
PERSPECTIVE
published: 23 March 2017

doi: 10.3389/fcell.2017.00023

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 March 2017 | Volume 5 | Article 23

Edited by:

Juan Jose Sanz-Ezquerro,

Consejo Superior de Investigaciones

Científicas, Spain

Reviewed by:

Juan Carlos Izpisua Belmonte,

Salk Institute, USA

Alexander Omar Vargas,

Universidad de Chile, Chile

Karen Sears,

University of Illinois at

Urbana–Champaign, USA

*Correspondence:

Juan M. Hurle

hurlej@unican.es

Specialty section:

This article was submitted to

Signaling,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 03 January 2017

Accepted: 07 March 2017

Published: 23 March 2017

Citation:

Montero JA, Lorda-Diez CI,

Francisco-Morcillo J,

Chimal-Monroy J, Garcia-Porrero JA

and Hurle JM (2017) Sox9 Expression

in Amniotes: Species-Specific

Differences in the Formation of Digits.

Front. Cell Dev. Biol. 5:23.

doi: 10.3389/fcell.2017.00023

Sox9 Expression in Amniotes:
Species-Specific Differences in the
Formation of Digits

Juan A. Montero 1, Carlos I. Lorda-Diez 1, Javier Francisco-Morcillo 2,

Jesus Chimal-Monroy 3, Juan A. Garcia-Porrero 1 and Juan M. Hurle 1*

1Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain, 2Departamento de

Anatomía, Biología Celular, y Zoología, Universidad de Extremadura, Badajoz, Spain, 3Departamento de Medicina Genómica

y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City,

Mexico

In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The

number of digits varies between species or even between hindlimb and forelimb within

the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9

is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern

of expression in the developing limb has been widely studied and reflects the activity

of signaling cascades responsible for skeletogenesis. In this assay we stress previously

overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse

and turtle embryos which may reflect signaling differences associated with distinct limb

skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene

expression is higher and maintained in the interdigital region in species with webbed

digits in comparison with free digit animals.

Keywords: limb development, interdigit regression, chondrogenesis, skeletal progenitors, SOX9 transcription

factor

The limb is an excellent model system to study the molecular basis of morphogenesis
(Hinchliffe, 2002; Fabrezi et al., 2007). The skeletal pattern of the limb is conserved in tetrapods,
yet differences in bone morphology are remarkable among different species (Kavanagh et al.,
2013). Interpretations of skeletal limb diversification has been largely based on comparative
developmental studies using histochemical or radiolabeling markers of initial stages of cartilage
differentiation. From these approaches it has been proposed that the limb skeleton in tetrapods is
generated by sequential branching and segmentation of a basic pattern representative of the distal
segment of the fish fins, termed the “metapterygial axis.” The advent and progress of molecular
biology has provided new insights about the diversification of the limb skeletal morphology.
For example, it has been shown that activation of signals responsible for skeletogenesis may be
differentially regulated by transcriptional enhancer DNA sequences that are species-specific (Kvon
et al., 2016). These studies explain major skeletal differences in evolutionary distant species such
as the absence of limbs in snakes. However, differences between the fore- and the hind-limb in the
same species or skeletal differences observed among closely related tetrapods might be regulated in
a different fashion, such as timing differences in the expression of signaling molecules (Richardson
et al., 2009; Moore et al., 2015; Zuniga, 2015).

Sox9 is a well known marker of the skeleton that precedes the appearance
of cartilage blastemas (Wright et al., 1995; Healy et al., 1999; Chimal-Monroy
et al., 2003; Kawakami et al., 2005; Lorda-Diez et al., 2011; Sensiate et al., 2014).
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Hence, Sox9 is expressed even in domains that represent skeletal
pieces lost in the course of evolution of specialized species (de
Bakker et al., 2013). Silencing Sox9 in mouse embryos causes
loss of appendicular skeleton and increases programmed cell
death (Akiyama et al., 2002). Sox9 overexpression promotes
polydactyly (Akiyama et al., 2007). Furthermore, Sox9 along
with BMP and WNT signaling are considered key regulators of
digits formation through a self-organizing Turing mechanism
(Raspopovic et al., 2014). Overall, such findings make Sox9
an excellent marker to detect signaling differences, later
transduced into specific patterns of chondrification (Richardson
et al., 2009), responsible for variations in the morphology
of the appendicular skeleton. Based on the observation
of in situ hybridizations, we have revised the pattern of
Sox9 gene expression during digit development in reptilian
(Mauremys turtle), avian (chick and duck), and mammal
(mouse) species with different autopodial morphology to
uncover signaling differences of potential interest to explain digit
morphogenesis.

In chick embryos the expression of Sox9 shows differences
between the wing (Figures 1A–G) and the leg bud
(Figures 1H–M). In wing buds at stage HH22 (3.5 id) the
expression of Sox9 marks the primary axis of the appendicular
skeleton. In next stages, the initial domain extends proximally
and distally (Figures 1A–C). Proximally, the domain forms
the humerus primordium, and distally it shows a branching
that establishes the primordium of the radius (Figures 1C,D).
By stage HH24 (4 id) the primary axis is continued distally
by the digital arch oriented toward the anterior margin of the
bud. Between stages HH26-HH28 the digital arch undergoes

FIGURE 1 | Sox9 expression during limb development of chicken and mouse embryos. (A–G) Embryonic chicken wing buds at stages HH20 (A), HH22 (B),

HH24 (C), HH 25 (D), HH26 (E), HH27 (F), and HH28 (G). (H–M) Chicken leg buds at stages HH20 (H), HH22 (I), HH23 (J), HH25 (K), HH27 (L), HH28 (M). Arrows

indicate the position of the digital arch domain. (N–S) Mouse forelimbs illustrating the sequence of Sox9 expression at stages E9,5 (N), E10 (O), E10,5 (P), E11 (Q),

E12 (R), and E13 (S). Anterior is to the top and distal to the right in all images.

a branching process to form each digit (Figures 1E–G). First
branching forms digit 3 and a common branch that bifurcates to
form digit 4, and a reduced domain reminiscent of a digit 5. The
latest, is progressively reduced in size and expression intensity.
The most anterior digit, is formed distally and aligned with the
radial domain (Figures 1F,G).

In the leg bud the initial expression of Sox9 at stage HH22
appears divided into a posterior (primary axis) and an anterior
domain for the tibia (Figures 1H,I). The femur is identifiable
at stage HH25 coupled between the proximal end of the fibular
and tibial domains (Figure 1K). The appearance of these skeletal
domains at stage HH23 is accompanied by the formation of a
nascent digital arch that occupies a posterior and distal position
(Figures 1K,L). Initially, the expression is uniform and limited
to the posterior half of the autopod but, in the following
stages (HH25 and HH26), the expression progresses anteriorly
and digits became identifiable as patches of higher expression
(Figures 1J–M). Digits 3 and 4 are the most prominent at these
stages while digits 2 and 5 are poorly defined areas where the
expression of Sox9 is not very intense. Interestingly, the most
anterior part of the autopod lacks Sox9 transcripts until stage
HH26-HH27.

Both in the wing and in the leg bud, concomitantly with the
intensification of Sox9 expression at stage HH26 in the digit
blastemas, a carpal/tarsal arch of lower Sox9 expression level is
formed. Carpal and tarsal pre-cartilages are individualized when
digit blastemas are defined.

Expression of Sox9 in the mouse is similar in fore- and
hind-limbs (Figures 1N–S). Initial expression of Sox9 occupies
the whole central region of the early bud (Figures 1N,O).
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Regionalization of this domain in stylopod, zeugopod and digital
arch is due to the loss of transcripts from the central region at
10.5 pc (Figures 1P,Q). Due to this process, expression of Sox9
appears as a loop where the distal curved region constitutes the
digital arch. The proximal part of the loop lengthens marking the
position of the stylopod. The zeugopodial elements are identified
as the lateral regions of the loop. In next stages the digit primordia
appear as elongated domains of intensified Sox9 gene expression
(Figures 1R,S). Digits 3 and 4 are the first to appear.

The skeletal domains of Sox9 in the Mauremys turtle are
similar in fore and hind-limbs (Figure 2). At the beginning,
a central ill-defined domain is transformed into a triangular
domain with a posterior elongated vertex, which marks the

stylopod (Figure 2C). The sides of the triangle form the
zeugopodial domains, and the base corresponds with the
digital arch. The expression of Sox9 in the digital arch
becomes progressively intensified at discrete regions to form
digit primordia (Figures 2D,E). Digits 3 and 4 are the most
precociously identifiable while digit 1 is the last to appear,
preceded by digit 5 (Figures 2E–I). In the course of digit
development, the expression of Sox9 is progressively restricted
to the digit tip and to the developing joints (Figures 2E–I).

Remarkably, the Mauremys turtle interdigital regions retain
considerable levels of Sox9 expression not observed in chick
and mouse embryos (Figures 2F–I). To ascertain if interdigital
expression of Sox9 associates with the absence of interdigit

FIGURE 2 | Sox9 expression during limb development in the turtle (Mauremys Leprosa). Stages were established according to the developmental series of

Yntema (1968). (A,B) adult limb in a live picture (A) and a radiographic image (B) to illustrate the presence of interdigital membranes in this species. (C–I) Sox9

expression at stages Y14 (C), Y15 (D), Y16 (E), Y17 (F), Y18 (G), Y19 (H), and Y20 (I). (J–L) Comparative analysis of Sox9 expression in chick and duck interdigits.

(J,K) Sox9 expression in the chicken and duck autopod at day 6.5 and 8 of incubation respectively. (L) QPCR comparison of Sox9 expression level in the developing

third interdigit of the leg bud of chicken (white bars) and duck (gray bars) embryos at equivalent developmental stages. Each value represents the mean of three

samples of 12 interdigits and statistical significance was set at P < 0.05. Incubation days (id) from left to right: chicken id 6.5 vs. duck id 7.5; chicken id 7.5 vs. duck

8.5; and chicken id 8 vs. duck id 10. Q-PCR specific primers were designed searching for identical homologous sequences in the duck and chicken for Sox9 and

GAPDH genes. **p ≤ 0.01; ***p ≤ 0.001.
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remodeling in the Mauremys turtle (Figure 2A), we compared
the level of expression of Sox9 in the third interdigit of the
leg bud of chick and duck embryos, as characteristic models of
species with free and webbed digits respectively. As shown in
Figures 2J–L, expression of Sox9 in the non-regressing interdigit
of the duck was much higher than that of the chick embryo.

Detailed analysis of phylogenetically related but
phenotypically different species have provided important
cues about the mechanisms accounting for limb morphogenesis
(Moore et al., 2015). Gene expression computational modeling
have also provided insights on the molecular bases responsible
for differences in limb skeletogenesis among vertebrates
(Uzkudun et al., 2015). The consideration of the subtle Sox9
expression differences highlighted in this “perspective” assay,
are consistent with heterochrony detected in the stages of
chondrification (Richardson et al., 2009), and may help to
improve our understanding of how digits differ in morphology.
In all species, the expression of Sox9 marks the successive
appearance of the stylopod, zeugopod, and autopod along
the proximo-distal axis of the limb. The autopod includes
the mesopodium (carpi/tarsi) and the acropod (digits); the
specification of zeugopod and the acropod has been proposed
to determine the mesopodial intermediate domain in between
(Woltering and Duboule, 2010). Consistent with this hypothesis,
the appearance of intensified expression of Sox9 marking the
nascent digits precedes that of the carpal/tarsal domains that lie
in the concavity of the digit arch.

The formation and expansion of the digit arch in the chick
embryo is clearly distinct from that observed in mouse and turtle
embryos. Consistent with the evolutionary model proposed by
Shubin and Alberch (1986), in the avian limb the progressive
appearance of the digit expression domains follows a polarized
sequence from posterior to anterior, which is more accentuated
in the wing bud. In contrast, the digital arch domain in mouse
and turtle limbs appears occupying a central position in the
autopod, and in the course of development expands uniformly
to the margins of the bud. These differences raise doubts about
the validity of current thought, which considers independent
identities for each of the digits in the hand/foot of vertebrates.
The consideration of such identities have implications for
evolutionary hypothesis that consider digit 1, as the most distal
element of a conserved skeletal axis modified in the course of
evolution through branching and segmentation processes (see
Cohn et al., 2002, for discussion). Sox9 expression domains
precede the appearance of prechondrogenic blastemas that were
formerly employed in traditional comparative embryonic studies.
Hence, the differences among species observed here, support
mechanisms of skeletal diversification based on the combination
of a distinct distribution of signals with differences in the
intrinsic properties of the skeletal progenitors of the autopod,
likely associated with differential epigenetic signatures (Sheth
et al., 2016). Both in the wing and in the leg of avian embryos,
digits are different along the antero-posterior axis justifying
the consideration of different digit identities according to their
position and number of phalanxes. In contrast, digits of mouse
and turtle embryos, expands from the centrally located digital
arch toward the margins of the limb bud. In this model of

digit arch expansion, there are not morphological landmarks that
allow to assign specific identities to the central digits (2,3,4). It
must be taken into account that the carpal/tarsal domains of Sox9
appear when the digit arch shows independent digit domains.
Therefore, at these embryonic stages mesopodial domains cannot
be taken as a primary reference to establish the identity of the
digits. The only morphological differences observed among the
pre-cartilaginous blastemas are located in the marginal digits
(digits 1 and 5) where Sox9 domains exhibit a reduced size and
appear at more advanced stages than the central digits.

The growth of the limb bud is regulated by a complex signaling
network (Uzkudun et al., 2015), where Shh and Gremlin1 genes
play an important role in digit specification (Sanz-Ezquerro
and Tickle, 2003a; Zhu et al., 2008). Evolutionary or genetic
deregulations of the Shh/Gremlin loop causes polydactylous
(Norrie et al., 2014) or oligodactylous (Lopez-Rios et al., 2014)
autopods. Consistent with our interpretation, central digits
in these mutants, regardless of its number, are identical and
indistinguishable from each other (Norrie et al., 2014). These
findings make plausible that digit formation result of the self-
organization of the limb mesenchyme (Cooper, 2015), within
an autopod of dimensions and shape finely tuned by regulatory
genes responsible for growth (Zhu et al., 2008).

Sox9 is target of signals controlling proliferation and
differentiation of the skeletal progenitors, including FGFs, BMPs,
TGFbetas, and Retinoic acid (RA). These signals are themselves
closely regulated by the AER and the ZPA, to establish the pattern
of limb skeletogenesis as well as the number of digits in the
autopod. BMPs up-regulate the expression of Sox9 and promote
differentiation of progenitors (Lorda-Diez et al., 2014; Norrie
et al., 2014) and in conjunction with TGFβs and Activins induce
the formation of extra-digits in the avian limb (Chimal-Monroy
et al., 2003; Montero et al., 2008). FGFs are major determinants
of digit size (Sanz-Ezquerro and Tickle, 2003b; Seki et al., 2015).
FGFs inhibit chondrogenesis but expand the amount of Sox 9
positive skeletal progenitors and its overexpression in the limb
results in the formation of extra cartilages, including extra-digits
(Montero et al., 2001; Norrie et al., 2014), or extra-phalanxes
(Sanz-Ezquerro and Tickle, 2003b). RA is a potent inhibitor of
Sox9 gene expression (Weston et al., 2002) and RA inhibition
in the autopod causes the formation of extra digits (Rodriguez-
Leon et al., 1999). Hence, the pattern of Sox9 gene expression
may reflect differences in the spatial distribution of signals within
the limb bud mesoderm. According with this interpretation,
avian digits may represent an evolutionary specialization of
digit development consequence of a posterior polarization
of signals responsible for limb outgrowth. In contrast, the
pentadactyl autopod of mouse and turtle embryos may result
from the uniform expansion (like opening a fan) of the signals
that coordinate proliferation and differentiation of the skeletal
progenitors.
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