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The p38MAPK signaling pathway was initially described as a stress response

mechanism. In fact, during previous decades, it was considered a pathway with little

interest in oncology especially in comparison with other MAPKs such as ERK1/2, known

to be target of oncogenes like Ras. However, its involvement in apoptotic cell death

phenomena makes this signaling pathway more attractive for many cancer research

laboratories. This apoptotic role allows to establish a link between p38MAPK and regular

chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or

5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more

recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase

inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies.

In addition, the oncogenic or tumor suppressor potential of this signaling pathway has

aroused the interest of the scientific community in evaluating p38MAPK as a novel

target for cancer therapy. In this review, we will summarize the role of p38MAPK in

chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer

therapy. All the evidences suggest that p38MAPK could be a double-edged sword and

that the search for themost appropriate candidate patients, depending on their pathology

and treatment, will lead to a more rational use of this new therapeutic tool.

Keywords: p38MAPK, cancer, chemotherapy, targeted therapy, resistance, sensitivity, p38MAPK inhibitors

INTRODUCTION

The p38MAPK pathway belongs to the group of stress-activated kinases, composed by p38MAPK
(with four isoforms) and JNK (with, at least, 10 isoforms grouped into JNK1, 2, and 3) (reviewed in
Kyriakis and Avruch, 2012). This MAPK signaling pathway, initially discovered as a stress response
mechanism and as an osmolality sensor (Han et al., 1994), resulted to be implicated in different
human pathologies such as rheumatoid arthritis (Clark and Dean, 2012), or neurodegenerative
diseases (Corrêa and Eales, 2012) among others. The involvement of p38MAPK in cancer has been
widely described (for review see Wagner and Nebreda, 2009). However, its role as an oncogene
or tumor suppressor is unclear. In some experimental models, it has been shown to have tumor
suppressor properties, for example through the control of oxidative stress (Dolado et al., 2007)
while in others, it is clearly associated to survival and oncogenesis (Alvarado-Kristensson et al.,
2004; Comes et al., 2007). Indeed, this dual role has been recently demonstrated in colorectal
cancer, where it is described as a tumor suppressor in early stages, but in later stages it is required
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for cell survival with oncogenic traits (Gupta et al., 2014). In any
case, it is clear that, regardless of p38MAPK dual characteristic as
a possible oncogene or tumor suppressor, this signaling pathway
is implicated in different types of tumors (for review see Koul
et al., 2013).

Moreover, p38MAPK has been connected with apoptotic
cell death. In fact, key molecules in the apoptotic onset—
such as Bcl2 superfamily members or p53—have been shown
to be substrate of this MAPK (Sanchez-Prieto et al., 2000;
Cai et al., 2006). This observation prompted to consider
p38MAPK as a key player in the response to chemotherapy,
considering that apoptosis is the main mechanism of cell death
associated to it. Therefore, the study of p38MAPK in the
last decades was focused in its implication in the response
to chemotherapy. In the following pages, we will show some
examples of how p38MAPK canmodulate the response to several
chemotherapeutic agents that are currently used in the clinical
practicum. This includes conventional chemotherapeutic agents
and novel therapeutic approaches like tyrosine kinase inhibitors
or monoclonal antibodies. Although all the members of the
p38MAPK family have been related to cancer and its therapy
in different experimental models (Pillaire et al., 2000; Cerezo-
Guisado et al., 2011; Hou et al., 2012; Del Reino et al., 2014;
O’Callaghan et al., 2015; Zur et al., 2015), in this paper we will
focus onto p38MAPKα as the most studied and representative
member of the family.

p38MAPK AND CISPLATIN

Cisplatin (CDDP) is one of the most widely used drugs in
cancer therapy and probably the best example of the connection
between p38MAPK and conventional chemotherapy (Brozovic
and Osmak, 2007). p38MAPKwas related to the cellular response
to CDDP through the c-Abl signaling pathway (Pandey et al.,
1996). Moreover, p38MAPK mediates activation of p53 in
response to CDDP suggesting a role in resistance (Sanchez-
Prieto et al., 2000). In fact, this molecule can be activated by
other platinum-based compounds even without toxicity as in the
case of Trans-platin (Hernández Losa et al., 2003). However, the
relationship between CDDP and p38MAPK has two sides: one
is related to resistance and the other, to sensitivity. Initially, the
role as a determinant of resistance was proposed mainly based
on the inhibition of p38MAPK in different experimental models
(Mansouri et al., 2003; Brozovic et al., 2004; Baldwin et al., 2006).
Indeed, several substrates of p38MAPK seem to be implicated
in resistance to CDDP such as p18Hamlet (Cuadrado et al., 2007)
or ATF3 (St Germain et al., 2010). Furthermore, hyperactivation
of p38MAPK through MKK3, that renders a non-functional
pathway, has been correlated with resistance (Galan-Moya et al.,
2011). However, recent evidences demonstrated a sensitizing role
for the inhibition of p38MAPK both in vivo and in vitro through
the production of Reactive Oxygen Species, which promotes
the activation of the JNK pathway and thus sensitizing human
tumor cells to CDDP-associated apoptosis (Pereira et al., 2013).
In this regard, it has been proposed that certain p38MAPK
downstream molecules (Hsp27, ERCC1, or Fox3a) can mediate

sensitivity associated to p38MAPK inhibition (Planchard et al.,
2012; Germani et al., 2014; Liu et al., 2016).In addition, inhibition
of p38MAPK could also facilitate sensitivity in specific contexts as
in the case of the presence of the adenoviral protein E1A (Cimas
et al., 2015). Nonetheless, new platinum-based compounds have
been developed and, some of them, for instance, Satraplatin
or Picoplatin are in clinical use, (Doshi et al., 2012; Hamilton
and Olszewski, 2013), but there is no clue about the role of
p38MAPK. Only in the case of Monoplatin, a non-DNA binding
platinum-based compound only used in cell culture so far, cell-
type specific activation of p38MAPK has been demonstrated,
but with no effect in terms of resistance/sensitivity (García-Cano
et al., 2015). In conclusion, the dual role of p38MAPK as a
mechanism of resistance/sensitivity to CDDP could be related to
specific features such as cell type, downstreammolecules or other
signaling pathways.

p38MAPK AND CYTARABINE

Cytarabine -also known as ara-C-, a deoxycytidine analog, is
an antileukemic agent that incorporates into DNA promoting
strand breaks (Fram and Kufe, 1982; Major et al., 1982).
Cytarabine promotes both cell death and differentiation in
leukemia cells (Grant et al., 1996). It has been demonstrated that
Cytarabine induces apoptosis through p38MAPK and JNK in
a c-Abl dependent fashion (Saleem et al., 1995; Pandey et al.,
1996). In this sense, it has been suggested that Cytarabine-
induced apoptosis can be blocked by the specific inhibition of
p38MAPK in HL-60 cells, (Stadheim et al., 2000). Moreover,
in chronic myeloid leukemia cells, the constitutive activation
of p38MAPK by BCR/Abl renders a Cytarabine-insensitive
phenotype (Sánchez-Arévalo Lobo et al., 2005), suggesting a role
for p38MAPK in the resistance to Cytarabine. Interestingly, a
study in acute myeloid patients treated with Cytarabine and
Daunorubicin showed that active p38MAPK and JNK correlate
with cell death in chemosensitive patients (Maha et al., 2009).
Therefore, most of the evidences support that the lack of
functionality in p38MAPK could mediate a resistant phenotype
to Cytarabine.

p38MAPK AND GEMCITABINE

Gemcitabine is a deoxycytidine analog, widely used for treating
different carcinomas such as pancreatic, bladder, breast and
non-small cell lung cancer (Gesto et al., 2012). Cell death
associated to Gemcitabine has been related to the p38MAPK
pathway (Nakashima et al., 2011; Liu et al., 2014). Indeed, a
study performed in human urothelial carcinoma sub-lines with
acquired Gemcitabine resistance showed a marked repression
in p38MAPK activity and an increase in gemcitabine sensitivity
when expression of p38MAPKwas forced (Kao et al., 2014). It has
also been described that Gemcitabine induces phosphorylation
of p38MAPK substrates like Hsp27 that could be mediating
acquired resistance in pancreatic cancer cell lines (Kang et al.,
2015). In addition, there are evidences showing how the
p38MAPK/MK2 stress response pathway is required for the
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cytotoxic effect of Gemcitabine in osteosarcoma and pancreatic
cancer cells (Köpper et al., 2013, 2014). However, the use
of p38MAPK as a putative biomarker for the response to
Gemcitabine is still unexplored and, in the few studies performed
so far, results are disappointing as in the case of platinum resistant
recurrent ovarian cancer (Klotz et al., 2008). Therefore, all the
evidences support a definitive role for p38MAPK and different
p38MAPK substrates as key players in Gemcitabine response,
in which blockage of p38MAPK seems to be a key mechanism
of resistance that still needs to be more investigated for future
clinical use.

p38MAPK AND 5-FLUOROURACIL

5-Fluorouracil (5FU) irreversibly inhibits thymidylate synthase.
It is widely used in the treatment of solid tumors such as
breast, colorectal, stomach, pancreatic, oesophageal and skin
cancers (Longley et al., 2003). The implication of the p38MAPK
signaling pathway in the response to 5FU has been studied
since late 90’s (Wu et al., 1998). 5FU-associated cell death works
through the induction of p53-dependent apoptosis (Mariadason
et al., 2003). The role of p38MAPK in terms of resistance
or sensitivity is still not clear. On the one hand, a report
demonstrated that p38MAPK inhibition renders a blockage
of p53-dependent apoptosis allowing an autophagic response
that mediates resistance (de la Cruz-Morcillo et al., 2012). On
the other hand, other reports support that the inhibition of
p38MAPK and the subsequent effect onto Hsp27 can promote
sensitivity to this drug (Yang et al., 2011; Matsunaga et al., 2014).
In this regard, the high dose of the inhibitor used, i.e., 50µM
SB203580, and the lack of a genetic approach suggest that the
inhibition of other molecules, in addition to p38MAPK, could
be implicated. Finally, the antiangiogenic properties through
the induction of Thrombospondin-1, the mucositis and the
release of pro-inflammatory cytokines associated to 5FU are also
mediated by p38MAPK (Elsea et al., 2008; Zhao et al., 2008;
Gao et al., 2014). In summary, most of the evidences support a
role for p38MAPK in 5FU-based therapy in terms of therapeutic
response, as well as in other aspects, that need to be fully
elucidated for its clinical applications.

p38MAPK AND TARGETED THERAPY

The idea of a targeted therapy has become a gold standard
in cancer therapy, being Imatinib (Gleevec, STI571), a specific
inhibitor of BCR/Abl (Druker et al., 1996), its first example.
Later, it was shown how the activation of p38MAPK was
directly implicated in the survival of KT-1 cells in response
to Imatinib (Parmar et al., 2004). Almost at the same time,
it was also demonstrated how p38MAPK activation was a key
event in the differentiation effect of Imatinib in K562 cells,
but with no effect onto cell viability (Kohmura et al., 2004)
probably due to the lack of effect of p38MAPK onto caspase
activation (Jacquel et al., 2007). Indeed, in a resistant model
by continuous co-culturing with this drug, p38MAPK showed
a lack of implication in the acquired resistance phenotype

(Aceves-Luquero et al., 2009). In fact, it has been proposed that
the connection between Abl and p38MAPK is not related to
the tyrosine kinase activity of Abl (Galan-Moya et al., 2008),
indicating that the activation of p38MAPK in the presence
of Imatinib could be a secondary event, rather than a direct
activation by this compound. Nonetheless, it has been shown
how p38MAPK could be implicated in the response to second
generation of BCR/Abl inhibitors as in the case of Dasatinib
(Dumka et al., 2009) with a direct implication in some of the
side effects like hepatotoxicity (Yang et al., 2015). However, the
role of p38MAPK in the response to other BCR/Abl inhibitor
like Nilotinib remains unclear and has merely been investigated
as side studies in other experimental models as sarcoma or
colorectal cancer derived cell lines (Villar et al., 2012; Rey et al.,
2015) or in combination with other drugs (Bucur et al., 2013).

But the role of p38MAPK is not restricted to the response to
BCR/Abl inhibitors. For example, the multikinase inhibitor
Sorafenib (BAY 43-9006), originally described as a Raf
inhibitor, used in the treatment of several pathologies such
as hepatocarcinoma or renal cell carcinoma among others
(Wilhelm et al., 2008), has been also related to p38MAPK. In
this sense, it has been shown how the activation of p38MAPK
can be a mechanism of resistance and a novel biomarker for
Sorafenib-based therapy in hepatocellular carcinoma (Rudalska
et al., 2014). Indeed, it has been recently proposed how the
combination with mTOR inhibitors can potentiate the effect
of Sorafenib in malignant pleural mesothelioma through
p38MAPK-dependent apoptosis (Pignochino et al., 2015).
Finally, in the case of an EGFR inhibitor, known as Iressa
(Genfitinib), early evidences demonstrate a lack of effect on
the p38MAPK signaling pathway in different experimental
models (Höpfner et al., 2003; Kokubo et al., 2005). However,
in certain leukemic and intestinal epithelial cells, p38MAPK
activation was observed (Moon et al., 2007; Sheng et al., 2007),
but no definitive effect in terms of resistance/sensitivity has
been reported. Nonetheless, the role of p38MAPK in Iressa-
based therapy could be related to the combination with other
compounds. For example, in the case of curcumin, p38MAPK
attenuates the adverse gastrointestinal effects (Lee et al., 2011),
or, in combination with metformin, p38MAPK inhibition can
potentiate the effect of Iressa (Ko et al., 2013). Therefore, the
full role of p38MAPK in Iressa-based therapy still needs to be
elucidated.

Finally, another targeted therapy modality is the use of
monoclonal antibodies (Dienstmann et al., 2012; Henricks et al.,
2015). In this sense, the literature regarding p38MAPK is much
less abundant. For example, for Trastuzumab, an antibody
against Her2/neu, the few studies where p38MAPK is considered
support a direct role for this MAPK in resistance to this
antibody (Yong et al., 2013; Donnelly et al., 2014). In the case of
EGFR-directed antibody Cetuximab, the main connection with
p38MAPK has been established in combination with Oxaliplatin
(Santoro et al., 2015), in which Cetuximab blocks Oxaliplatin-
triggered p38-dependent apoptosis, explaining the lack of success
for this combination in some patients of colorectal cancer.
Finally, in the case of Bevacizumab, a monoclonal antibody
against VEGF, there is no evidence linking directly MAPK to this
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TABLE 1 | p38MAPK inhibitors used in ongoing clinical trials in which p38MAPK is used as a target in cancer therapy.

Inhibitor Pathology Combination (if Available) Trial ID Date Phase

Ralimetinib (LY2228820 dimesylate) Metastatic breast cancer (MBC) Tamoxifen NCT02322853 2014 II

LY2228820 Recurrent Ovarian Cancer – NCT01663857 2012 I/II

LY3007113 Advanced Cancer (Either Solid Tumors or Lymphomas) – NCT01463631 2011 I

LY2228820 Advanced Cancer (Either Solid Tumors or Lymphomas) – NCT01393990 2011 I

LY2228820 Glioblastoma TMZ and Radiotherapy NCT02364206 2015 I/II

ARRY-614 Myelodysplastic Syndrome – NCT00916227 2009 I

ARRY-614 Myelodysplastic Syndrome – NCT01496495 2011 I

Source: https://clinicaltrials.gov/ct2/results?term=p38+inhibitor+cancer&Search=Search (as accessed in April 2016).

antibody and only as a side study in mesenchymal stem cells,
melanoma and pancreatic carcinoma cells s (De Luca et al., 2012;
Jiang et al., 2012).

FUTURE DIRECTIONS: p38MAPK
INHIBITORS

The development of new and more specific inhibitors is a critical
step in a future therapy based on p38MAPK inhibition. Several
pathologies are considered susceptible for this strategy. In the
case of chronic obstructive pulmonary disease (COPD), the use
of p38MAPK inhibitor PH-797804 (Selness et al., 2011) turned
out to have preliminary positive results in healthy volunteers and
in patients (MacNee et al., 2013; Singh et al., 2015). In addition,
the p38MAPK inhibitor GW856553 (Losmapimod) succeeded
to ameliorate exacerbations in patients suffering COPD with
low eosinophil levels (Marks-Konczalik et al., 2015). Not only
does Losmapimod bear a therapeutic potential for COPD, but
also it has been tested against coronary artery diseases such
as acute myocardial infarction through its anti-inflammatory
activity (O’Donoghue et al., 2015). This specific p38MAPK
inhibitor has become an alternative treatment to several disorders
derived from acute coronary syndrome (thoroughly reviewed
in Kragholm et al., 2015). Many other diseases—atherosclerosis,
Alzheimer’s disease, depression, immunological diseases and so
on—are sought to be treated by the use of p38MAPK inhibitors
(Supplementary Material 1). However, although in some
pathologies, namely rheumatoid arthritis, the inhibition was
considered as a promising therapeutic approach (McLay et al.,
2001) clinical results are disappointing (Genovese et al., 2011),
thus suggesting the complexity of the biological function for
p38MAPK.

Regarding cancer therapy, p38MAPK inhibition by itself is
also considered a promising target (Igea and Nebreda, 2015).
In fact, in some cases like in colorectal cancer, experimental
evidences support this novel therapeutic approach (Gupta
et al., 2015), and it has also been reported recently that
p38MAPK inhibition overcomes the resistance to compounds
like Birinapant in primary acute myeloid leukemia (Lalaoui
et al., 2016). Ongoing clinical trials are showing the safety of
the p38MAPK inhibitors as in the case of Ralimetinib (Patnaik
et al., 2016) or ARRY-614 (Garcia-Manero et al., 2015). Currently,
there are 59 clinical trials in different stages, including healthy

volunteers in phase I studies, in which p38MAPK is evaluated
as a potential biomarker or target for different diseases such as
arthritis or heart and pulmonary disease among others1. From
this wide range, 14 of them are related to cancer and only in
7 of these ongoing clinical trials, p38MAPK is regarded as a
target in cancer treatment, by using specific inhibitors alone or in
combination with other therapeutic agents (Table 1). Therefore,
it seems logical to look for adequate candidates that might be
benefited with the use of p38MAPK inhibitors. The mutation
ratio in p38MAPK or MAP2K3/6 in human cancer is extremely
low2 (i.e., Pritchard and Hayward, 2013), suggesting that the
implication of an active p38MAPK in cancer is due to the
pathologic context of the tumor rather than a genetic alteration
in the MAPK or MAP2K able to render a constitutive pathway.
One possibility could be the evaluation of the expression / activity
levels of the different components of this signaling pathway
by immunohistochemistry, as it has been shown for different
pathologies, allowing us to choose the best candidate patient for
a p38MAPK inhibition-based therapy. It is important to be as
careful as possible due to the dual role of this signaling pathway
in cancer. For example, MAP2K3 (MKK3) has been proposed as
a tumor suppressor in breast cancer (MacNeil et al., 2014) thus
suggesting that the inhibition of p38MAPK signaling pathway
could be counterproductive in this type of tumors. However,
recent evidences show how inhibition of this same molecule is
a novel therapeutic approach in different experimental models
(Baldari et al., 2015). Therefore, the antitumoural activity
associated to p38MAPK could also be used in combination with
current therapies in order to potentiate its effects, increasing the
number of putative patients that can be benefited from the use
of p38MAPK inhibitors. Nonetheless, we should not discard the
potential side effects of p38MAPK inhibition as a mechanism
of drug resistance as well as the loss of its tumor suppressor
potential.

To sum up, the use of p38MAPK as a potential target for
cancer therapy should be carefully considered based on the
pathology and the therapy used in order to avoid adverse effects,
as could be the generation of resistances or more aggressive
phenotypes. The deep understanding of the role of p38MAPK
in cancer therapy can lead to a new era of better prognosis and

1https://clinicaltrials.gov/
2http://cbioportal.com
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personalized therapy in which p38MAPK inhibitors could be a
cornerstone.
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