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Telomerase elongates telomeres and is crucial for maintaining genomic stability. While

stem cells and cancer cells display high telomerase activity, normal somatic cells lack

telomerase activity primarily due to transcriptional repression of telomerase reverse

transcriptase (TERT), the catalytic component of telomerase. Transcription factor

binding, chromatin status as well as epigenetic modifications at the TERT promoter

regulates TERT transcription. Myc is an important transcriptional regulator of TERT

that directly controls its expression by promoter binding and associating with other

transcription factors. In this review, we discuss the current understanding of themolecular

mechanisms behind regulation of TERT transcription by Myc. We also discuss future

perspectives in investigating the regulation of Myc at TERT promoter during cancer

development.
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INTRODUCTION

Telomerase is a reverse transcriptase that elongates telomeres (Blackburn and Collins, 2011). It is
a ribonucleoprotein composed of a catalytic subunit telomerase reverse transcriptase (TERT), an
RNA template Terc and accessory proteins (Cohen et al., 2007; Venteicher et al., 2009). Telomerase
activity is detected in highly proliferating cells like stem cells, immune cells and germ cells (Feng
et al., 1995; Avilion et al., 1996; Nakamura et al., 1997). However, most somatic human tissues lack
telomerase activity (Aisner et al., 2002; Cong et al., 2002). Absence of telomerase activity results in
telomere shortening with successive replication cycles. When telomeres become critically short, the
DNA damage response is initiated followed by senescence or cell death (Blackburn et al., 2015).
While Terc and other accessory proteins are ubiquitously expressed, TERT is transcriptionally
downregulated, thereby limiting telomerase activity in somatic cells (Avilion et al., 1996; Heiss
et al., 1998; Holzmann et al., 1998; Parfait et al., 2000; Wang and Zhu, 2004; Wang et al., 2009).
For cancer cells arising from somatic cells, telomere maintenance becomes imperative in order to
acquire immortality. Telomere length is maintained by telomerase in 90% of human cancers, while
10% of cancers utilize an alternative mechanism of telomere lengthening termed ALT (Kim et al.,
1994; Bryan et al., 1995, 1997; Shay and Bacchetti, 1997). Besides TERT gene amplification and
alternate splicing, TERT promoter regulation represents the key mechanism to regulate telomerase
activity (Daniel et al., 2012). Thus, investigating transcriptional regulation of TERT is important
for understanding cancer development.
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Transcriptional regulation of TERT is extremely complex and
not completely understood. Several transcription factors and
signaling pathways are known to regulate TERT expression.
The human TERT promoter contains binding sites for several
transcription factors like Myc, SP1, ER, AP1, ETS, HIFs, and
upstream stimulatory factors (USFs) (Kyo et al., 1999, 2000;
Takakura et al., 1999, 2005;Wu et al., 1999; Goueli and Janknecht,
2003; Anderson et al., 2006; Xu et al., 2008). Amongst these
transcription factors, Myc represents an important regulator of
TERT transcription (Wu et al., 1999; Takahashi et al., 2007;
Marion et al., 2009). Important insights about the interplay
between Myc and TERT have been derived using a mouse model
of lymphomagenesis in which lymphoma is specifically driven by
Myc (Koh et al., 2015).

In the first part of this review, we discuss the role of Myc in
modulating TERT transcription. We then describe how multiple
cellular signals impinge on Myc to regulate TERT transcription.
Lastly, we present correlation analyses betweenMyc and TERT in
several cancers. In summary, we discuss the way forward to better
understand the interplay between Myc and TERT in normal
physiology and cancer.

DIRECT ACTIVATION OF TERT
TRANSCRIPTION BY MYC

The TERT core promoter contains two canonical E-box
consensus sites (5′-CACGTG-3′) at positions −165 and +44
nucleotide position relative to the transcription start site (TSS)
(Horikawa et al., 1999; Takakura et al., 1999; Wick et al.,
1999). A schematic representation of the TERT promoter with
E-boxes and binding sites for several regulatory transcription
factors is presented in Figure 1. E-boxes represent the known
binding sites for E-box binding proteins like the Myc/Max/Mad1
superfamily and USFs. Amongst E-box binding proteins, Myc
represents an important regulator of TERT transcription.
Myc was the first transcription factor to be reported to
directly activate TERT transcription in primary fibroblasts as
well as in normal epithelial cells (Wu et al., 1999). Myc
induces TERT expression independent of cellular proliferation
and de novo protein synthesis, implying its direct role

FIGURE 1 | A schematic representation of the human TERT promoter is shown. Binding sites for various transcription factors are displayed. Specific

nucleotide positions for all binding sites are indicated. +1 indicates the transcription start site and +77 indicates the translation start site.

in regulating TERT transcription. Myc generally activates
transcription by recruiting chromatin-modifying complexes
like transformation/transcription domain associated protein
(TRRAP) and associated histone acetyl transferases (HATs). It
can also recruit P-TEFb, which is a kinase that phosphorylates the
C-Terminus of RNA polymerase II, thereby helping in promoter
clearance. However, the mechanism employed by Myc to activate
the TERT promoter is not known (Zhao et al., 2014). The
importance of E-box-driven TERT expression has also been
investigated in the context of chromatin environment. Mutation
of endogenous E-boxes in the TERT promoter can counteract
TERT activation by Myc. It is suggested that E-boxes can also
function to de-repress the TERT promoter (Zhao et al., 2014).

Myc functions as a heterodimer with Max to activate
transcription of genes. The Myc/Max heterodimer is known to
activate transcription by inducing topological changes in DNA
(Wechsler and Dang, 1992). Structural studies using atomic force
microscopy indicate that Myc/Max dimers bind equally and
specifically to both E-boxes present in the TERT promoter (Lebel
et al., 2007). Although, Myc/Max dimers can oligomerize to
form tetramers, the physiological existence of these higher order
forms in the context of TERT promoter regulation has not been
experimentally verified (Nair and Burley, 2003; Lebel et al., 2007).

MYC ACTS AS A CENTRAL SIGNALING
FACTOR DOWNSTREAM OF MAJOR
CELLULAR PATHWAYS IN THE
REGULATION OF TERT TRANSCRIPTION

Myc functions as a downstream effector of several cellular
signaling pathways to regulate TERT expression. There are
several GC motifs present in the TERT promoter that are
recognized by SP1 transcription factors (Kyo et al., 2000). The
location of these GCmotifs is shown in Figure 1. Transactivation
of the TERT promoter by Myc/Max heterodimers is attenuated
upon mutation of SP1 sites, suggesting that SP1 and Myc
cooperatively function to modulate TERT expression (Kyo et al.,
2000). The NF-κB pathway is also reported to regulate TERT
transcription. The mammalian NF-κB family comprises of five
members, RelA (also termed p65), RelB, c-Rel, NF-κB1 (also
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termed p50), and NF-κB2 (also termed p52). They associate
with each other to form diverse dimeric complexes that regulate
numerous target genes via binding to the κB enhancer (Cildir
et al., 2016). The canonical NF-κB pathway involves inducible
degradation of the IκBs, particularly IκBα, leading to nuclear
translocation of various NF-κB complexes, predominantly the
p50/RelA dimer (Hayden and Ghosh, 2004). The non-canonical
NF-κB pathway activates the RelB/p52 NF-κB complex using
a mechanism that does not involve degradation of IκBα, but
involves inducible processing of p100 to generate p52 (Sun,
2011). In HTLV-I transformed cells, the viral protein Tax
upregulates the canonical NF-κB pathway (Sinha-Datta et al.,
2004). This activation of the NF-κB signaling pathway has been
indicated to upregulate Myc and SP1 and thus indirectly induce
TERT activation. Similarly, an increase in TERT expression
by NF-κB-induced activation of Myc/Max has been reported
in T lymphocytes activated by PKC θ and in smooth muscle
cells stimulated with fibroblast growth factors (Sheng et al.,
2006; Bu et al., 2010). The epidermal growth factor (EGF) has
also been reported to upregulate TERT transcription via SP1-
and Myc/Max-dependent activation of Pyk2/ERK1/2 (Bermudez
et al., 2008). In non-small cell lung cancer cell lines, EGF has
been reported to activate TERT transcription by inducing direct
binding of ETS2 and Myc/Max to the TERT promoter (Hsu
et al., 2015). Estrogen has been shown to increase Myc expression
and thus indirectly induce TERT transcription, although direct
binding of the estrogen receptor (ER) to the TERT promoter has
also been demonstrated in ER-positive cancers (Kyo et al., 1999;
Cha et al., 2008; Grasselli et al., 2008).

Isocitrate dehydrogenase (IDH) mutations commonly occur
in low-grade gliomas (Hartmann et al., 2009; Yan et al.,
2009). Mutant IDH1 produces 2-hydroxyglutarate, resulting in
altered chromatin modifications, thereby driving gliomagenesis.
Recently, it has been shown that mutant IDH1 can reactivate
the TERT promoter in human astrocytes by altering the
chromatin status and enabling Myc/Max binding (Ohba et al.,
2016). This represents a novel mechanism whereby a mutant
protein can activate the TERT promoter by modulating its
epigenetic status and enabling Myc binding to drive its
expression.

The ETS family of transcription factors comprises more
than 30 members that contain a characteristic DNA-binding
domain known as the erythroblast transformation specific (ETS)
domain (Dwyer and Liu, 2010). ETS factors have been shown
to contribute to the regulation of telomerase (Maida et al.,
2002; Xiao et al., 2003; Goueli and Janknecht, 2004). ETS2
is important for driving TERT gene expression and breast
cancer cell proliferation (Dwyer et al., 2007; Xu et al., 2008).
Silencing of ETS2 results in a reduction of TERT gene expression
leading to increased human breast cancer cell death, while
reconstitution with recombinant TERT reverses that effect (Xu
et al., 2008). ETS2 has been shown to interact with Myc using co-
immunoprecipitation and glutathione S-transferase pull-down
assays (Xu et al., 2008). Immunological depletion of ETS2 or
mutation of the ETS DNA-bindingmotif hampers c-Myc binding
to the E-box. Further depletion of c-Myc or mutation of the
E-box also attenuates ETS2 binding to the ETS DNA-binding

motif (Xu et al., 2008). These results suggest that the interaction
of ETS2 with c-Myc regulates TERT gene expression, which
in turn affects breast cancer cell proliferation. However, this
has not been reported in other cancer cell types. Recently,
two somatic hotspot mutations were discovered in the TERT
promoter that specifically occurred in a subset of cancers (Horn
et al., 2013; Huang et al., 2013; Akincilar et al., 2016b). The
mutations observed were cytosine to thymine transitions in the
TERT promoter and were mutually exclusive (Horn et al., 2013;
Huang et al., 2013). These mutations created de novo binding
sites for ETS transcription factors on the TERT promoter (Bell
et al., 2015; Li et al., 2015). GABP, an ETS factor, has been
shown to specifically associate with the de novo ETS motif on
the TERT promoter (Bell et al., 2015). Besides GABP, Li et al.
demonstrated that ETS1/2 factors bind cooperatively with NF-
kB2 at the mutant TERT promoter during non-canonical NF-kB
signaling to drive telomerase reactivation in glioblastomas. These
studies suggest that regulation of mutant TERT promoters may
be context-dependent in different cancer types and can involve
binding of other regulators other than a single ETS factor (Li
et al., 2015).

Long-range chromatin interactions mediated by GABP have
also been reported to specifically regulate activation of themutant
TERT promoter (Akincilar et al., 2016a). However, cooperation
or crosstalk between Myc and GABP to regulate the mutant
TERT promoter has not yet been reported.

TERT has also been shown to regulate Myc protein stability
by directly interacting with Myc (Koh et al., 2015). This study
suggests the existence of a feed-forward loop between Myc
and TERT in Myc-driven cancers like lymphoma, wherein Myc
upregulates TERT transcription and TERT, in turn, stabilizes
Myc protein levels to promote lymphomagenesis. Apart from
regulatingMyc stability, TERT can also be recruited toMyc target
promoters in Myc-driven lymphoma cells probably through
association with Myc (Khattar et al., 2016). This represents
another novel aspect of the crosstalk between Myc and TERT in
cancers.

In contrast to the role of Myc as an activator of TERT
transcription, it has also been shown to play a key role in
repressing TERT transcription. Inhibition of Myc expression has
been reported to increase TERT transcription in normal cells
(Zhao et al., 2014). This effect is independent of E-boxes and
results in an increase in active histone marks on the TERT
promoter.

E2F1 is a direct transcriptional target of Myc and it inhibits
TERT transcription by directly associating with the TERT
promoter (Crowe et al., 2001; Elliott et al., 2008; Lacerte et al.,
2008; Zhang et al., 2012). This exemplifies the dual nature of
Myc in regulating TERT transcription. This may also represent
another mechanism operating in normal cells to control Myc-
dependent oncogenic signals.

A switch from Myc/Max to Max/Mad1 complexes has been
shown to repress TERT transcription (Xu et al., 2001). TERT
transcription is repressed when stem cells differentiate to specific
lineages. The Myc/Max to Max/Mad1 switch is reported to arise
during differentiation and has been proposed as one of the
mechanisms of repressing TERT transcription.
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TABLE 1 | This table summarizes correlation analyses between: (a) Myc and TERT expression, (b) Myc expression and telomerase activity in various

types of cancers.

Cancer type (number of studies) Correlation between TERT

and Myc mRNA expressiona
Correlation between telomerase

activity and Myc mRNA

expressionb

References

Breast Cancer (n = 4) No correlation Not reported Kirkpatrick et al., 2003b, 2004; Elkak et al., 2005;

Bodvarsdottir et al., 2007

Cervical cancer (n = 1) Positive Not reported Sagawa et al., 2001

Hepatocellular carcinoma (n = 2) No correlation Not reported Chen et al., 2002; Liu et al., 2004

Ovarian cancer (n = 1) No correlation Positive Wisman et al., 2003

Non-small cell lung cancer (n = 1) Positive Not reported Geng et al., 2003

Lymphoma (n = 1) Positive Positive Klapper et al., 2003

Malignant lipomatous tumors (n = 1) Positive Positive Schneider-Stock et al., 2003

Colon cancer (n = 1) Positive Not reported Georgakopoulos et al., 2013

Gastric cancer (n = 1) Positive Not reported Silva et al., 2012

Prostate cancer (n = 1) Positive Not reported Latil et al., 2000

Positive correlation: high Myc expression co-occurs with high TERT mRNA expression or telomerase activity. No correlation: Myc levels and TERT mRNA expression or Myc levels and

telomerase activity show no significant association. Not reported: the investigating group did not examine the correlation.

Peroxisome proliferator-activated receptor γ (PPARγ)
ligands inhibit TERT mRNA expression in colon cancer
cells via modulation of the Myc/Max/Mad network (Toaldo
et al., 2010). PPARγ ligands reduce the levels of Myc and
TERT and simultaneously upregulate Mad1 levels, thereby
inducing a switch from Myc/Max to Mad1/Max complexes
on the TERT promoter. However, the exact molecular
mechanism behind the transcriptional changes in Myc
and Mad1 levels induced by PPARγ ligands has not been
characterized.

CORRELATION BETWEEN MYC AND TERT
EXPRESSION IN CANCERS

Alterations in Myc expression are commonly observed during
cancer initiation and progression. They occur via chromosomal
translocations, amplifications and gene mutations (Dang, 2012).
Telomerase reconstitution by reactivating TERT expression
is known to occur in cancers by various mechanisms that
involve oncogenic transcription factors, gene amplification,
promoter mutations, crosstalk with oncogenic pathways or
epigenetic regulation (Akincilar et al., 2016b; Li and Tergaonkar,
2016; Li et al., 2016; Tergaonkar, 2016). The correlation
between Myc and TERT mRNA expression has been extensively
investigated in cancers for two reasons. The first being that
simultaneous deregulation ofMyc and TERT is a frequent genetic
event occurring in several cancers. And secondly, TERT is a
transcriptional target of Myc.

Myc expression is usually measured at the protein level using
immunohistochemistry. For measurement of TERT expression,
some studies use mRNA expression, while others measure
telomerase enzyme activity since TERT mRNA levels positively
correlate with telomerase activity (Armstrong et al., 2000;
Kirkpatrick et al., 2003a). Table 1 lists all the studies that report
an association between Myc and TERT expression. In most
cancers, high expression of Myc and TERT (measured as mRNA
expression or telomerase activity) occur together, suggesting

positive correlation. The breast cancer and hepatocellular cancer
studies listed in Table 1 show no correlation between Myc and
TERT expression. This suggests that there may be additional, as
yet undiscovered mechanisms operating for regulation of TERT
expression through Myc- dependent or independent means in
these cancer types. The reported correlation studies should be
interpreted with caution because of the small sample sizes.
Further, TERT expression and telomerase activity measurement
is not standardized and can therefore vary with different
protocols.

PERSPECTIVES

Myc and TERT play crucial roles during normal development
as well as in carcinogenesis. Therefore, understanding their
interplay in both these processes is important. Myc can activate
TERT transcription directly or by cooperating with other
transcription factors like SP1, ER and ETS. The factors that
discriminate Myc-dependent TERT regulation during normal
development from cancer are not known and need further
investigation. Mutations in the TERT promoter represent the
most common non-coding somatic mutations in cancer and it
would be interesting to investigate the role of Myc in regulating
the mutant TERT promoter. The existing correlation studies
between Myc and TERT are not very conclusive and need further
analysis.
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