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Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic
reticulum (ER) create distinct environments to promote specific cellular tasks such as
ATP production, lipid breakdown, or protein export. During recent years, it has become
evident that organelles are integrated into cellular networks regulating metabolism,
intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence.
In order to facilitate such signaling events, specialized membrane regions between
apposing organelles bear distinct sets of proteins to enable tethering and exchange
of metabolites and signaling molecules. Such membrane associations between the
mitochondria and a specialized site of the ER, the mitochondria associated-membrane
(MAM), as well as between the ER and the plasma membrane (PAM) have been partially
characterized at the molecular level. However, historical and recent observations imply
that other organelles like peroxisomes, lysosomes, and lipid droplets might also be
involved in the formation of such apposing membrane contact sites. Alternatively, reports
on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of
organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise
removal of aged organelles by autophagy—a process which involves the detection
of ubiquitinated organelle proteins by the autophagosome membrane, representing
another site of membrane associated-signaling. This review will summarize the available
data on the existence and composition of organelle contact sites and the molecular
specializations each site uses in order to provide a timely overview on the potential
functions of organelle interaction.

Keywords: membrane contact sites, organelle dynamics, peroxisomes, mitochondria, endoplasmic reticulum,
intracellular signaling, MAM, PAM

Introduction

In eukaryotic cells sophisticated membrane-bound organelles have evolved which enable the
cell to compartmentalize specialized biochemical reactions in specific locations within the cell
(Figure 1). Historically, subcellular compartments were regarded as isolated, membrane bound
biochemical entities, and individual organelles such as mitochondria, lysosomes, peroxisomes,
or the endoplasmic reticulum (ER) have been associated with distinct cellular tasks including
ATP production, protein degradation, lipid breakdown, and protein export. In recent years, a
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FIGURE 1 | Organelle interplay and interorganellar contacts. Schematic diagram of a mammalian cell depicting organelle interplay and interorganellar
membrane contacts (highlighted by red lines). ER, endoplasmic reticulum; LD, lipid droplets; LYSO, lysosome; MAM, mitochondria associated-membrane; MDVs,
mitochondria derived vesicles; MITO, mitochondrium; PAM, plasma membrane-associated membrane; PO, peroxisome.

combination of ultrastructural studies, fluorescence-based live
cell imaging techniques, molecular cell biology, biochemistry,
and modern proteomics approaches has substantially changed
this view towards a highly dynamic, cooperative and complex
network of interacting and communicating subcellular
compartments (Figure 1). It is evident that intracellular
compartments have to exchange material and transmit signals
between each other to maintain and balance cellular activities.

Abbreviations: AIS, axon initial segment; ATP, Adenosine triphosphate;
CMA, chaperone-mediated autophagy; EMC, ER membrane protein complex;
EPCON, ER-peroxisome contact site; ER, endoplasmic reticulum; ERMES,
ER mitochondria encounter structure; GPI, Glycophosphatidylinositol; IP3R,
inositol 1,4,5-trisphosphate receptor; LD, lipid droplet; LPMC, lysosomal-
peroxisome membrane contacts; MAM, mitochondria-associated membrane;
MCU, mitochondrial low affinity calcium uniporter; MDVs, mitochondria-derived
vesicles; MITO, mitochondria; NCLX, Na+/Ca2+ exchanger; ORPs, oxysterol-
binding protein-related proteins; PAM, plasma membrane-associated membrane;
PE, phosphatidylethanolamine; PS, phosphatidylserine; PIP, phosphatidylinositol
phosphate; PI4P, phosphatidylinositol 4-phosphate; PKA, protein kinase; PM,
plasma membrane; PML, promyelocytic leukemia; PMPs, peroxisomal membrane
proteins; PO, peroxisome; PTS, peroxisomal targeting signal; ROS, reactive oxygen
species; SERCA, ER sarcoplasmic/endoplasmic reticulum calcium ATPase; SOCE,
store-operated calcium entry pathway; STIM, stromal-interacting molecule; UPR,
unfolded protein response; VAPS, vamp-associated proteins.

Cooperative functions of organelle networks include (1)
metabolic interaction, (2) intracellular signaling, (3) cellular
maintenance, (4) regulation of programmed cell death/cell
survival, and (5) pathogen defence. Mechanistically, functional
interplay can be established by vesicular transport (as initially
revealed for organelles within the secretory pathway), by
exchange of metabolites or signaling molecules through
diffusion, or direct physical contacts which are mediated by
specialized membrane contact sites (Figure 2). It is becoming
evident that the cytoskeleton and molecular motors are not
the sole organizers of cellular architecture, and that membrane
contacts can influence the positioning and motility of organelles.
Organelle interaction also depends on the total number of
organelles which is regulated by organelle biogenesis/formation,
membrane dynamics and autophagic processes. Remarkably,
these processes also involve membrane contact sites, for example
ER-mitochondria contacts which are supposed to contribute
to mitochondrial division [see Sections The Mitochondria-
associated Membrane of the ER (MAM) and Interplay between
Peroxisomes and Mitochondria] or interactions with lysosomes
during autophagy (see Section Lysosomal Interactions and
Autophagy). Membrane contact sites involve tethering of two
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FIGURE 2 | Schematic overview of proteins and lipids involved in the interaction of organelles. (A) Tethering complexes in mammals: unlike in yeast species
only a few protein complexes have been characterized at the molecular level and involve protein-protein and protein-lipid contacts [see Sections Connections

(Continued)
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FIGURE 2 | Continued
between the ER and the Plasma Membrane, The Mitochondria-associated Membrane of the ER (MAM), Interplay between Peroxisomes and Mitochondria, and
Lysosomal Interactions and Autophagy]. Part of the tethering complexes shown may only comprise core complexes, which will interact with additional proteins for
regulatory purposes; (B) contacts between mitochondria/peroxisomes and the autophagosomal membrane: both organelles require ubiquitination of membrane
proteins for recognition by the autophagosome. In addition to MFN2 (Mitochondria) and Pex5 (Peroxisomes) other ubiquitinated organelle proteins have been
described to participate in autophagosomal contacts [see Sections The Mitochondria-associated Membrane of the ER (MAM) and Lysosomal Interactions and
Autophagy]; (C) ERMES as a multifunctional tethering complex in yeast: unlike mammals, yeast species possess the ERMES oligomeric complex at the mitochondrial
membrane. ERMES forms complexes with the ER and peroxisomes [see Sections The Mitochondria-associated Membrane of the ER (MAM) and Interplay between
Peroxisomes and Mitochondria]. In addition, a considerable number of other tethering complexes (not shown) have been described in yeast (Prinz, 2014). For
molecular details and references of the depicted complexes please refer to the corresponding sections of this review. Membrane spanning α-helices in the proteins are
depicted as cylindrical segments; C- and N-termini are marked with the corresponding letters.

membranes in close apposition (typically within 30 nm) and the
enrichment of specific proteins and/or lipids at these sites (see
Table 1). In general, the tethered membranes do not fuse, but
contact formation has an impact on the function or composition
of one or both organelles. Although membrane contacts between
organelles have been reported in early ultrastructural studies,
their important functions in intracellular signaling, metabolite
transport/metabolism, organelle dynamics and transport is
just beginning to emerge. Furthermore, a growing number of
proteins with potential tethering functions are being identified
in yeast and mammals.

As an introduction to the Frontiers research topic on
“Molecular mechanisms and physiological significance of
organelle interactions and cooperation” this review aims at
providing a general and timely overview of the new and
fascinating mechanisms which convey the cellular plasticity
required to react to metabolic and environmental changes in a
spatial and temporal manner. We address processes of organelle
interaction with a particular focus on membrane contact
sites emerging at the cross roads of organelle research and
intracellular signaling. In addition, we highlight novel findings
on the functional aspects of organelle interaction with a special
emphasis on mitochondria and peroxisomes. We particularly
focus on organelle interplay in mammals but where appropriate
also refer to recent discoveries in plants and fungi.

Connections between the ER and the
Plasma Membrane

In striated muscle cells a close apposition between peripheral
ER and the plasma membrane, now well known as the T-
tubule system required for excitation-contraction coupling, was
reported as early as the 1950’s by the pioneers of cell biological
research, Keith Porter and George Palade (Porter and Palade,
1957). Originally regarded as a specialization only found in
muscle cells it has in the meanwhile become obvious, that
specialized juxtaposed membrane stretches between the ER
and the plasma membrane are ubiquitously distributed among
eukaryotic cells (Stefan et al., 2013) (Figure 1). While the
classical secretory pathway or endosomal trafficking between
the ER and the plasma membrane involves the passage of
further intermittent organelle structures, the so-called “plasma
membrane-associated membrane of the ER” (PAM) represents
a direct link between both subcellular compartments (Figure 1).
Linked to the function of the peripheral sarcoplasmic reticulum,
one of the specializations of the PAM comprises the control

of Ca2+ dynamics between the extracellular space and the ER,
which is the dominant Ca2+ storage compartment of the cell.
In this respect the plasma membrane of T-tubules is enriched in
voltage gated ion channels which activate juxtaposed ryanodine
receptors in the PAM to elicit Ca2+ into the cytosol (Endo,
2009) (Figure 2A). Both membranes are interconnected by
junctophilins, integral membrane proteins of the ER in excitable
cells (Figure 2A). Junctophilins stabilize association between the
plasmamembrane and the ER at junctional complexes by binding
to phosphatidylinositol phosphate (PIP) lipids at the cytoplasmic
side of the plasma membrane (Takeshima et al., 2015). A more
commonly distributed protein assembly found in less specialized
cells is the “store-operated calcium entry pathway” (SOCE). This
is composed of the ER Ca2+ sensor STIM (stromal-interacting
molecule), which interacts with the plasma membrane Ca2+
channel Orai1 at ER/plasma membrane contact sites in order to
replenish ER Ca2+ concentrations (Liou et al., 2005) (Figure 2A).
Again this process involves the binding of PIP lipids at the
plasma membrane by the ER resident STIM protein (Park et al.,
2009). Opening of Orai1 channels leads to focally elevated
Ca2+ concentration at the cytosolic face of the PAM facilitating
its uptake by “ER sarcoplasmic/endoplasmic reticulum calcium
ATPase” channels (SERCA).

Interestingly, SOCE assemblies have been recently described
for the spine apparatus—a stack of smooth ER found in the
necks of dendritic spines of principal cortical and hippocampal
neurons (Korkotian et al., 2014). An essential component of
the spine apparatus is the actin-associated protein synaptopodin
(Deller et al., 2000a). Functional studies indicate that the spine
apparatus acts as a dynamic intracellular calcium store (Vlachos
et al., 2009), involved in regulation of homeostatic synaptic
plasticity and memory (Deller et al., 2000a; Vlachos et al., 2013;
Korkotian et al., 2014). In line with such a function, characteristic
Ca2+ ryanodine and inositol tris-phosphate 3-receptors (IP3R)
have been described in the ER of dendritic spines (Satoh et al.,
1990) (Figure 2A). Thus, plasma membrane/ER associations
may act to regulate the Ca2+ concentrations in the spine
apparatus in order to dynamically control postsynaptic signal
transmission. A putative axonal homolog of the SA is comprised
of the so-called cisternal organelle which is specifically localized
in the axon initial segment (AIS) (Deller et al., 2000b).
Structurally, the cisternal organelle is comprised of stacks
of smooth ER frequently found in apposition to the AIS
plasma membrane. Similar to the SA, synaptopodin is also
an essential component for the cisternal organelle (Bas Orth
et al., 2007). Additional proteins characteristic for the PAM,
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including IP3R channels and SERCA pumps, have been found
in the cisternal organelle (Benedeczky et al., 1994; Sánchez-
Ponce et al., 2011). Although, the precise function of the
cisternal organelle is still unknown, it may act as a distinct
axonal ER Ca2+ storage compartment which mediates calcium-
dependent signal transmission in cooperation with apposed ion
channels in the plasma membrane (King et al., 2014). In this
respect both the spine apparatus and the cisternal organelle may
represent neuron-specific specialized PAM regions which create
the Ca2+ microenvironments required in specific subcellular
compartments of highly polarized neurons.

Comparable to the specialization of the mitochondria
associated membrane of the ER (MAM), the PAM is also
supposed to be involved in the transfer of lipids to the opposing
plasma membrane. While the MAM delivers phosphatidylserine
to mitochondria [see Section The Mitochondria-associated
Membrane of the ER (MAM)], the PAM is involved in
the transport of sterol compounds between the ER and the
plasma membrane (Toulmay and Prinz, 2011) (Figure 1). In
yeast, oxysterol-binding protein (OSBP)-related proteins (ORPs)
have been proposed as shuttles between apposed ER/plasma
membrane sites (Schulz et al., 2009) and deletion of all ORPs
in a yeast strain has been shown to decrease sterol exchange
significantly (Beh et al., 2001). A subset of yeast ORPs possess
Pleckstrin homology domains and a motif containing two
phenylalanine residues in an acidic tract (FFAT), which bind PIPs
of the plasmamembrane and Vamp-associated proteins of the ER
membrane (VAP), respectively (Roy and Levine, 2004; Loewen
and Levine, 2005). Both structures ensure that the proteins
target to ER/plasma membrane contacts thereby generating focal
lipid exchange sites. Sterol lipid exchange between the opposing
membranes appears to function in both directions and implies
a complex lipid sensing system which is still not completely
understood (see Toulmay and Prinz, 2011; Stefan et al., 2013
for detailed information). In this context, yeast ORPs (Osh
proteins) appear to fulfill a role beyond mere sterol shuttles,
also acting as lipid sensors, transmitting signals to upstream
regulators. The Osh proteins localize to ER/PM contacts after
phosphatidylinositol 4-phosphate (PI4P) binding and interaction
with the VAP Scs2 (Stefan et al., 2011). PI4P binding to Osh
prevents sterol loading at the plasma membrane, which exhibits
high PI4P levels (Stefan et al., 2013). In this context, a further
interaction of Osh with the PIP phosphatase Sac1 could act as a
reciprocal regulation circuit facilitating the extraction of sterols
from the plasma membrane by reduction of PI4P levels (Stefan
et al., 2011).

ORPs (like VAPs) are conserved in higher eukaryotes (Ngo
et al., 2010) and a role for mammalian ORPs in the trafficking
of sterols from the plasma membrane to the ER and lipid
droplets has been described recently (Jansen et al., 2011).
Thus, comparable regulation mechanisms may exist in higher
eukaryotes.

Three protein families have been recently identified to
physically link the ER with the plasma membrane at contact
sites in yeast: tricalbins, VAPs, and Ist2 (related to mammalian
TMEM16 ion channels) (Manford et al., 2012). Knockout
of all tethering proteins not only disrupted PIP signaling

but also caused a constitutive activation of the ER unfolded
protein response (UPR). Recently, the three mammalian tricalbin
homologs, the extended synaptotagmins E-Syt1-3 have been
functionally characterized (Figure 2A). All three were shown
to tether the ER to the plasma membrane by binding to
PI(4,5)P2 emphasizing the importance of ER/PM contact sites
across species (Giordano et al., 2013; Fernández-Busnadiego
et al., 2015). Thus, ER/PM contact sites appear to be required
for maintenance of ER physiology, which imply that they are
integrated into signaling pathways which cope with the general
regulation of cellular homeostasis.

Remarkably, in addition to the ER/plasma membrane contact
sites described above, mitochondria are also frequently observed
in several cell types in proximity to the cellular surface; e.g., in
HeLA cells up to 10% of mitochondria are found beneath the
plasma membrane (Frieden et al., 2005). In contrast to the ER,
however, mitochondria do not seem to be frequently directly
connected to the plasma membrane but appear to be linked
via discrete ER-cisternae (Csordás et al., 2010) or filamentous
adherence plaques associated to additional vesicular structures
along neuronal synapses (Spirou et al., 1998; Rowland et al.,
2000). Functionally, these structures may distribute calcium
waves from the extracellular space to these calcium storing
organelles. In this respect, neuronal mitochondria show specific
vulnerability to the elevated excitatory influx of Ca2+, which
can eventually impair mitochondrial functions (Connolly and
Prehn, 2015). Mitochondria from individuals with mutations
in the Surfeit locus protein 1 (Surf1) gene show only partially
assembled cytochrome C oxidase complexes (3rd complex of the
electron transport chain) resulting in the lethal Leigh syndrome
in humans (Zhu et al., 1998). Remarkably, neurons of Surf1
KO mice, which show no Leigh-like phenotype, are refractory
against glutamate induced Ca2+ stress and exhibit an increased
life span and enhanced cognitive abilities (Dell’agnello et al.,
2007; Lin et al., 2013). Interestingly, the lack of Surf1 leads
to decreased Ca2+ influx into mitochondria in response to
glutamate-induced excitotoxicity. The authors speculated that
the reduced buffering capacity of Surf1 KO mitochondria could
determine the saturation of the Ca2+ microdomains in the
contact sites between mitochondria and the plasma membrane
or the ER, thereby promoting the feedback closure of their
Ca2+ channels (Dell’agnello et al., 2007). Thus, distinct molecular
changes in the regulatory organelle framework underneath the
neuronal plasma membrane appear to have a direct impact
on general neuronal physiology and survival demonstrating the
functional significance of organelle contact sites.

The Mitochondria-associated Membrane
of the ER (MAM)

The increasing application of the transmission electron
microscope in the field of cell biology during the 1960s and 1970s
already revealed that mitochondria and the ER are often found in
close proximity to each other (Copeland and Dalton, 1959; Ruby
et al., 1969; Franke and Kartenbeck, 1971; Morré et al., 1971).
Co-sedimentation experiments using density gradients further
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implied that both organelles are indeed physically associated
(Pickett et al., 1980; Montisano et al., 1982). In 1990, however,
J. Vance discovered that the microsomes co-sedimenting with
mitochondria represent a specialized cellular subcompartment
and proposed the name “mitochondria associated membrane of
the endoplasmic reticulum” (MAM) (Vance, 1990) (Figure 1).
In the decades after this ground-breaking discovery our
understanding of the functional significance of the MAM has
greatly advanced revealing that this special ER compartment
communicates with mitochondria in order to fulfill a plethora
of functions associated with, among others, lipid metabolism
and Ca2+ signaling but also the regulation of mitochondrial
maintenance and programmed cell death/cell survival reflecting
different levels of complexity (Raturi and Simmen, 2013; Vance,
2014; van Vliet et al., 2014). As these diverse functions imply, it is
still not clear if there is one single MAM compartment or if there
are several MAMs equipped with a specialized sub-proteome in
order to fulfill different functions. The protein assembly found
at the MAM is a subset of bona fide ER proteins, which are,
however, enriched if compared to classic smooth or rough ER
fractions. Thus, the enzymatic activities found at the MAM can
be also found at other ER sites, but seem to be focused at this
specific location. To date only one protein has been described
as specific to the MAM—the phosphatidylethanolamine-N-
methyltransferase-2 (Cui et al., 1993), which appears to be only
expressed in liver (Cui et al., 1995). Proteomic approaches to
define the MAM in different tissues led to the identification of
approximately 1000 proteins each (Poston et al., 2013; Horner
et al., 2015). However, the overlap between proteins identified
in different tissues using different approaches is far lower.
A significant number of these identifications may arise from
contaminating microsomes and mitochondria, which cannot
be entirely separated from the MAM fraction. Thus, to define
a specific MAM proteome, sophisticated isolation strategies
combined with quantitative mass spectrometry approaches are
required in the future. Nevertheless, to date a considerable
number of proteins is generally accepted to be significantly
enriched in the MAM and can be used as marker proteins
for this subcompartment (Vance, 2014; van Vliet et al., 2014).
Since the MAM is continuous with the remaining ER it is also
pertinent to discuss the mechanisms which lead to enrichment
of specific proteins in this membrane subcompartment.
Commonly, conserved amino acid stretches target specific
proteins to their designated compartment, a mechanism
which was reported for the MAM-enriched transmembrane
protein acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2)
(Stone et al., 2009). Corresponding targeting sequences have
not yet been confirmed for other MAM proteins but cysteine
palmitoylation was recently reported to be required for the
sorting of the two MAM-enriched membrane proteins of the
thioredoxin family, TMX and calnexin (Lynes et al., 2012).
However, there is currently no consensus on a bona fide sorting
signal for the different types of MAM protein constituents.
Other targeting information as well as the lipid membrane
environment may ensure that individual proteins are retained in
theMAM or even enriched in specific raft-like subdomains of the
compartment.

A closer look at the group of enriched proteins, which
include, amongst others, long-chain acyl-CoA synthetase-4,
phosphatidylserine synthase-1 and -2, mitofusin 2 (MFN2),
dynamin-related protein 1 (DRP1), calnexin, autophagy-related
protein 14 (ATG14), the oxidoreductase Ero1α and IP3R, reveals
that the MAM is a multifunctional compartment which is
involved in several metabolic but also regulatory pathways of
the cell. In this respect, the MAM is currently supposed to
be involved in the processes of (1) phospholipid synthesis and
transfer, (2) calcium signaling, (3) mitochondrial fission, (4)
mitophagy, (5) ER-stress response, (6) regulation of apoptosis,
and (7) inflammatory/antiviral responses (Figure 1), which will
be described in more detail in the following paragraph.

Historically, the first function associated with the MAM
was its contribution to lipid metabolism (Vance, 1990). The
production of phospholipids in order to supply the remaining
endomembrane system of the cell is a well-known task of
the ER. After synthesis, the phospholipids can be transferred
to their destinations by vesicle-mediated transport. However,
not all subcellular compartments—e.g., mitochondria and
peroxisomes—are supposed to receive phospholipids via such a
process, but may rely on a direct transfer between juxtaposed
membranes (Voelker, 2009; Prinz, 2010; Schlattner et al., 2014).
Mitochondrial membranes are characterized by a high content of
phosphatidylethanolamine (PE). PE can be synthesized at the site
of the inner mitochondrial membrane from phosphatidylserine
(PS) via the PS decarboxylation pathway (Shiao et al., 1995;
Birner et al., 2001). PS, however, is synthesized and supplied
by the ER (Vance, 1991). Consequently, the MAM, as a site of
close apposition between the ER and mitochondria, was found
to be strongly enriched in the two PS synthases 1 and 2 (Stone
and Vance, 2000). There is strong evidence that PS synthesized
at the MAM is subsequently channeled to the mitochondrial
inner membrane for further processing into PE, which can be
subsequently exported back to the ER or to other subcellular
compartments (Vance, 2014). Besides PE, other mitochondrial
membrane lipids like phosphatidylcholine or cardiolipin are
at least partially supplied in the form of precursor molecules
to mitochondria by the ER (Vance, 2014). Since a significant
number of lipid-metabolizing enzymes are enriched at the
MAM, it is likely that further lipids are transferred between
mitochondria and this specialized ER subcompartment (Raturi
and Simmen, 2013).

Both, the ER and mitochondria are important intracellular
calcium stores and cyclical calcium exchange between both
organelles is crucial for cell life and death (Raturi and Simmen,
2013; Marchi et al., 2014). However, Ca2+ concentrations of
approximately 1mM inside the ER (de la Fuente et al., 2013)
by far exceed those in mitochondria, which are highly dynamic
and react to even small Ca2+ changes in the cytosol (Giacomello
et al., 2007). Calcium ions in mitochondria are required to
regulate mitochondrial energy homeostasis by activating the
rate limiting enzymes of the Krebs cycle. Moreover, Ca2+
is involved in the regulation of mitochondrial motility and
apoptosis (Giacomello et al., 2007; Rowland and Voeltz, 2012).
Ca2+ uptake by mitochondria is electrochemically driven by the
electron potential across the inner mitochondrial membrane and
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facilitated by the mitochondrial low affinity calcium uniporter
MCU (Baughman et al., 2011; De Stefani et al., 2011; Chaudhuri
et al., 2013). To still allow rapid and highly dynamic Ca2+
changes in mitochondria, the close proximity between the
MAM and mitochondria creates locally elevated cytosolic Ca2+
concentrations (Rizzuto et al., 1998). For this reason the MAM
is highly enriched in inositol-1,4,5-tris-phosphate sensitive Ca2+
channels (IP3R) which release calcium into the local surrounding
cytosol in response to IP3 signaling (Rizzuto et al., 1993; Hayashi
et al., 2009) (Figure 2A). Indeed, changes in the distance between
the MAM and mitochondrial membranes lead to alterations in
the efficiency of Ca2+ transfer (Csordás et al., 2010). Moreover,
IP3R activity is inhibited by low and very high cytosolic Ca2+
concentrations in an autoregulative system (Bezprozvanny et al.,
1991). Creating a reciprocal cycle, Ca2+ ions can also be
released from mitochondria via the Na+/Ca2+ exchanger NCLX
(Palty et al., 2010) and taken up by the calcium pumps of
the SERCA family, which may also be concentrated at the
MAM (Lynes et al., 2012). To interfere with mitochondrial
energy homeostasis, MAM Ca2+ release is reciprocally coupled
to cytosolic ATP concentration. Specifically, IP3R3 channel
activity has been shown to closely depend on free ATP
concentrations in the surrounding cytosol (Mak et al., 1999). In
addition, IP3R activity is further modulated by numerous control
systems. For example, phosphorylation by cAMP-dependent
protein kinase (PKA) promotes IP3R1 activity, whereas protein
phosphatases 1 and 2A have an inhibitory effect (DeSouza
et al., 2002). Moreover, IP3R activity is modulated by further
regulatory proteins like the sigma-1 receptor, promyelocytic
leukemia (PML) tumor suppressor protein or GRP75/VDAC1
(see Raturi and Simmen, 2013; Marchi et al., 2014 for details)
(Figure 2A).

A deregulation of cellular calcium signaling is supposed to
be involved in the development of insulin resistance in type
2 diabetes (Guerrero-Hernandez and Verkhratsky, 2014). IP3R
calcium release activities were reported to be influenced by
an interaction with the GRP75/VDAC1 complex at the MAM
(Szabadkai et al., 2006). Interestingly, disruption of MAM
integrity and correspondent VDAC1/IP3R1 and Grp75/IP3R1
interactions are associated with altered insulin signaling inmouse
and human primary hepatocytes (Tubbs et al., 2014). Likewise,
the authors observed that ER—mitochondria contact sites are
decreased in established diabetic mouse models. An induction
of ER-mitochondria contact sites by pharmacologic treatment or
overexpression of themitochondrialMAMprotein cyclophilin D,
however, partially restored insulin sensitivity in the mice. Thus,
the MAMs role in Ca2+-mediated organelle communication
does not appear to be restricted to a direct regulation of
mitochondrial physiology but may represent a signaling hub,
which interferes with higher level networks controlling cellular
energy homeostasis.

Considering its role in the regulation of energy homeostasis, it
is not surprising that the MAM is also involved in the complex
signaling network controlling cell fate decision. Generally, the
ER responds to cellular stress, paralleled by accumulation of
unfolded protein, with a signal transduction mechanism called
“unfolded protein response” (UPR). In this process the ER

stops protein translation and activates chaperones assisting
protein folding (Schröder and Kaufman, 2005). Chaperone-
mediated protein folding is a massively energy demanding
process. To maximize ATP production under ER-stress, cells
exhibit an increasing number of ER/mitochondrial contact sites
leading to elevated mitochondrial Ca2+ concentrations and thus
higher oxidative ADP-phosphorylation rates (Bravo et al., 2012).
However, if the UPR is not able to reduce cellular stress, lethal
signaling pathways will be activated finally triggering apoptosis.
In such a situation truncated isoforms of SERCA1 localizing to
the MAM were reported to be upregulated. This process leads
to an increase in ER/mitochondria contact sites, elevated Ca2+
leakage and inhibition of mitochondrial movement, thereby
causing mitochondrial Ca2+ overload which triggers apoptosis
(Chami et al., 2008).

Mitochondria are not a static cellular compartment but
constantly change theirmorphology by fusion and fission. Fission
of mitochondria is mediated by cytosolic Drp1 which is recruited
to mitochondrial constriction sites by several membrane proteins
like Fis1, MiD49/MiD51, or Mff (Lee and Yoon, 2014) (see
Section Interplay between Peroxisomes and Mitochondria).
ER tubules have been found to wrap around mitochondria
marking sites of fission by inducing actin assembly at these ER-
mitochondria contacts (Friedman et al., 2011; Korobova et al.,
2013). These events seem to precede Drp1-induced fission by
preformation of a constriction site to which Drp1 is subsequently
recruited (Friedman et al., 2011). Indeed, Drp1 was found to
colocalize in significant amounts with these ER/mitochondria
contacts (Friedman et al., 2011). In yeast the “ER mitochondria
encounter structure” (ERMES), a multiprotein complex, has been
described as a tethering structure participating, amongst other
functions, in lipid transfer and mitochondrial fission (Murley
et al., 2013) (Figure 2C). With the conserved “ER membrane
protein complex” (EMC), a second tethering complex involved
in lipid transport has been described in yeast recently (Lahiri
et al., 2014). In higher eukaryotes a direct ERMES homolog
has not been identified, whereas candidates for EMC homologs
exist but are yet not functionally characterized. Very recently,
syntaxin17 was reported to reside at ER/mitochondria contacts
and to promote mitochondrial fission by participating in Drp1
assembly at the mitochondrial constriction site in mammalian
cells (Arasaki et al., 2015). Mitochondrial fusion is mediated
by the dynamin-related proteins Mfn1/2 or Opa1 found at
the outer and inner mitochondrial membrane, respectively (Lee
and Yoon, 2014). Mfn2 is also a bona fide constituent of the
MAM, generally supposed to physically tether ER/mitochondria
contact sites by interacting with Mfn2 or Mfn1 of the outer
mitochondrial membrane (Figure 2A). However, this view has
recently been questioned (Cosson et al., 2012; Filadi et al.,
2015). In contrast to the general view, the authors come to the
conclusion that Mfn2 acts as a negative regulator of organelle
apposition (Filadi et al., 2015). In addition to Mfn2, VAPB
of the MAM has been recently described to interact with the
outermitochondrial membrane protein PTPIP51 representing an
additional physical linker pair between both organelles (Stoica
et al., 2014) (Figure 2A). However, the tethering function of
Mfn2 at the contact sites between ER and mitochondria appears
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to be independent from its role in mitochondrial fusion events.
Thus, whilst there is already considerable knowledge on the
architecture of the MAM, its role in regulation of mitochondrial
fission and fusion remains fragmentary. Nevertheless, there is
clear evidence that the mitochondrial dynamics are crucial for
the regulation of metabolic homeostasis and cell survival (Ni
et al., 2015). Mitochondrial elongation rescues mitochondria
from autophagy whereas damaged mitochondria appear to lose
their fusion capacity preventing their incorporation into the
healthy mitochondrial network (Twig et al., 2008). Besides its
role as a mediator of mitochondrial fission, the MAM also seems
to be more directly involved in the process of mitophagy. There
is increasing evidence that the ER supplies membrane material
for the formation of autophagosomes (Tooze and Yoshimori,
2010). Interestingly, the pre-autophagosomal protein Atg14
relocalizes from a homogenous ER distribution to the MAM
during autophagy-inducing starvation conditions (Hamasaki
et al., 2013). Likewise after starvation Atg5 accumulated
at ER/mitochondria contact sites. In contrast, disruption of
ER/mitochondrial contacts by Mfn2 or PACS2 knockdown
attenuated the formation of autophagosomes, implying a role
for the MAM in autophagosome formation (Figure 2B). Thus,
the MAM may act as a direct linker between phagosome
formation and mitochondrial fragmentation, thereby regulating
mitochondrial homeostasis. As described above the interaction
of the MAM and mitochondria on different mechanistic levels
is involved in determining cell survival or death, significantly
contributing to the regulation of apoptosis. The communication
systems involved in apoptosis described so far predominantly
transmit signals from theMAM tomitochondria. A sophisticated
regulation system, however, involves feedback loops between
communicating cellular entities. In this respect, mitochondrial
Fis1 was recently reported to interact with ER Bap31 in
order to recruit procaspase-8 to the MAM facilitating its
activation into caspase-8 (Iwasawa et al., 2011) (Figure 2A).
Subsequently, Ca2+ emission from the MAM further elevates
mitochondrial Ca2+ concentration stimulating the induction of
apoptosis.

Further signaling networks, in which mitochondria and the
ER were reported to cooperate at the MAM are involved in
the activation of the antiviral innate immune response (Marchi
et al., 2014; van Vliet et al., 2014). Cytosolic pathogen recognition
receptors RIG-I are able to detect cytosolic foreign RNA and
subsequently induce the production of type I interferons and
proinflammatory cytokines (Sumpter et al., 2005). To this end
RIG-I receptors assemble in a multiprotein complex by docking
to mitochondria antiviral signaling protein (MAVS)—an adaptor
protein located at the outer membrane of mitochondria and
peroxisomes (Belgnaoui et al., 2011) (see Section Interplay
between Peroxisomes andMitochondria). In a recent publication
the MAVS were shown to reside on the MAM, where they
appear in close proximity to peroxisomal and mitochondrial
MAVS during viral infection (Horner et al., 2011). This organelle
connecting assembly was suggested to act as signaling hub
for the regulation of mitochondrial and peroxisomal innate
immune responses after viral infection (Horner et al., 2011).
In a subsequent publication the authors further reported

that the MAM proteome dynamically changes after virus
infection in particular increasing the amounts of individual
MAVS interacting proteins (Horner et al., 2015). Evaluating
their findings, the authors speculated that the MAM may be
used to coordinate mitochondrial and peroxisomal metabolism
according to the requirements during virus infection.

The Nod-like receptor NLRP3-inflammosome is a large
multiprotein complex serving as a platform mediating the
activation of interleukins IL1β and IL18 and contributing
to innate immunity (Schroder and Tschopp, 2010; Gurung
et al., 2015). To this end the NLRP3 senses pathogen-
and danger-associated molecular patterns which activate the
assembly of the inflammosome. In this respect, signals for
mitochondrial dysfunction like ROS or elevated Ca2+ efflux
stimulate inflammosome assembly (Gurung et al., 2015).
Inactive NLRP3 was reported to localize to the ER, but upon
inflammosome activation redistributes to ER-mitochondrial
clusters comprising MAM sites (Zhou et al., 2011). These events
occur in response to elevated mitochondrial ROS production
after inhibition of mitochondrial autophagy. Interestingly,
knockdown of VDAC1, which promotes mitochondrial Ca2+
uptake at the MAM, thus elevating mitochondrial ATP
production, significantly reduced inflammosome activation. In
this respect, inflammosome formation at the MAM may be a
reaction to elevated ROS production during mitochondrial ATP
production.

The intriguing diversity of functions associated with the
MAM described above vividly illustrates how the cell connects
the metabolic control of cellular functions to control circuits
of higher order and complexity which finally contribute
to the decision of cellular survival and death. In this
respect, the findings that the MAM cooperatively interconnects
peroxisomal and mitochondrial MAVS signaling (Horner
et al., 2011) (see Section Interplay between Peroxisomes and
Mitochondria) further directs our view on organellar cooperation
to cross-compartment signaling networks which may integrate
cellular homeostasis and dysfunction in different locations of
the cell.

The Peroxisome-ER Connection

The intricate relationship between the ER and peroxisomes
(Figure 1) includes cooperation in various metabolic pathways,
for example the biosynthesis of ether-phospholipids (e.g., myelin
sheath lipids), which starts in peroxisomes and is completed
in the ER, the formation of GPI-anchored proteins in the
ER, and the production of polyunsaturated fatty acids (e.g.,
docosahexaenoic acid) (for a detailed review see Schrader et al.,
2013). It is now clear that the ER also has a role to play in
the generation of peroxisomes as well as regulation of their
function. Study of this relationship began with ultrastructural
studies in the 1960’s which demonstrated a close proximity
between the smooth ER and peroxisomes (Novikoff and Shin,
1964; Novikoff and Novikoff, 1972; Reddy and Svoboda, 1972,
1973). These early images show peroxisomes entwined and
engulfed by the tubules of the ER, suggesting an intimate,
physical interaction (which may not even leave sufficient space
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for vesicle-based interaction). Indeed, in those TEM images
both organelles appear to be interconnected by electron-dense
intermembrane cross-bridges, spanning a distance between
10 and 15 nm (Kartenbeck and Franke, 1974; Zaar et al.,
1987), which resemble the ultrastuctural appearance of known
organellar contact sites, like the association between MAM and
the outer mitochondrial membrane. Importantly, the electron-
dense cross-bridges and attached ER tubules could even be
visualized, and biochemically verified, in isolated peroxisome
fractions (Zaar et al., 1987). Despite this clear and long-held
evidence for a specialized ER-peroxisome contact site, its protein
composition and physiological function remain obscure but may
be broadly associated to two cellular processes: (1) the biogenesis
of peroxisomes as derivatives from the ER or (2) the exchange of
metabolites from shared biochemical pathways, for example the
ether phospholipid biosynthesis.

Confidence in the level of this intimacy, with regards to
the ER as the site of peroxisome production has fluctuated
over the years. Over 40 years ago Christian De Duve suggested
that it was “almost textbook knowledge” that peroxisomes
were derived from the ER and that peroxisomal proteins were
delivered intraluminally via ER channels (De Duve, 1973).
This view was, however, subsequently replaced by the growth
and division model of peroxisome biogenesis established by
Fujiki and Lazarow (Fujiki and Lazarow, 1985). This model
proposed that, although the phospholipids required to form
the peroxisome membrane could be provided by the ER,
peroxisomal proteins were synthesized on cytoplasmic ribosomes
and delivered directly to peroxisomes. There is general agreement
that this applies to peroxisomal matrix proteins, whereas delivery
of peroxisomal membrane proteins (PMPs) became a matter of
ongoing debate.

Over the years a wide variety of evidence has been presented
in support of both models and there has been considerable
debate as to which mechanism predominates in wild type cells
(Hoepfner et al., 2005; Kim et al., 2006; Motley and Hettema,
2007; Nagotu et al., 2008; Delille et al., 2010; Rucktäschel et al.,
2010; Van der Zand and Reggiori, 2012). Much of the debate
has stemmed from the observation that cells lacking, or carrying
mutations in, the peroxisome biogenesis factor Pex3 do not
contain peroxisomes (Baerends et al., 1996; Muntau et al., 2000).
Pex3 is a membrane protein which, along with its cytoplasmic
partner Pex19, forms an import complex required for insertion of
peroxisomalmembrane proteins (Götte et al., 1998; Rottensteiner
et al., 2004). When Pex3 is re-introduced into Pex3 deficient
cells, the protein was observed to route first to the ER and
then be released in pre-peroxisomal vesicle structures, which
were then supplied with PMPs from the ER (Van der Zand
et al., 2010; Van der Zand and Reggiori, 2012). This concept was
questioned by a recent ultrastructural study which demonstrated
that such pre-peroxisomal structures are already present in cells
lacking Pex3 (Knoops et al., 2014). The authors suggested that
the ER-localization of re-introduced Pex3, and other proteins,
could be due to limitations in the resolution of fluorescence
microscopy.

Further data in support of a model in which PMPs transit via
the ER comes from studies investigating co-translation insertion

at the ER membrane. An early study in yeast suggested that
PMP50 was synthesized on ER-associated ribosomes (Bodnar
and Rachubinski, 1991). This was supported by a more recent
global study which investigated the extent of co-translational
delivery of proteins to the ER and found a clear enrichment
of genes coding for PMPs at ER-anchored ribosomes in yeast
and, to a lesser extent, in mammals (Jan et al., 2014). Jan et al.
interpreted this finding to show that PMPs are translated at
the ER membrane and are presumably inserted into the ER
before being delivered to peroxisomes. An exception to this
are tail-anchored membrane proteins which are translated on
cytoplasmic ribosomes before being delivered to the appropriate
organelle (Borgese and Fasana, 2011) and appear to be targeted
by species-specific systems. Accordingly yeast peroxisomal tail-
anchored proteins go either direct, or via the ER using
the “Guided Entry of Tail-anchored Proteins” (GET) system
(Mariappan et al., 2010) but mammalian tail-anchored proteins
are delivered directly to peroxisomes (Chen et al., 2014; Kim and
Hettema, 2015).

Overall there are still some aspects of peroxisome biogenesis
which require clarification but the most recent data supports a
growth and division model with a role for the ER (dependent on
conditions and species) in delivery of phospholipids and some
specific PMPs, such as Pex3.

Having established that at least a portion of PMPs can be
delivered by the ER another unresolved issue is the mechanism of
transport of such proteins, as well as the essential phospholipids
required for the peroxisomal membrane. Vesicular transport of
PMPs has been demonstrated in an in vitro cell-free system
(Agrawal et al., 2011) and may involve the Sec16B protein in
mammalian cells (Yonekawa et al., 2011), whilst non-vesicular
mechanisms have also been reported to exist (Lam et al., 2010).
Removal of Sec16B in mammalian cells results in peroxisome
elongation, disruption of ER exit sites and redistribution of
Pex16 from peroxisomes to the ER (Yonekawa et al., 2011).
Based on these observations Yonekawa and colleagues speculated
that Sec16B is involved in forming Pex16-containing vesicles
in a peroxisome-like domain of the ER. A recent report also
highlighted the potential importance of Pex16 in ER-peroxisomal
trafficking (Hua et al., 2015). However, the validity and scope of
such a mechanism, and the precise role for Sec16B in this process
remains unclear.

Although it is generally accepted that the phospholipids
generating peroxisomal membranes come from the ER there
are relatively few studies on this process. One such study
in yeast, supporting a non-vesicular mechanism, used an
engineered strain in which the PTS1 enzyme responsible
for the decarboxylation of phosphatidylserine (PS) to
phosphatidylethanolamine (PE) was artificially targeted to
peroxisomes (Raychaudhuri and Prinz, 2008). In a strain
where the endogenous PTS1 genes were removed this allowed
monitoring of lipid transfer by measuring the conversion of
radiolabelled PS (generated exclusively in the ER) to PE which
could now only occur in peroxisomes in this system. The authors
found that PS transfer to peroxisomes occurred under normal
conditions and also under conditions where vesicular transport
was compromised.
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Despite a wealth of evidence suggesting a direct, physical
interaction between peroxisomes and the ER, understanding
of the molecular basis of such contacts is limited. So far
there are only a small number of studies reporting a physical
tether between the ER and peroxisomes analogous to the
complexes which anchor the ER to other organelles such as
mitochondria, the PM or lysosomes [see Sections Connections
between the ER and the Plasma Membrane, The Mitochondria-
associated Membrane of the ER (MAM), Interplay between
Peroxisomes and Mitochondria, and Lysosomal Interactions and
Autophagy for details and (Prinz, 2014) for a comprehensive
review on membrane contact sites]. However, by comparison
with other ER-anchoring systems it is likely that there are
several tethers connecting the ER to peroxisomes (Stefan et al.,
2013). So far in yeast two potential tethering complexes have
recently been identified. A complex involving Pex30 has been
implicated as a facilitator between peroxisomes and the ER
along with a tether involving Pex3 and Inp1 (David et al.,
2013; Knoblach et al., 2013). The Pex30 anchoring complex
is involved in the regulation of peroxisome proliferation and
requires the integrity of the ER tubular network. Through
interaction between, among others, Pex30 and the ER proteins,
Rtn1, Rtn2, and Yop1 an “ER-peroxisome contact site” (or
EPCON) is generated to facilitate ER-peroxisome interactions
(David et al., 2013). However, a detailed interaction map of
this macromolecular complex bridging both organelles remains
to be specified. The authors speculate that these EPCONs
could represent a platform from which peroxisomes could be
formed. The Pex3-Inp1 tethering system is based on Pex3
being resident in both the ER and peroxisomal membrane and
Inp1 acting as a molecular hinge interacting directly with both
Pex3 proteins. This tether reportedly functions to regulate the
maintenance of peroxisome numbers during budding (Knoblach
et al., 2013). Knoblach and colleagues postulate that this occurs
by the anchoring, via Inp1 and Pex3, of peroxisomes to the
cortical ER prior to division. When division is signaled the
peroxisomal division machinery assembles (see Section Interplay
between Peroxisomes and Mitochondria) leading to a pulling
force which elongates the peroxisome, eventually leading to
fission. The newly-formed peroxisomal structure can then move
from the mother cell and into the bud. There is no homolog
of Inp1 in metazoa so the relevance of a similar tether in
other systems is unclear and may be specific to budding
yeast.

As initially indicated, ER-peroxisome contacts are extensively
observed in mammalian cells and likely represent functionally
specialized contact sites comparable to the MAM or PAM
described above. However, it remains to be determined
if these numerous appositions between both organelles
predominantly mirror the process of peroxisome biogenesis or
if they mainly contribute to several other cellular processes
including exchange of metabolites, such as precursors
of ether phospholipids, polyunsaturated fatty acids and
cholesterol or even regulation of viral defence (see Section
Interplay between Peroxisomes and Mitochondria). Thus, their
contribution to peroxisome biogenesis is just one aspect of
their multiple functions and it will be challenging to unravel

their actual function in different experimental models and
set ups.

Interplay between Peroxisomes and
Mitochondria

In recent years, convincing evidence for a close connection
between peroxisomes and mitochondria has been obtained
(Schrader and Yoon, 2007; Camões et al., 2009; Delille et al.,
2009; Schrader et al., 2012, 2015) (Figure 1). Peroxisomes
and mitochondria cooperate in cellular lipid metabolism, in
particular the breakdown of fatty acids via their organelle-
specific β-oxidation pathways and can both act as subcellular
source, sink or target of ROS (Schrader and Fahimi, 2006;
Wanders and Waterham, 2006; Antonenkov et al., 2010;
Ivashchenko et al., 2011; Fransen et al., 2013). Although
peroxisomes and mitochondria can be observed in close
proximity, e.g., in ultrastructural studies in mammalian cells and
can also be co-purified at distinct buoyant densities (Hicks and
Fahimi, 1977; Islinger et al., 2006), studies on the molecular
background of physical interactions and their physiological
importance are scarce (Horner et al., 2011, 2015; Van Bergeijk
et al., 2015). Recent studies in yeast localized peroxisomes
to specific mitochondrial subdomains such as mitochondria-
ER junctions and sites of acetyl-CoA synthesis (Cohen et al.,
2014). In line with this, a genome-wide localization study of
peroxisome-mitochondria interactions in yeast identified Pex11,
a membrane-bound peroxin (peroxisome biogenesis factor)
involved in peroxisome division and proliferation, and the
mitochondrial ERMES complex (Mattiazzi Us̆aj et al., 2015)
(Figure 2C). The ERMES complex is supposed to provide a
tether and to facilitate the exchange of molecules between
the ER and mitochondria. In particular, Pex11 was found
to physically interact with Mdm34 to establish the contact
sites between peroxisomes and mitochondria (Figure 2C).
Interestingly, this interaction was only observed in glucose
media, but not after induction of peroxisome proliferation by
fatty acids in the absence of glucose. The authors speculate that
besides its role in elongation and fission of the peroxisomal
membrane, Pex11 may also be a sensor of the metabolic state
of peroxisomes. Thus, metabolic stimuli may modulate the
peroxisome-mitochondrion tether in yeast. Tethering of both
organelles may enhance metabolism by reducing the distance
for efficient transport of metabolites from one organelle to
another. Mammalian cells lack ERMES, and another tethering
complex is supposed to perform similar functions in higher
eukaryotes.

Tethering might also play a role in the coordinated
movement of both organelles, in particular for organelle
inheritance. Whereas in budding yeast distinct organelle-specific
membrane proteins are involved in the actin-myosin dependent
inheritance of peroxisomes and mitochondria (Knoblach and
Rachubinski, 2015), in the fission yeast Schizosaccharomyces
pombe peroxisome movement in association with mitochondria
has been reported (Jourdain et al., 2008). Another example
is the red algae Cyanidioschyzon merolae, which possesses
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only one peroxisome and one mitochondrion. During
coordinated organelle-division the peroxisome interacts
with the mitochondrion to partition into the daughter cell
(Miyagishima et al., 1999). Note that in budding yeast tethering of
peroxisomes and mitochondria to the ER is crucial for organelle
retention and inheritance (see Section The Peroxisome-ER
connection).

Another interesting twist of the peroxisome-mitochondria
connection is the discovery that peroxisomes and mitochondria
share key proteins of their division machinery (Schrader et al.,
2012), namely the dynamin-related GTPase Drp1/DLP1/(Koch
et al., 2003; Li and Gould, 2003), its membrane adaptor proteins
Fis1 and Mff (Koch et al., 2005; Gandre-Babbe and Van Der
Bliek, 2008; Otera et al., 2010; Koch and Brocard, 2012; Itoyama
et al., 2013) as well as GDAP1, a putative GST-transferase
(Huber et al., 2013) in mammals. Fis1 and Mff are supposed
to recruit the mechanochemical enzyme Drp1 to distinct spot-
like division sites at the organelle membrane prior to fission.
Sharing of key division components is conserved in mammals,
fungi, yeast, and plants (Delille et al., 2009; Schrader et al., 2012),
The first patients with defects in different division proteins (e.g.,
Drp1, Mff, Pex11β) and thus, an abnormal elongated organelle
morphology, have been identified underlining the biomedical
importance of membrane deformation and fission (Waterham
et al., 2007; Ebberink et al., 2011; Ribeiro et al., 2012; Shamseldin
et al., 2012; Schrader et al., 2014). Unraveling how a cell is
able to timely coordinate the distribution of shared components
of the mitochondrial and peroxisomal division machinery in
order to meet the requirements of increased organelle-specific
proliferation will be a challenging task for future research
activities and may involve hitherto undetected networks of
organelle cross-talk.

In addition to the key division proteins, the division of
mitochondria involves ER-mitochondria contacts (Friedman
et al., 2011), and actin filaments (Li et al., 2015). ER tubules were
observed to wrap around mitochondria in yeast and mammalian
cells, to mark fission sites and to drive mitochondrial constriction
(Friedman et al., 2011; Korobova et al., 2013). It is unknown if
peroxisomal membrane fission is also ER-assisted. Recent in vitro
studies using liposomes and recombinant Pex11β imply that
membrane constriction may occur unassisted by ER (Yoshida
et al., 2015).

The constitutive formation of organelles also requires
degradation of faulty or surplus organelles. This is achieved
by autophagic processes (pexophagy, mitophagy). The size of
the organelle is a critical factor for the efficient engulfment
by the sequestering compartment, the phagophore. Organelle
fission is critical for the efficient elimination of mitochondria
(Gomes and Scorrano, 2013) and peroxisomes (Mao et al.,
2014). In S. cerevisiae, it was reported that pexophagy-specific
fission, mediated either by the dynamin-like GTPases Dnm1
or Vps1, occurred at mitochondria-peroxisome contact sites.
The authors suggest that whereas division of mitochondria
requires the participation of the ER, the fission of yeast
peroxisomes may involve mitochondria (Mao et al., 2014). It
should be noted that as both organelles are in intimate contact
with the ER (see Section The Peroxisome-ER Connection),

potential peroxisome-mitochondria contacts might be indirect
and mediated by ER membranes.

Mitochondria, and increasingly also peroxisomes, are now
recognized as important signaling nodes in the cell and
cooperative functions in anti-viral and redox signaling are
emerging (Dixit et al., 2010; Fransen et al., 2013; Odendall and
Kagan, 2013; Nordgren and Fransen, 2014).With the discovery of
the dual distribution of mitochondrial antiviral signaling protein
(MAVS) to both peroxisomes and mitochondria, a novel role
for peroxisomes in the innate immune response of the host
cell to combat viral and bacterial infections, either alone or in
cooperation with mitochondria, was revealed (Dixit et al., 2010;
Odendall et al., 2014). MAVS functions as an adaptor protein
for retinoic acid-inducible gene 1 protein (RIG-I) and transmits
downstream signaling of antiviral immunity. Interestingly,
MAVS localizes to mitochondria-associated ER membranes
(MAM) and dynamic MAM tethering to mitochondria and
peroxisomes is supposed to coordinate MAVS localization
to form a signaling synapse between membranes. It could
regulate the interaction between positive and negative regulators
distributed on different organelles in order to fine-tune the
RIG-1 induced innate immune response (Horner et al., 2011)
(Figure 1). Proteomic analysis of MAM during RNA virus
infection revealed an increased presence of peroxisomal proteins
if compared to control cells, supporting physical interactions
between peroxisomes and mitochondria (or MAM) during anti-
viral response (Horner et al., 2015).

It is becoming increasingly evident that peroxisomes and
mitochondria also share an intricate redox-sensitive relationship.
Both organelles are crucial for cellular redox homeostasis
(Nordgren and Fransen, 2014). Interestingly, disturbances in
peroxisomal lipid and ROS metabolism have an impact on the
mitochondrial redox balance (Koepke et al., 2008; Ivashchenko
et al., 2011; Walton and Pizzitelli, 2012). It is hypothesized
that such peroxisomal disturbances can trigger redox-related
signaling events that ultimately result in increased mitochondrial
stress and the activation of mitochondrial stress pathways
(Titorenko and Terlecky, 2011; Beach et al., 2012; Fransen et al.,
2013). It is, however, unknown, how those signals are transmitted
between peroxisomes and mitochondria. Interorganellar
communication may involve diffusion of signaling molecules
from one organelle to another, communication via membrane
contact sites or vesicular transport. With respect to direct
membrane contact, it is tempting to speculate that the MAM
may contribute to the transmission of ROS and stress responses
from peroxisomes to mitochondria. It should be noted, that
loss of peroxisomal biogenesis and metabolism, a hallmark of
Zellweger syndrome, is associated with impaired mitochondrial
integrity. Recent studies in Zellweger-mouse models revealed
impaired mitochondrial respiration, DNA depletion, PGC-1α
independent proliferation of mitochondria and perturbed
carbohydrate metabolism in peroxisome-deficient hepatocytes
(Peeters et al., 2011, 2015). These findings suggest an impact on
organelle interplay in Zellweger spectrum patients. Concerning
vesicular transport, mitochondria have been reported to
generate so called mitochondria-derived vesicles (MDVs)
that can transport specific mitochondrial proteins to either
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peroxisomes or to lysosomes for degradation (Neuspiel et al.,
2008; Soubannier et al., 2012). The physiological role for
peroxisome-directed MDVs is currently unclear. Peroxisomes
may also be able to generate and target vesicles to mitochondria,
but experimental evidence for this phenomenon is missing.
Finally, live cell imaging of peroxisomes in mammals and
plants revealed that peroxisomes can form tubular membrane
protrusions, which vividly extend and retract, and are thought
to mediate interactions with other peroxisomes and organelles.
Very recently, peroxisomal membrane extensions were reported
to mediate contact with oil bodies (see Section Lipid Droplets)
in the model plant Arabidopsis thaliana and to deliver a
membrane-bound lipase, required for lipid mobilization during
seedling establishment (Thazar-Poulot et al., 2015). Membrane
protrusions may also be involved in the transfer of membrane
lipids. Remarkably, transient contacts between peroxisomes
and lysosomes are thought to mediate transfer of cholesterol
from lysosomes to peroxisomes (Chu et al., 2015) (Figure 1).
Contacts are mediated by synaptotagmin VII on lysosomes
which binds to the lipid PI(4,5)P2 at the peroxisomal membrane
(Figure 2A). LDL-cholesterol enhances such contacts, whereas
peroxisome dysfunction results in cholesterol accumulation in
lysosomes (Chu et al., 2015). This cholesterol trafficking blockage
may contribute to the pathology of peroxisome disorders. An
intriguing idea is that peroxisomes may associate with other
organelles and deliver cholesterol to them (Chu et al., 2015). This
can be mediated by transient organelle contacts or by membrane
protrusions. Interestingly, transient contacts between individual
peroxisomes have been reported (Bonekamp et al., 2012). These
contacts do not result in the exchange of peroxisomal matrix
or membrane proteins, but have been suggested to contribute
to the equilibration of the peroxisomal compartment in the cell
and might instead mediate the transfer of lipids or cholesterol
between peroxisomes for further modification. These exciting
novel findings underline the role of peroxisomal membrane
dynamics in inter-organelle communication and protein/lipid
transport and highlight the clinical relevance of these
processes.

Lipid Droplets

Lipid droplets (LDs) are specialized organelles involved in the
storage of neutral lipids, mainly triacylglycerols, and sterol esters,
for energy and membrane homeostasis. LDs have been found
in all eukaryotic and some prokaryotic cells, since lipids are
essential for life and the capacity to store lipids confer an
evolutionary advantage to the organism. The concept that LDs
are simple, inert lipid-storage containers has now been dismissed.
Today it is widely accepted that LDs are dynamic organelles
which are involved in multiple cellular processes including
lipid metabolism, but also protein sequestration/degradation
and pathogen replication (Palacpac et al., 2004; Welte, 2007;
Sorgi et al., 2009; Vogt et al., 2013). LDs are thought
to originate from the ER and grow by fusion through a
SNARE-mediated process (Böstrom et al., 2007; Murphy, 2012;
Walther and Farese, 2012). They are known to move bi-
directionally on microtubules and there is significant evidence

showing that LDs dynamically interact with other organelles
(Figure 1). LDs have been found in close association with
ER, peroxisomes, mitochondria, endosomes, and the plasma
membrane (Goodman, 2008; Murphy et al., 2009; Dugail, 2014).
Lipid-exchange is likely to be the functional linkage between LDs
and ER, peroxisomes andmitochondria. The association between
the ER and LDs seems to occur even after budding of the LDs,
with permanent contacts between these organelles being reported
in different cells types (Blanchette-Mackie et al., 1995; Szymanski
et al., 2007). Peroxisomes and mitochondria are frequently found
in close association with LDs (Novikoff et al., 1980; Schrader,
2001; Binns et al., 2006; Sturmey et al., 2006; Shaw et al.,
2008). Those contacts may link fatty acid supply by lipolysis in
LDs with peroxisomal and mitochondrial fatty acid β-oxidation.
In addition, exchange of lipids between LDs and peroxisomes
or mitochondria may also serve membrane replenishment or
storage in LDs. Defects in peroxisomal β-oxidation or absence
of peroxisomes have been associated with enlarged LDs (Dirkx
et al., 2005; Zhang et al., 2010). Inhibition of lipid mobilization
in plants resulted in enlarged LDs and clustering of peroxisomes
around them (Brown et al., 2013). Recently, it was reported that
fatty acids stored in LDs in well-fed cells travel from LDs into
mitochondria when cells are kept under starvation conditions.
This transfer was dependent on mitochondrial fusion dynamics
and close proximity to LDs (Rambold et al., 2015). Endosomes
have also been observed to enwrap LDs, potentially promoting
the delivery of LDs to lysosomes allowing for the transfer of
cholesterol (Martin and Parton, 2005; Ouimet et al., 2011).
Even though the interaction of LDs and other organelles (e.g.,
endosomes, ER, and vacuole) appears to be regulated by several
Rab GTPases (Liu et al., 2007; Murphy et al., 2009; Bouchez
et al., 2015), and the fusion events between LDs themselves,
or LDs and mitochondria likely involves SNARE-mediated
homotypic fusion (Goodman, 2008; Jägerström et al., 2009;
Olofsson et al., 2009), the underlying molecular mechanisms
remain largely unknown. In this respect, the LD-associated
protein perilipin 5 is regarded as a candidate for the physical and
metabolic linkage of mitochondria to LDs (Wang et al., 2011),
whereas the molecular basis for a peroxisome—LD interaction
remains elusive. A remaining question is the contribution
of protein-protein and/or protein-phospholipid interactions to
LD-organelle contacts. Hemi-fusion-like mechanisms would,
however, represent an efficient way with low energy cost to
exchange lipids between LDs and other organelles (Murphy et al.,
2009; Olofsson et al., 2009).

Lysosomal Interactions and Autophagy

The first sign of the existence of an organelle with lytic function,
known today as lysosomes, arose from the lab of Christian de
Duve in 1949. Later on, the first electron microscopy image
of lysosomes was obtained in collaboration between de Duve
and Novikoff (Novikoff et al., 1956). Through ultrastructural
studies researchers observed that lysosomes show pronounced
cellular heterogeneity and individual polymorphism. In these
pioneering cell biological studies vacuoles containing various
organelles in different stages of degradation were observed in the
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proximity of the ER and the endosomal-lysosomal compartment
(Novikoff, 1959; Novikoff and Essner, 1962). As thesemembrane-
surrounded structures were soon discovered to contain the
lysosomal marker enzyme acid phosphatase, de Duve proposed
that they may be involved in the constitutive removal of cellular
material and named them autophagic vacuoles/autophagosomes
(De Duve, 1963). Not much later he already hypothesized that
the process of autophagy could represent a tightly regulated
process involving an autophagic membrane originating from the
ER segregating impaired organelles from the remaining pool and
a subsequent fusion with primary lysosomes in order to digest
the enclosed material (De Duve and Wattiaux, 1966). Thus, even
if the origin of the autophagic membrane is still not resolved,
it is quite obvious, that the process of autophagy involves
controlled interaction between (1) the segregation membrane
and an impaired organelle and (2) the autophagosome and a
primary lysosome/endosome. Consequently, autophagy can be
regarded as a highly specialized process of organellar interactions
organizing cellular maintenance (Figure 1).

Cellular homeostasis can be disturbed due to cellular damage
caused by nutrient deprivation, genetic alterations, or aging.
To prevent cellular damage, a large array of quality control
processes is available to the cell. Autophagy is one such process,
consisting of the removal/recycling of cytoplasmic materials
(e.g., protein aggregates, lipids, ribosomes, and organelles) by
delivering them to the lysosome (Mizushima et al., 2011;
Choi et al., 2013). Autophagy can be divided into 3 types:
macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA). Macroautophagy is the most understood
autophagic process of the three, largely due to the extensive
yeast genetic studies which have led to the identification of
more than 35 autophagy-related (ATG) genes, along with
their corresponding mammalian homologs (Mizushima et al.,
2011). In macroautophagy components of the cytoplasm are
engulfed by the phagophore (the so-called isolation membrane)
leading to the formation of the autophagosome (double-
membrane structure) (Mizushima et al., 2011). Maturation of
the autophagosome occurs by fusing to endosomes and eventual
engulfment by lysosomes, where it is degraded along with
the cytoplasmic materials present in it. The autophagosome-
lysosome fusion was found to be mediated by the SNARE
Syntaxin 17 protein (Itakura et al., 2012). Special types of
macroautophagy have been reported depending on the type of
organelle; mitochondria (mitophagy), peroxisomes (pexophagy),
lipid droplets (lipophagy), ER (reticulophagy), and microbes
(xenophagy) (Klionsky et al., 2007).

Peroxisome and mitochondria homeostasis is attained
by ensuring equilibrium between organelle biogenesis and
degradation. The selective degradation of superfluous or
damaged organelles is achieved by either a non-selective
or selective autophagic process. During starvation or nutrient
deprivation, non-selective autophagy is the predominant process,
in order to ensure cell survival by providing essential amino
acids and nutrients to the cell. However, under nutrient-rich
conditions selective autophagy usually occurs to ensure the
removal of damaged or superfluous organelles (Nordgren et al.,
2013; Sureshbabu and Bhandari, 2013). In the selective autophagy

pathway the specific phagophore membrane required for each
form of selective autophagy recognizes the specific cargo prior
to delivering it to the vacuole/lysosomal for degradation. The
origin of the phagophore membrane still remains controversial.
Recent studies have pointed to several organelles as potential
membrane source (PM, Golgi, ER, and mitochondria) (Hailey
et al., 2010; Mari et al., 2011; Bernard and Klionsky, 2013;
Hamasaki et al., 2013). In yeast the mechanism of recognition
of specific cargo for both pexophagy and mitophagy is well
understood. For methylotrophic yeasts (e.g., P. pastoris) the
pexophagy receptor is Atg30, which interacts with peroxisomal
membrane proteins Pex3, Pex14, and Atg37 (Till et al., 2012;
Nazarko, 2014). However, for S. cerevisiae and related yeasts
the pexophagy receptor is Atg36 and appears to interact solely
with Pex3 (Motley et al., 2012). Both Atg30 and Atg36 need
to be activated by phosphorylation in order to interact with
the scaffold protein Atg11 and the autophagosome via Atg8
(Farré et al., 2013). Surprisingly, Atg30 and Atg36 display no
similarities at the amino acid level even though they exhibit
similar function (Van der Zand and Reggiori, 2012). In yeast
mitophagy the mitochondria outer membrane protein Atg32 was
identified as the mitophagy receptor (Kanki et al., 2009; Okamoto
et al., 2009). When phosphorylated it interacts with Atg11 and
Atg8 on the autophagosome (Farré et al., 2013). Recent reports
have shed some light over the signaling events that govern
pexophagy/mitophagy, which are still largely unknown. In S.
cerevisiae, two MAPK kinases, Hog1 and Pbs2, are exclusively
required for mitophagy (Mao et al., 2011), whereas the MAPK
kinase Slt2 was shown to be required for pexophagy (Manjithaya
et al., 2010). Recently the Hrr25 kinase was identified as the
responsible kinase for the phosphorylation of Atg19 and Atg36.
Hence, enhancing the interactions between these receptors and
the mutual adaptor Atg11 (Tanaka et al., 2014). Despite the
fact that for methylotrophic yeasts the kinase responsible for
phosphorylation of Atg30 is still unknown, a distinct At30-
binding domain was recently identified in Pex3 which was
important for the phosphorylation of Atg30 and the recruitment
of Atg11 by Atg30 (Burnett et al., 2015). Furthermore, it was
recently reported that a MAP kinase phosphatase 1 (MKP1)
harboring a novel PTS1 (SAL) is targeted to peroxisomes
under stress conditions in Arabidopsis thaliana. Whether this
phosphatase is involved in plant pexophagy is still unknown
since the regulatory role of MKP1 was not identified (Kataya
et al., 2015).

In contrast to yeast, mechanistic understanding of pexophagy
inmammals is more limited. Three pathways have been proposed
for degradation of peroxisomes (Figure 2B): (1) p62-mediated
detection of an ubiquitinated, unknown peroxisomal membrane
protein, followed by autophagosome recruitment via p62 and
LC3-II interaction (Kim et al., 2008), (2) direct binding of LC3-
II to Pex14, by competing with the binding of Pex5 to Pex14
depending on the nutrient conditions (Hara-Kuge and Fujiki,
2008), (3) binding of NBR1, another adaptor protein like p62,
to an ubiquitinated peroxisomal membrane protein or through
direct binding to the peroxisomal membrane (Deosaran et al.,
2013). This last pathway also includes p62 as another interacting
protein, but downstream of the obligate NBR1, supposedly acting

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 September 2015 | Volume 3 | Article 56

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Schrader et al. New insights in organelle interaction

as an accessory interaction partner in the tethering complex
(Figure 2B).

Also, for mammalian cells a two-step model for priming
mitochondria for mitophagy has been proposed: RING-
between-RING E3 ubiquitin ligase Parkin dependent or Parkin
independent (Ding and Yin, 2012) (Figure 2B). In the Parkin
dependent pathway, PINK1 is constitutively cleaved by the
mitochondrial protease PARL (Jin et al., 2010). Inactivation of
PARL, due to mitochondria membrane depolarization, blocks
PINK1 cleavage and access to the inner mitochondrial membrane
and subsequently the PINK1 precursor is stabilized at the outer
mitochondrial membrane (Meissner et al., 2011). At the outer
mitochondrial membrane, PINK1 recruits and activates cytosolic
Parkin which then promotes ubiquitination of mitochondria
outer membrane proteins (Lazarou et al., 2013; Kane et al., 2014).
P62 recognizes ubiquitinated proteins and through its direct
interaction with LC3-II recruits autophagosomal membranes
to the mitochondria. Parkin and PINK1 have been reported
to interact with several other cellular proteins that might
be involved in their regulation. For the Parkin independent
mechanism, mitophagy is mediated by FUNDC1, Nix, and
BNIP3 which interact directly with LC3-II promoting the
recruitment of autophagosomes to mitochondria (Ding and
Yin, 2012; Jin and Youle, 2012). Interestingly, cardiolipin,
a phospholipid of the inner mitochondrial membrane,
is transferred to the outer mitochondrial membrane of
compromised mitochondria (Chu et al., 2013, 2014). There it
can be bound by LC3 via several clusters of basic amino acids on
the protein’s surface, thereby triggering autophagy. The authors
further speculated that cardiolipin peroxidation, resulting from
excessive mitochondrial ROS production, could serve to switch
between the processes of mitophagy and programmed cell
death (Chu et al., 2014). More recently, two other pathways
to target mitochondria for mitophagy have been reported.
The formation of mitochondria-derived vesicles (MDVs)
(Soubannier et al., 2012) (Figure 1), and mitochondria spheroids
(Ding et al., 2012) that may delivery mitochondrial components
for degradation to the lysosomes and the direct recruitment
of p62 via choline dehydrogenase (CHDH) in response to
mitochondrial membrane depolarization (Park et al., 2014).
In selective autophagic processes, required for degradation of
faulty or surplus organelles, the size of the organelle is a critical
factor for obtaining efficient engulfment by the autophagosome
(Müller and Reichert, 2011; Mao et al., 2014). Peroxisomes and
mitochondria fission/fragmentation is a requirement for both
selective autophagy processes, and the dynamin-like GTPase
DLP1 has been reported to be recruited and activated before
either pexophagy or mitophagy occur (Twig and Shirihai, 2011;
Mao et al., 2014). However, not all the fragmented organelles
are triggered for elimination, indicating that there must be a
mechanism that regulates which organelles need to be eliminated.
For mitochondria it has been revealed that fission followed by
selective fusion of mitochondria and tubular network formation
under nutrient deprivation conditions protects mitochondria
from mitophagy (Twig et al., 2008; Rambold et al., 2011). In
addition, mitophagy is avoided if the membrane potential of
the mitochondria is sustained after fission events (Twig et al.,

2008). On the other hand, peroxisomes are not able to fuse with
one another (Bonekamp et al., 2012) and also do not possess
a membrane potential, so the regulatory mechanism must be
distinct from the ones available to mitochondria. One hypothesis
to discriminate healthy peroxisomes from the ones that need
to be degraded might be via asymmetric fission/division of
the organelle (Nordgren et al., 2013). A recent study showed
that removal of protein aggregates present in the lumen of
peroxisomes and its subsequent elimination by autophagy, was
achieved by asymmetric peroxisome fission to separate the
aggregate from the mother peroxisome (Manivannan et al.,
2013). Besides the physical interactions between peroxisomes
and autophagosomes, required for pexophagy and subsequent
fusion to lysosomes, a very recent study has shown for the
first time the existence of lysosomal-peroxisome membrane
contacts (LPMC) essential for the cellular trafficking of
cholesterol (Chu et al., 2015) (Figure 1). In a well-designed
set of experiments the authors showed that the lysosomal
Syt7 protein binds peroxisomal PI(4,5)P2 (phospholipid),
bridging the organelles and allowing cholesterol to transfer
from lysosomes to peroxisomes (Figure 2A). Furthermore, the
authors propose a central role for peroxisomes in intracellular
cholesterol trafficking and that intracellular cholesterol
accumulation may underlie the pathological mechanism of
peroxisome disorders (Chu et al., 2015). Thus, lysosomes
not only interfere with other subcellular compartments in
terms of removal of compromised organelles but appear to be
involved also in functional networks which guarantee cellular
maintenance.

Concluding Remarks

The current examples for organelle interaction in mammalian
cells, as discussed in sections Connections between the ER
and the Plasma Membrane, The Mitochondria-associated
Membrane of the ER (MAM), The Peroxisome-ER Connection,
Interplay between Peroxisomes and Mitochondria, Lipid
Droplets, and Lysosomal Interactions and Autophagy, clearly
illustrate that subcellular organelles are integrated in cooperating
cellular networks. Although intimate physical contacts between
organelles were described some time ago, we are just beginning
to reveal the key components involved and their physiological
importance. A major role of organelle interaction is clearly in
metabolite exchange, but exciting new functions in organelle
distribution and membrane dynamics have been discovered.
Furthermore, increasing evidence points to an important
function in signaling and the assembly of dynamic signaling
platforms according to cellular requirements. In this respect,
higher ordered complexes between more than two organelles
may exist as exemplified by antiviral signaling via MAVS
involving the ER, mitochondria and peroxisomes. A common
principle may be the involvement of structurally similar or
overlapping protein complexes for the physical tethering of
different organelle membranes. Future studies will reveal if
organelle interplay and cooperation is primarily mediated via
those hubs, or if indirect mechanisms via the cytosol are more
prevalent.
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