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ERK5, the last MAP kinase family member discovered, is activated by the upstream

kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway

has been associated to different cellular processes, playing a crucial role in cell

proliferation in normal and cancer cells by mechanisms that are both dependent and

independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by

either direct phosphorylation or acting as co-activator thanks to a unique transcriptional

activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been

proposed as an interesting target to tackle different cancers, and either inhibitors of

ERK5 activity or silencing the protein have shown antiproliferative activity in cancer

cells and to block tumor growth in animal models. Here, we review the different

mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive

ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone.

In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal

autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism

integrates signals such as growth factors and stresses that activate the MEK5-ERK5

pathway. Importantly, two other mechanisms, MEK5-independent, have been recently

described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5.

Although lacking kinase activity, these forms activate transcription by interacting with

transcription factors through the TAD domain. Both mechanisms also require Hsp90

dissociation previous to nuclear translocation. One mechanism involves phosphorylation

of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such

as Cyclin-dependent kinase-1. The second mechanism involves overexpression of

chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate

adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although

some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those

tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.

Keywords:MAP kinase, ERK5, nuclear translocation, transcriptional co-activator, cell proliferation, cancer, Hsp90,

Cdc37

INTRODUCTION

Extracellular signal-re gulated kinase 5 (ERK5, also named big MAP kinase 1, Bmk1) is a member
of the Mitogen-activated protein kinases (MAPKs). ERK5 is ubiquitously expressed throughout
all mammalian tissues and cell lines (Lee et al., 1995; Zhou et al., 1995; Buschbeck and Ullrich,
2005), where it is activated in response to several growth factors and oxidative and hyperosmotic
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stress (Kato et al., 2000). ERK5 is twice the size of the
classical MAPKs (816 aa for human ERK5), containing an N-
terminal kinase domain (aa 78–406) and a unique C-terminal
tail (aa 410–816) with no homology to any other protein,
which has an autoinhibitory function (Buschbeck and Ullrich,
2005). This C-terminal tail contains a myocyte enhancer factor
2 MEF2-interacting region (aa 440–501, Kasler et al., 2000), a
bipartite nuclear localization signal NLS (aa 505–539), and a
transcriptional activation domain (TAD, aa 664–789, Kasler et al.,
2000), which associates with and activates several transcription
factors (Morimoto et al., 2007; Woo et al., 2010). Activation
of ERK5 requires dual phosphorylation of a Threonine and
Tyrosine residues within a TEY motif in the activation loop of
the kinase domain (Mody et al., 2003). MEK5 is the only kinase
that activates ERK5, and it has a unique specificity for ERK5, not
phosphorylating any other MAPKs: MEK5 knockout mice dye
at early stages of embryo development, showing similar defects
in cardiac development and angiogenesis as those reported for
ERK5 knockout mice (Wang et al., 2005).

ROLE OF ERK5 PATHWAY IN NORMAL
AND CANCER CELL PROLIFERATION

ERK5 plays a crucial role in cell proliferation. First evidences
reported that ERK5 activation is required for EGF-dependent
proliferation in HeLa cells (Kato et al., 1998), by inducing
transcription of c-jun (an essential component in cell
proliferation) through the transcriptional activation of MEF2C
(Kato et al., 1997). Since then, several authors have shown
activation of ERK5 in response to other mitogenic factors, such
as Nerve growth factor (NGF, Shao et al., 2002), Granulocyte
colony-stimulating factor (G-CSF, Dong et al., 2001), Fibroblast
growth factor (FGF, Kesavan et al., 2004), or Platelet-derived
growth factor (PDGF, Rovida et al., 2008).

ERK5 regulates cell cycle progression, being necessary for
G1/S transition. In this regard, ERK5 inhibition prevents cells
from entering the S phase of the cell cycle (Kato et al., 1998) by
stabilizing the cyclin-dependent protein kinase (CDK) inhibitors
p21 and p27 (Perez-Madrigal et al., 2012). In human breast
cancer MDA-MB-231 cells, activation of ERK5 promotes c-Myc-
dependent transcriptional activation of miR-17-5p and miR-
20a, resulting in blockade of p21 mRNA translation (Perez-
Madrigal et al., 2012). ERK5 also mediates in G1/S transition by
regulating expression of cyclin D1. Activation of MEK5/ERK5
pathway induces transcription of Cyclin D1, resulting in cell
cycle progression in G1. Conversely, ERK5 inhibition diminishes
serum-induced Cyclin D1 protein levels (Mulloy et al., 2003).
Additionally, ERK5 is also implicated in G2/M transition. ERK5
is activated at G2/M, it is required for timely mitotic entry, and
constitutively active ERK5 increases the mitotic index (Cude
et al., 2007; Girio et al., 2007). Themitotic entry induced by ERK5
depends on the activation of the transcription factor NF-kB,
which upregulates mitosis-promoting genes such as cyclins B1
and B2, and cdc25B (Cude et al., 2007). During mitosis, active
ERK5 prevents caspase activation by binding and inactivating
the pro-apoptotic protein Bim, suggesting that active ERK5

contributes to cell survival in mitosis (Girio et al., 2007). The role
of ERK5 in controlling cell survival and differentiation, as well
as angiogenesis, has been already covered in excellent reviews
(Wang and Tournier, 2006; Drew et al., 2012; Lochhead et al.,
2012; Nithianandarajah-Jones et al., 2012).

During the last years, different laboratories have shown
that the MEK5-ERK5 pathway plays a key role in cancer cell
proliferation. For instance, overexpression of either MEK5 or
ERK5 in prostate adenocarcinoma PC-3 cells results in increased
proliferation index (McCracken et al., 2008; Erazo et al., 2013).
Consequently, ERK5 kinase inhibitors (such as the XMD8-92
compound) or ERK5 silencing show antiproliferative activity in
different cancer cell lines and block tumor growth in animal
models (human tumor xenografts). Table 1 summarizes the
different human cancers where it has been reported an effect
of ERK5 silencing/inhibition on cell proliferation and/or tumor
growth. Importantly, there are increasing evidences pointing to
an important role of nuclear ERK5 in cancer, both in vitro (cell
lines) and in vivo (mouse models). For instance, there is a strong
correlation between nuclear ERK5 and poor prognosis in prostate
cancer patients. Expression of nuclear ERK5 is upregulated
in prostate cancers showing high-grade Gleason and bone
metastasis (McCracken et al., 2008; Clape et al., 2009; Ramsay
et al., 2011; Ahmad et al., 2013). However, and as explained
below, ERK5 can promote cell proliferation independently of its
kinase activity, acting as a moonlighting protein. For instance,
hepatocellular carcinoma (HCC) tumors show increased nuclear
ERK5, which does not correlate with an increase on ERK5 kinase
activity (Rovida et al., 2015). Also, ERK5 localizes at the nucleus
of CLB-BAR and CLB-GE human neuroblastoma cell lines, even
in the presence of the ERK5 inhibitor XMD8-92 (Umapathy
et al., 2014). These findings suggest that nuclear ERK5 expression,
instead of ERK5 phosphorylation, might be used as prognostic
biomarker of some cancers.

ERK5 NUCLEAR SUBSTRATES

The best characterized ERK5 substrates are nuclear
transcriptional factors, whereas very few ERK5 cytosolic
substrates have been characterized so far. Although ERK5
silencing affects the phosphorylation state of cytosolic proteins
such as Akt and p90RSK kinases or the pro-apoptotic protein
BAD, this is controversial since a direct ERK5 phosphorylation
of these proteins has not been shown. For instance, Ranganathan
et al. described that ERK5 phosphorylates p90RSK in vitro
(Ranganathan et al., 2006), but other authors have shown that
the MEK1/2 inhibitor PD184352 blocks p90RSK activation
in response to EGF, at concentrations that do not block
ERK5 activity (Mody et al., 2001). The use of the new
synthesized specific ERK5 inhibitors—such as the XMD8-92
compound—will help to address these controversies.

ERK5 phosphorylates the transcription factor Sap1, a member
of ternary complex factors (TCFs). ERK5-mediated Sap1
phosphorylation activates transcription through the Serum
Response Element (SRE), which induces the expression of c-
Fos (Kamakura et al., 1999). Although a direct phosphorylation

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 September 2016 | Volume 4 | Article 105

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Gomez et al. Nuclear ERK5 and Cell Proliferation

TABLE 1 | Effect of ERK5 silencing or inhibition on cancer cell proliferation and tumor growth.

Type of cancer Target strategy Effect References

Leukemia Silencing shERK5 blocks tumor formation Garaude et al., 2006;

Charni et al., 2009

Lung carcinoma XMD8-92 inhibition XMD8-92 blocks tumor proliferation and angiogenesis in LL/2 and A59

xenograft models

Yang et al., 2010

Prostate cancer Silencing ERK5 silencing inhibits PC-3 cell proliferation and invasion. ERK5

overexpression induces more metastatic lesions in an orthotopic

prostate model

Ramsay et al., 2011

Osteosarcoma Silencing ERK5 silencing reduces the number of invading cells Kim et al., 2012

Malignant mesothelioma Silencing Injection of shERK5 malignant mesothelioma cell lines into SCID mice

shows reduction in tumor growth

Shukla et al., 2013

Clear cell renal carcinoma Silencing ERK5 knockdown reduces proliferation and migration of 769-P and

786-O cells

Arias-Gonzalez et al., 2013

Hepatocellular carcinoma (HCC) XMD8-92 inhibition

Silencing

ERK5 inhibition or silencing inhibits EGF-induced cell migration.

XMD8-92 reduces size of HCC xenograft tumors

Rovida et al., 2015

Triple negative breast cancer XMD8-92 inhibition XMD8-92 synergizes with chemotherapy (docetaxel + doxorubicin) or

Hsp90 inhibitors to reduce growth of TNBC xenograft tumors

Al-Ejeh et al., 2014

Triple negative breast cancer Silencing ERK5 knockdown blocks TNBC cell proliferation Ortiz-Ruiz et al., 2014

Pancreatic ductal adenocarcinoma XMD8-92 inhibition XMD8-92 inhibits growth of AsPC-1 tumor xenografts Sureban et al., 2014

Neuroblastoma XMD8-92 inhibition XMD8-92 reduces growth of CLB-BAR and CLB-GE tumor xenografts.

Also, synergizes with crizotinib to reduce growth of these tumors

Umapathy et al., 2014

Skin cancer XMD8-92. ERK5

conditional KO in

epidermis

XMD8-92 blocks skin tumor development and potentiates doxorubicin

action. ERK5-KO keratinocyte show impair inflammation-driven

tumorigenesis

Finegan et al., 2015

by ERK5 has not been shown, co-expression of ERK5 and
catalytically activeMEK5 in COS-7 cells induces phosphorylation
and stabilization of c-Fos and Fra-1 transcription factors
(Terasawa et al., 2003). Activation of the ERK5 pathway results
in phosphorylation of few Ser/Thr residues in c-Fos and Fra-
1, generating more stable proteins and enhanced transactivation
activity of these factors (Terasawa et al., 2003).

The three members of the MEF2 (myocyte enhancer factor-2)
family of transcription factors MEF2A, MEF2C, and MEF2D are

the best characterized ERK5 substrates. MEF2 proteins regulate
cell differentiation in myocytes and neurons (Potthoff and Olson,
2007), and act as a nodal point for stress-response in adult
tissues (Kim et al., 2008). An interaction of MEF2C with ERK5
has been shown in two hybrid and co-immunoprecipitation
assays. To our knowledge, MEF2C is the only nuclear protein
whose interaction with ERK5 has beenmapped. MEF2C interacts
with a region of the C-terminal tail of ERK5 (aa 440–501)
through its N-terminal end (Yang et al., 1998; Kasler et al.,
2000). More importantly, activation of ERK5 pathway by
either serum or EGF stimulates the transactivation activity
of the MEF2A, MEF2C, and MEF2D transcription factors.
Furthermore, ERK5 seems to be determinant for EGF-stimulated
activation of MEF2A and MEF2D, since expression of ERK5
dominant negative mutant abolishes this activation (Kato et al.,
2000). ERK5 phosphorylates different sites in MEF2A, MEF2C,
and MEF2D proteins, however many of these residues are
conserved in all three members, suggesting the existence of
additional structural determinants to achieve recognition of
the phosphorylated sites. Thus, ERK5 phosphorylates Thr312,
Thr319, and S355 in MEF2A, Ser386/7 in MEF2C, and Ser179

and in MEF2D, and mutation to alanine of these residues
abrogates MEF2 transcriptional activity (Kato et al., 1997,
2000).

The promyelocytic leukemia protein (PML) is a transcription
factor that acts as a tumor suppressor, inhibiting proliferation and
inducing cellular senescence and apoptosis through activation of
the CDK inhibitor p21 (Bernardi and Pandolfi, 2007). Yang et al.
have shown that ERK5 interacts with PML at the nuclear bodies
in cancer cells, and inhibits its tumor suppressor activity by

phosphorylating PML protein at Ser403 and Thr409 (Yang et al.,
2010). ERK5-mediated phosphorylation impairs PML-dependent
activation of p21, through disrupting PML-MDM2 interaction,
and downregulating expression of the p53 tumor suppressor
(Yang et al., 2013).

MECHANISMS INVOLVED IN ERK5
NUCLEAR TRANSLOCATION

ERK5 acts as a transcriptional co-activator, regulating MEF2C,
AP-1, and c-Fos transcriptional activities in the nucleus.
Therefore, translocation of ERK5 to nucleus is essential to
regulate ERK5-mediated gene transcription. ERK5 is a big
protein (110 kDa) so it cannot enter the nucleus by passive
diffusion through the nuclear pores, as described for small
proteins.

Recently, we have shown that inactive ERK5 binds the
cytoplasmatic chaperone Hsp90 and the co-chaperone cell
division-cycle 37 (Cdc37), which helps Hsp90 in the stabilization
of ERK5 (Erazo et al., 2013). Cdc37 is the co-chaperone that
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specifically promotes association of Hsp90 with many protein
kinases (Smith and Workman, 2009). This trimeric complex,
ERK5-Hsp90-Cdc37, not only stabilizes inactive ERK5, but also
keeps ERK5 in a suitable conformation for MEK5 recognition
and activation (Erazo et al., 2013).

In basal conditions, ERK5 binds the cytoplasmatic chaperone
Hsp90, which serves as a cytosolic anchor for ERK5 (Erazo
et al., 2013). This inactive ERK5 adopts a closed conformation
where the C-terminal tail interacts with the kinase domain
and the NLS motif is hidden and not available for the nuclear
transport (reviewed in Kondoh et al., 2006). Nuclear shuttling of
ERK5 requires both a conformational change to allow exposure
of the NLS motif and the release of Hsp90. This mechanism
is analogous to the one described for the progesterone and
androgen receptors, which also requires Hsp90 dissociation for
their nuclear translocation (Picard, 2006).

So far, two different mechanisms have been proposed for the
ERK5 shuttling to the nucleus: one of them requires C-terminal
phosphorylation, while the other does not. Once in the nucleus,
ERK5 enhances gene transcription by either phosphorylating
transcription factors, or by interacting with these factors through
the transactivation TAD domain located at the C-terminal.
Strikingly, ERK5 does not require kinase activity to interact with
and activate transcription factors and therefore, forms of nuclear
ERK5 devoid of kinase activity are able to activate transcription
(Diaz-Rodriguez and Pandiella, 2010; Inesta-Vaquera et al.,
2010; Erazo et al., 2013). Kinase-independent nuclear functions
have been also proposed for other MAP kinases that lack a
TAD domain. For instance, ERK2 promotes cell cycle entry
by disrupting retinoblastoma-lamin A complexes in a kinase-
independent fashion (Rodriguez et al., 2010), and also binds
DNA acting as a transcriptional repressor for interferon gamma-
induced genes (Hu et al., 2009). It would be interesting to study
if ERK5 can also bind DNA.

Nuclear Translocation Dependent of ERK5
C-Terminal Phosphorylation
In response to EGF stimulation or different stresses MEK5
becomes activated, which in turn activates ERK5 by dual
phosphorylation of the TEY motif. Then, active ERK5
phosphorylates its C-terminal tail resulting in a sequence of
events that include: (1) dissociation of the cytosolic anchorHsp90
from ERK5-Cdc37 complex; (2) adoption of a conformation in
which the NLS motif is exposed; and (3) nuclear translocation
(Figure 1).

ERK5 autophosphorylates several Thr/Ser residues within
its C-terminal region. Mody et al., using purified recombinant
active ERK5 and mass-spectrometry analysis, first identified
five autophosphorylation sites at the C-terminal region: Ser421,
Ser433, Ser496, Ser731, and Thr733 (Mody et al., 2003). Another
laboratory also reported autophosphorylation in residues Ser760,
Ser764, and Ser766, in addition to Thr733 (Morimoto et al.,
2007). Inhibition of ERK5 autophosphorylation prevents the
release of Hsp90 and nuclear entry (Erazo et al., 2013),
reflecting that C-terminal tail autophosphorylation plays a
critical role in ERK5 nuclear shuttling in response to MEK5

stimulation. Consequently, mutant forms of ERK5 in which the
autophosphorylated residues at the C-terminal were mutated
to alanine show cytoplasmatic localization and constitutive
association to Hsp90 (Erazo et al., 2013), whereas the mutant
in which these residues were mutated to glutamic acid does not
bind Hsp90 (Erazo et al., 2013) and shows nuclear localization
(Morimoto et al., 2007; Diaz-Rodriguez and Pandiella, 2010).
Therefore, autophosphorylation of the C-terminal tail induces
the release of Hsp90 from the ERK5-Cdc37 complex, a step
essential previous nuclear translocation.

ERK5 C-terminal tail can also be phosphorylated by other
kinases. During mitosis, ERK5 is phosphorylated at residues
Ser567, Ser720, Ser731, Thr733, Ser753, and Ser830 (Diaz-
Rodriguez and Pandiella, 2010; Inesta-Vaquera et al., 2010).
These phosphorylations are not MEK5-dependent but induce the
nuclear translocation of a kinase-inactive form of ERK5 which
retains its transcriptional activity. These events might represent a
second pathway controlling ERK5 C-terminal phosphorylation,
which is activated in mitotic cells and involves kinase activities
distinct from MEK5. Cyclin-dependent kinase-1 (CDK1) might
well phosphorylate these sites, since either roscovitine or the
RO3306 inhibitor reverse mitotic phosphorylation of ERK5
(Diaz-Rodriguez and Pandiella, 2010; Inesta-Vaquera et al.,
2010).

All in all, C-terminal phosphorylation integrates different
signals that converge in ERK5 nuclear shuttling and activation
of transcription. ERK5 C-term autophosphorylation would
represent a MEK5-dependent mechanism that integrate signals
such as growth factors (EGF) and oxidative and osmotic stresses
that activate MEK5-ERK5 pathway. On the other hand, C-
terminal phosphorylation by other kinases (such as CDK1 during
mitosis) represents a mechanism of nuclear translocation that
does not require ERK5 kinase activity, but results in ERK5-
mediated activation of transcription.

Nuclear Translocation Independent of
ERK5 C-Terminal Phosphorylation
We have described a new mechanism for ERK5 nuclear
translocation which is independent of C-terminal
phosphorylation. Expression of high levels of Cdc37 induces the
release of Hsp90 and the nuclear shuttling of a kinase-inactive
form of ERK5 that retains its transcriptional activity (Erazo et al.,
2013). This mechanism does not involve ERK5 activation or
C-terminal phosphorylation by other kinases; overexpression of
Cdc37 induced nuclear translocation and ERK5-mediated gene
transcription in the presence of the specific inhibitor XMD8-92
or in MEK5 KO cells (Erazo et al., 2013).

The relevance of this new mechanism relays on the fact
that Cdc37 acts as an oncogene, stabilizing other oncogenes
that are mutated or overexpressed in cancer cells such as Akt,
Her-2, or BRAF (Smith and Workman, 2009). Overexpression
of Cdc37 has been observed in prostate adenocarcinoma,
where it collaborates with c-Myc and cyclin D1 in the
transformation of this tumor (Stepanova et al., 2000; Gray
et al., 2007). Remarkably, in vitro evidences suggest that
Cdc37 collaborates with ERK5 to promote proliferation of PC3
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FIGURE 1 | Molecular mechanisms controlling nucleocytoplasmatic transport of ERK5. Different mechanisms have been proposed for ERK5 shuttling to the

nucleus, depending or not of C-terminal phosphorylation. Once in the nucleus, ERK5 enhances gene transcription by either phosphorylating transcription factors, or

by interacting with these factors through the transactivation TAD domain located at the C-terminal. ERK5 does not require kinase activity to interact with and activate

transcription factors and therefore, forms of nuclear ERK5 devoid of kinase activity are able to activate transcription. Inactive ERK5 binds the cytoplasmatic chaperone

Hsp90 and co-chaperone Cdc37, which helps Hsp90 in the stabilization of ERK5 (Erazo et al., 2013). In basal conditions, Hsp90 serves as a cytosolic anchor for

ERK5, and inactive ERK5 adopts a closed conformation where the NLS motif is hidden and not available for the nuclear transport. Nuclear shuttling of ERK5 requires

both a conformational change to allow exposure of the NLS motif and the release of Hsp90 (Erazo et al., 2013). In response to growth factors stimulation or different

stresses, activated MEK5 phosphorylates and activates ERK5. Then, active ERK5 phosphorylates its C-terminal tail resulting in dissociation of the cytosolic anchor

Hsp90 from ERK5-Cdc37 complex, adoption of an open conformation in which the NLS motif is exposed, and nuclear translocation. ERK5 C-terminal tail can also be

phosphorylated by other kinases, such as Cyclin-dependent kinase-1 (CDK1) during mitosis. This phosphorylation is not MEK5-dependent but induce the release of

Hsp90 and nuclear translocation of a kinase-inactive form of ERK5 which retains its transcriptional activity (Diaz-Rodriguez and Pandiella, 2010; Inesta-Vaquera et al.,

2010). Finally, overexpression of Cdc37 (reported to happen in some cancers) induces the release of Hsp90 and nuclear shuttling of a kinase-inactive but

transcriptionally active form of ERK5 (Erazo et al., 2013).

prostatic adenocarcinoma cells (Erazo et al., 2013). Cdc37 is
also overexpressed in acute myelocytic leukemia and multiple
myeloma (Casas et al., 2003; Katayama et al., 2004). It would
be interesting to explore in these cancer cells if ERK5 shows
constitutive nuclear localization and also collaborates with Cdc37
to promote cell proliferation. If so, and given the fact that
Cdc37 induces nuclear shuttling of a kinase-inactive form of
ERK5, we predict that these cancers will not respond to ERK5
inhibitors.

PERSPECTIVES

During the last years, efforts of many laboratories have led to
delineate the importance of ERK5 in controlling cell proliferation
in normal and cancer cells, by mechanisms that are both
dependent and independent of its kinase activity: nuclear ERK5
activates transcription factors by either direct phosphorylation

or acting as co-activator thanks to a unique transcriptional
activation domain located at its C-terminal tail. Consequently,
ERK5 has been proposed as an interesting target to tackle
different cancers, and either inhibitors of ERK5 activity or
silencing the protein have shown antiproliferative activity in
cancer cells and to block tumor growth in animal models.
However, and as we have seen above, ERK5 kinase inhibitors
such as XMD8-92 might not be useful in cancers showing kinase-
inactive nuclear ERK5. On the other hand, the anticancer activity
of ERK5 inhibitors should be carefully interpreted. It has been
recently reported that several classes of kinase inhibitors can
strongly inhibit the bromodomain-containing protein-4 Brd4,
a general transcription co-activator (Ciceri et al., 2014). This
is the case for XMD8-92, which inhibits Brd4 and ERK5 with
similar potency (Lin et al., 2016), and therefore some of the
antitumor effects of this compound could be mediated by the
Brd4-inhibiting activity. A new generation of specific ERK5
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inhibitors are required to clarify the exact role of ERK5 in cancer
cell growth.

There are still many open questions that remain to be
addressed in order to describe the precise mechanism involved
in ERK5 nuclear shuttling. For instance, is CDK1 the only
kinase that phosphorylates ERK5 C-terminal tail? Does Cdc37
overexpression mimic a physiological mechanism that allows
nuclear shuttling of inactive ERK5? Are other post-translational
modifications, such as SUMOylation, required for ERK5 nuclear
translocation? What is the role of ERK5 phosphatases in this
process? The very near future seems an exciting time to deal with
these questions, and hopefully will provide clues to design new
compounds with antiproliferative activity.
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