reviewed
in Schiavoni et al., 2013) by detecting cell surface changes such
as reduced MHC I (Karre et al., 1986). In an immunocompetent
environment, NK cells select out APCs which do not express
MHC I sufficiently, thereby maintaining a pool of APCs which
are best equipped to present foreign antigens (Moretta, 2002).
However, NK-mediated immunity is dampened in the TME by
tumor-secreted cytokines such as TGF-β (Wilson et al., 2011).
NK cells isolated from triple negative breast cancers exhibited
less antibody-mediated cytotoxicity, a phenomenon that can
be reversed by addition of the pro-inflammatory IL-2/IL-15

complex (Roberti et al., 2012). In contrast to this, microarray
analysis of intra-tumoral NK cells from non-small cell lung
cancer patients showed upregulation of pro-cytotoxic genes
(NKp44, granzyme-A and -B) compared to extra-tumoral NK
cells (Gillard-Bocquet et al., 2013). To explain this, the authors
propose that NK cells are activated but functionally exhausted in
the tumor setting. Thus the activity, rather than presence, of NK
cells suggests good prognosis in cancer patients.

Vasculature

The stromal vasculature is made up of a capillary network
of ECs surrounded by pericytes that provide structural and
physiological support. It is well established that hypoxia limits
tumor progression and that this drives angiogenesis (Folkman,
1971). The pathophysiology of angiogenesis has been extensively
reviewed elsewhere (Otrock et al., 2007).

Endothelial Cells
ECs in the TME are microscopically different to regular ECs.
They lack a pericyte covering, have leaky tight junctions and
exhibit sprouting (Carmeliet and Jain, 2011). Stromal tissue
hypoxia triggers the release of VEGF from pericytes, activating
VEGF-2 receptors on adjacent ECs. These ECs become “tip” cells
and migrate toward hypoxic tissue that has the highest VEGF
concentration. ECs lagging behind the “tip” bind to each other
through surface ligand-receptor complexes, slowing their own
migration and allowing the chain of ECs to lengthen, or sprout
(Gerhardt et al., 2003). At reduced oxygen concentration, the
expression of hypoxia inducible transcription factors (HIF) -
1 and -2 by ECs is upregulated (Wong et al., 2013). HIF-1 is
associated with increased proliferation and migration of ECs
(Tang et al., 2004), whereas HIF-2 promotes EC maturation and
quiescence (Skuli et al., 2009). Deletion of both HIF-1 and -2
suppresses primary tumor invasion but whereas HIF-1 deletion
reduces metastasis, HIF-2 deletion increases it (Branco-Price
et al., 2012). The evidence suggests that modulation of HIFs and
their downstream effects may well be a therapeutic option in
parallel to established anti-VEGF treatments.

Extracellular Matrix

ECM constitutes the cellular scaffold of the TME providing
structural support to tumor epithelium and stromal cells
alike. ECM is produced by mesenchymal cell types including
fibroblasts, chondrocytes, and osteoblasts and consists of various
components including collagens, galectins, proteoglycans, and
glycoproteins (Denys et al., 2009). ECM has the capacity
to both initiate and channel signaling cascades within the
TME (Hynes, 2009), and through bidirectional interplay with
malignant cells, impact upon tumor progression and metastasis
(Murphy et al., 1992; Sadej et al., 2008). Furthermore, its
biomechanical properties determine to an extent the dynamics
of ECM turnover, thus influencing the ability of malignant cells
to invade (Egeblad et al., 2010). Equally, ECM may provide a
“cancer stem-cell” niche and is implicated in angiogenesis and
inflammation pathways which contribute to a pro-metastatic
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TME. (Reviewed by Lu et al., 2012). In the following section we
will highlight the key components of ECM, their roles during
disease progression and their clinical relevance in cancer.

Type IV collagen is the major component of the basement
membrane (Mariyama et al., 1992), and possibly the most
important protein in the ECM, that separates epithelium from
stroma. In desmoplastic tumors such as pancreatic carcinoma,
type IV collagen, like other ECM proteins, binds to integrin
receptors on cancer cells, promoting their survival (Ohlund
et al., 2013). Galectin-1 is a carbohydrate binding protein with
several important effects on tumor cells namely: adhesion to
the ECM, increased migration and stromal immune suppression
(Rabinovich, 2005). Proteoglycans such as heparan sulfate
maintain the physical connections between different ECM
components (Vlodavsky and Friedmann, 2001). Indeed, salivary
gland tumors expressing more heparanase are associated with
poorer survival (Ben-Izhak et al., 2006). Glycoproteins such as
fibronectin and laminin-1 are ligands for β-integrins, cellular
proteins which mediate cell-ECM signaling (Hynes, 2002). ECM
expression of fibronectin and laminin-1 correlates with poor
prognostic features in breast cancer (Ioachim et al., 2002). In
a 3-dimensional breast cancer model, inhibition of fibronectin/
α5β1-integrin binding prompted apoptosis and greater radio-
sensitivity (Nam et al., 2010).

The key enzymes regulating ECM turnover are matrix
metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs). MMPs are zinc-dependent
endopeptidases, capable of degrading almost all ECM proteins.
Increased MMP expression is associated with most tumors
(McCawley and Matrisian, 2000). Traditionally, it was thought
that cancer cells secreted MMPs in order to digest the ECM
and permit invasion (Recklies et al., 1980). We now know
that MMPs are secreted by both tumor and stromal cells and
are important in other aspects of cancer progression such as
angiogenesis (Gonzalez-Villasana et al., 2015) and metastasis
(Che et al., 2015). TIMPs negatively regulate MMP activity.
TIMP-3 is most specific to the ECM (Gu et al., 2014). When
breast cancer and ocular melanoma cell lines were transfected
with TIMP-3 and injected into nude mice, tumor growth was
significantly reduced (Anand-Apte et al., 1996). Methylation of
the TIMP-3 gene promoter is the mechanism by which TIMP-3
is inactivated in cancer (Gu et al., 2008). TIMPs are not simply
MMP inhibitors. TIMP-3 for example, prevents VEGF from
binding to the VEGF-2 receptor, thereby inhibiting angiogenesis
(Qi et al., 2003).

New Players in Stroma-Cancer Cell
Interaction: MicroRNAs

In recent years it has become evident that stroma tumor
interaction is not simply composed of paracrine signaling of
soluble factors and cell-matrix adhesion. Lipid membrane bound
small vesicles, namely exosomes, are secreted from both cancer
and stromal cells and influence gene expression of cells in the
vicinity (Valadi et al., 2007). These vesicles deliver their RNA
and protein cargo and alter gene expression in the recipient

cells. Among their cargo miRNAs stand out as major players
because they are relatively stable compared to mRNA and
proteins and can therefore accumulate to a level that can exert
a stable biological effect (Valadi et al., 2007). MiRNAs are
non-coding RNAs that are approximately 20 nucleotides long.
They undergo enzymatic activation in the cytoplasm, where
they bind to the 3′ untranslated region of coding mRNAs
to prevent protein translation (reviewed in Mirnezami et al.,
2009). MiRNAs regulate a variety of cellular processes such as
proliferation, differentiation, and apoptosis (Esquela-Kerscher
and Slack, 2006). Aberrant miRNAs fail to properly regulate
these processes, leading to malignant transformation (Calin et al.,
2002). The association between certain miRNA signatures and
certain cancers (Grange et al., 2014; Wang et al., 2014), has fueled
great interest in miRNAs as diagnostic and prognostic tumor
markers. Additionally, stromal exosomes were shown to induce
cancer cell behavior with RNA transfer (Boelens et al., 2014).
Below we discuss three important stromal miRNAs that can play
a role in cancer progression by different mechanisms.

MiR-21 is an oncomir and associated with aggressive
colorectal cancer (CRC; Liu et al., 2011b). Importantly, recent
articles robustly proved that CRC cells themselves do not express
miR-21; it is produced by stromal fibroblasts (Nielsen et al., 2011;
Bullock et al., 2013). It is quite likely that stromal mir-21 is
transferred to CRC cells by exosomes. MiR-21 directly targets
the tumor suppressor protein PDCD4 and protects cancer cells
from apoptosis (Asangani et al., 2008). A secondarymiR-21 target
is reversion-inducing cysteine- rich protein with Kazal motifs
(RECK; Gabriely et al., 2008; Reis et al., 2012). RECK is an
MMP inhibitor which prevents degradation of the ECM. MiR-
21-transfected fibroblasts express less RECK and more MMP-2,
permitting greater invasion by CRC cells (Bullock et al., 2013).

Bronisz et al. (2012) defined an axis between the tumor
suppressor protein PTEN, miR-320 and the oncogenic
transcription factor ETS2. When the PTEN gene was selectively
ablated from mouse mammary fibroblasts, miR-320 expression
was reduced and ETS2 expression was increased. This led to
activation of an oncogenic secretome from stromal fibroblasts,
responsible for promoting tumor angiogenesis and invasion.
To corroborate this, microarray analysis of 126 human breast
carcinomas showed a significant inverse correlation between
miR-320 and ETS2. Thus a stromal microRNA can induce a
pro-oncogenic/inflammatory secretome to contribute to cancer
progression.

There is an important stromal miRNA locus (miR-212/132
family) which regulates normal breast development (Ucar et al.,
2010). When miR-212/132 is deleted, MMP-9 increases and
collagen deposition around mammary ducts is altered. This
corresponds with peri-ductal TGF-β activation, leading to
abnormal ductal outgrowths. It will be of great interest to study
whether miR-212/132 is de-regulated in breast cancer stroma by
altering the ECM and activating TGF-β.

Conclusion

Taking a systemic approach we have dissected the components
of the TME and their relevance to cancer progression. We have
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described several potential therapeutic targets in the TME besides
cancer cells. Perhaps the ubiquity of these targets in normal
and malignant tissue is a limiting factor. Nonetheless, a better
understanding of the TME will be the key to overcoming this
problem.
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