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The inability of adult tissues to transitorily generate cells with functional stem cell-like

properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like

phenomena that induce a transient acquisition of epigenetic plasticity and phenotype

malleability may constitute a reparative route through which human tissues respond

to injury, stress, and disease. However, tissue rejuvenation should involve not

only the transient epigenetic reprogramming of differentiated cells, but also the

committed re-acquisition of the original or alternative committed cell fate. Chronic

or unrestrained epigenetic plasticity would drive aging phenotypes by impairing

the repair or the replacement of damaged cells; such uncontrolled phenomena

of in vivo reprogramming might also generate cancer-like cellular states. We

herein propose that the ability of senescence-associated inflammatory signaling

to regulate in vivo reprogramming cycles of tissue repair outlines a threshold

model of aging and cancer. The degree of senescence/inflammation-associated

deviation from the homeostatic state may delineate a type of thresholding algorithm

distinguishing beneficial from deleterious effects of in vivo reprogramming. First,

transient activation of NF-κB-related innate immunity and senescence-associated

inflammatory components (e.g., IL-6) might facilitate reparative cellular reprogramming

in response to acute inflammatory events. Second, para-inflammation switches might

promote long-lasting but reversible refractoriness to reparative cellular reprogramming.

Third, chronic senescence-associated inflammatory signaling might lock cells in highly

plastic epigenetic states disabled for reparative differentiation. The consideration of

a cellular reprogramming-centered view of epigenetic plasticity as a fundamental

element of a tissue’s capacity to undergo successful repair, aging degeneration or

malignant transformation should provide challenging stochastic insights into the current

deterministic genetic paradigm for most chronic diseases, thereby increasing the

spectrum of therapeutic approaches for physiological aging and cancer.
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The epistemic interest of induced pluripotent stem cells (iPSCs)
to model aging and aging-related diseases largely relies on the
appreciation of nuclear reprogramming as a disease-in-a-dish
technology. Expression of the Yamanaka cocktail of transcription
factors (i.e., Oct4, Sox2, Klf4, and c-Myc, OSKM; Takahashi and
Yamanaka, 2006; Takahashi et al., 2007) is commonly viewed as
an artificial, non-naturally occurring molecular modality capable
of radically modifying the cellular identity of differentiated cells
in vitro (Liu et al., 2012; Inoue et al., 2014; Sterneckert et al.,
2014; Avior et al., 2016). An overlooked dimension of OSKM-
driven cellular reprogramming is the potential existence of such
a phenomenon as a natural process for in vivo tissue rejuvenation.
Activation of adult stem/progenitor cells and proliferation of
remaining differentiated cells are well-established mechanisms
for the replacement of lost cells following injury. A physiological
version of OSKM-induced reprogramming might operate as an
evolutionary conserved, bona fide epigenetic strategy to provide
self-repair and resistance to damage and disease (Cooke et al.,
2014; Jessen et al., 2015; de Keizer, 2017).

There is growing support for the hypothesis that nuclear
reprogramming-like phenomena inducing the short-term
acquisition of epigenetic plasticity, followed by cell differentiation
and replacement of damaged cells, might be a reparative
route through which tissues respond to injuries and other
adversities. We herein delineate a threshold model of aging
and cancer based on the intercommunication between cellular
reprogramming/differentiation cycles of tissue repair and the
cell-autonomous and non-cell autonomous mechanisms that
initiate and propagate senescence-associated inflammatory
signaling.

REPARATIVE CELLULAR
REPROGRAMMING IN VIVO: THE
EVIDENCE BASES

Nuclear Reprogramming and Activation of
Innate Immunity
The mere process of viral transduction that is frequently
employed to deliver OSKM factors into target cells (i.e., the viral
particles themselves) can elicit the expression of genes involved
in innate immunity (Lee et al., 2012; O’Neill, 2012). Furthermore,
only after the efficient activation of innate immunity, considered
the phylogenetically oldest mechanism of defense against
microbes, can the retrovirally-delivered OSKM factors
successfully accomplish cellular reprogramming (Lee et al.,
2012; O’Neill, 2012). Key players of innate immunity-signaling,
including toll-like receptors (TLRs) such as TLR3 and the retinoic
acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR),
appear to be necessarily involved in the nuclear reprogramming
process to pluripotency (Cooke et al., 2014). Moreover, the
retrovirally-induced activation of pattern recognition receptors
(PRRs) such as TLRs and RIG-1, which are specialized DNA
sensors charged with cell defense via sensing nucleic acids
generally derived from microbes (e.g., viral RNA) (Broz and
Monack, 2011; Newton and Dixit, 2012; Dixit and Kagan, 2013),
has been found to stimulate pro-inflammatory NFκB signaling

as part of the reprogramming process. Retrovirally-induced
immune activation and NFκB-mediated cellular inflammation
can trigger significant downstream epigenetic modifications,
including decreased H3K9 methylation (indicative of gene
silencing) and increased H3K4 methylation (indicative of
open chromatin) of the endogenous Oct4 and Sox2 gene
promoters, thereby facilitating nuclear reprogramming upon
delivery of the stemness transcription factors (Lee et al., 2012;
O’Neill, 2012). Indeed, this activation of inflammatory signaling
appears to autonomously promote epigenetic plasticity by
eliciting global changes in the expression and activity of several
chromatin-modifying enzymes, such as upregulation of histone
acetyltransferases, downregulation of histone deacetylases, and
downregulation of histone methyltransferases such as DOT1L
(Lee et al., 2012; O’Neill, 2012; Cooke et al., 2014; Figure 1).

Inflammation and Epigenetic Plasticity
The targeted modulation of epigenetic modifiers that operate
as barriers to OSKM-driven reprogramming is sufficient to
more efficiently generate iPSCs with fewer exogenous stemness
transcription factors (Onder et al., 2012; Luo et al., 2013;
Rais et al., 2013; Soria-Valles et al., 2015a,b). It thus seems
reasonable to suggest that the Yamanaka cocktail simply drives
induced pluripotency because they efficiently and specifically
finalize the epigenetic modification of chromatin pre-initiated
as part of the retrovirus-induced PRR-driven host genetic
response (Lee et al., 2012; O’Neill, 2012; Cooke et al., 2014).
Considering that innate immunity functions not only for the
early prevention, control, or elimination of host infection, but
also to warn against infection or DNA damage, to which an
adaptive immune response has to be mounted, other NFκB-
related pro-inflammatory damage receptors (e.g., TLR4 binding
to endotoxins such as lipopolysaccharide) may likely act as
epigenetic modifiers to promote more epigenetically plastic
cellular states (Erdoğan et al., 2016).

In agreement with the host defense nature of inflammation-
regulated reprogramming, the Yamanaka factors have been
found to cooperate with soluble and contact-dependent stromal
signals to accelerate the conversion of myeloid progenitors
to a stable pluripotent state (Park et al., 2012). Interestingly,
such extrinsic potentiation of the reprogramming capacity
of somatic progenitors has been found to involve both an
epigenetically permissive genome and the molecular activation
of the TLR/NFκB signaling pathway (Park et al., 2012). However,
a close relationship seems to exist between an optimal level of
cell-autonomous inflammation and the acquisition of cell states
epigenetically poised to rapidly provide phenotypic responses to
environmental stresses. A landmark study from the Lopez-Otin
group revealed that chronic hyperactivation of pro-inflammatory
NF-κB signaling constitutes a critical impediment to nuclear
reprogramming in both normal and accelerated aging (Soria-
Valles et al., 2015a,b). Accordingly, hyperactivation of the histone
H3 methyltransferase DOT1L, a central component of the
epigenetic program that is down-regulated during retrovirally-
induced activation of innate immune/NFκB inflammatory
signaling to promote epigenetic plasticity (Lee et al., 2012;
O’Neill, 2012; Cooke et al., 2014), was found to conversely
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FIGURE 1 | Transflammation-driven epigenetic plasticity: a paradigmatic example of in vivo reparative reprogramming. Transient activation of the

PAMPs-DAMPs → NFκB signaling axis may delineate an optimal zone of transflammation (TF)-driven reparative reprogramming characterized by increased epigenetic

plasticity and phenotypic malleability capable of responding and adapting to injury, stress, and disease (Lee et al., 2012; O’Neill, 2012; Cooke et al., 2014). The

efficiency of NFκB signaling and the level of inflammatory responses is the nodal point linking the pathogenic assault and cellular danger signals and the organization

of cellular resistance and tissue repair. NFκB hyperfunction and its interaction with epigenetic modifiers would significantly squeeze the optimal zone of TF-driven

reparative reprogramming, thus impairing the adequate organization of defense mechanisms. By operating as the perpetrator of inflammaging, the NFκB signaling

integrates the intracellular regulation of transflammation immune responses in both aging and aging-related diseases (Salminen et al., 2008; Montgomery and Shaw,

2015).

operate as an epigenetic barrier causally involved in the loss of
tissue plasticity following chronic NF-κB hyperactivation (Soria-
Valles et al., 2015a,b; Figure 1).

Innate Immunity and
Transflammation-Thresholded Cellular
Reprogramming
The capacity for pathogen-associated molecular patterns
(PAMPs), for example, viruses and bacteria, or damage-
associated molecular patterns (DAMPs), such as mechanical
stresses, pH, and oxidants, to support OSKM-driven
reprogramming could have implications beyond the mere
molecular insights into the cell-autonomous mechanistic barriers
determining the in-a-dish efficiency of nuclear reprogramming.

The ability of the inflammatory response to mitigate infection
and clear damaged cells seems to be an evolutionary conserved
process from lower organisms to mammals that might also
function to promote initiation of damage repair and tissue
regeneration (Karin and Clevers, 2016). When adult tissue
cells are confronted with PAMPs/DAMPs, the PRR-triggered
activation of downstream innate immune signaling pathways
mobilizes archetypal inflammatory pathways (e.g., NF-κB,
interferon regulatory factor-3) to promote an open configuration
of the chromatin and, therefore, generate greater epigenetic
plasticity. This phenomenon of so-called “transflammation”
(Lee et al., 2012; O’Neill, 2012; Cooke et al., 2014) may act
to fine-tune the rapid, but transient, adaptive adjustments
to the fluidity of the cell phenotype by providing a more
plastic epigenetic state for the self-repair of damaged/diseased
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tissues. Beyond an optimal threshold zone of optimally and
transiently activated transflammation, a successful augmentation
of epigenetic and phenotypic tissue plasticity would be minimal
or totally absent despite damage/disease-driven activation of
cellular reprogramming-like processes (Figure 1). Reaching
into an optimal zone of transflammation-initiated cellular
reprogramming-like phenomena, followed by re-acquisition
of the original or alternative cell fate, might allow tissue
repair via replenishment or transdifferentiation of the original
damaged/lost cells (Lee et al., 2012; O’Neill, 2012; Cooke
et al., 2014, 2015; Sayed et al., 2015). Conversely, a chronic,
cell-autonomous hyperactivation of comparable inflammation-
epigenetic axes (e.g., NF-κB), rather than establishing stem-like
epigenetic states, will position the damaged/stressed cell outside
the optimal zone for cellular reprogramming, impeding tissue
rejuvenation and generating an aging phenotype (Figure 1).

Permissiveness of the In vivo Environment
for Nuclear Reprogramming-Like
Phenomena
Before unequivocally suggesting that activation of
reprogramming in vivo can be considered a host genetic
program for resistance to disease and damage, it should be
clarified whether the in vivo conditions are permissive for
nuclear programming-like phenomena. By considering that
cell-cell fusion is a physiological mechanism controlling not
only fertilization, but also developmental processes, and that
these events increase following injury and inflammation, Cosma
and colleagues investigated whether stem and progenitor
cells could fuse with retinal neurons and Müller glia after
their transplantation into damaged retinas, and whether the
in vivo-formed hybrids underwent nuclear reprogramming
(Sanges et al., 2013). Using the eye as a model system that
has low immune responses to cells and viral vectors, the
authors demonstrated that, upon N-methyl-D-aspartate-induced
retinal damage, mouse retinal neurons could be transiently
reprogrammed back to a precursor stage. This pioneering study
was the first to demonstrate that cell-fusion-mediated nuclear
reprogramming of terminally differentiated cells should be
viewed as a bona fide repair mechanism to stimulate cell and
tissue regeneration in mammals in vivo. Soon after, a landmark
study by the Serrano group established the possibility of in vivo
nuclear reprogramming within tissues (Abad et al., 2013). These
authors showed that induction of the OSKM factors in mice
promoted not only the emergence of groups of dedifferentiated
cells expressing the pluripotency marker Nanog in multiple
organs, but also the generation of circulating in vivo iPSCs with
a highly plastic, more primitive totipotent state than embryonic
stem cells (ESCs) and in vitro-derived iPSCs (Abad et al., 2013).
Permissiveness of the in vivo environment to reprogramming-
like phenomena has been positively supported by two recent
breakthrough studies from the Serrano and Izpisua-Belmonte
groups; the former showing that tissue damage provides critical
signals for OSKM-driven cellular reprogramming in vivo
(Mosteiro et al., 2016), and the latter revealing how the cyclic,
short-term expression of OSKM factors in vivo ameliorates

cellular and physiological hallmarks of aging (Ocampo et al.,
2016).

Nuclear Reprogramming-Induced
Tumorigenesis
Using a murine system in which the expression of
reprogramming factors was controlled temporally with
doxycycline, the Yamanaka group demonstrated that whereas
acute activation of OSKM factors leads to the formation of
dysplastic lesions that spontaneously reverse upon doxycycline
withdrawal, chronic induction results in the formation not
only of well-differentiated teratomas but also of tumor-
like undifferentiated tissues unresponsive to doxycycline
withdrawal (Hobbs and Polo, 2014; Ohnishi et al., 2014a,b).
The manifestation of tumorigenesis in the context of in vivo
nuclear reprogramming might merely reflect the shared roles of
transcription factors and chromatin regulators in mediating cell
state transitions, which correspondingly occur during induced
pluripotency and during the conversion of differentiated cells
into a tumorigenic state (Suvà et al., 2013; Tung and Knoepfler,
2015). However, while gene methylation was found to be
significantly perturbed in the so-called partially reprogrammed
transformed cells (PRTCs), and the genomic imprints of
PRTCs appeared unstable in the absence of permanent genetic
aberrations, it should be noted that such epigenetic features
were distinguishable from those in sporadic carcinomas. Thus,
whereas DNA hypermethylation at proximal promoter regions
was not evident, global DNAmethylation levels were comparable
with those of normal cells, indicating a lack of both site-specific
DNA hypermethylation and global DNA hypomethylation
that characterizes most human carcinomas (Ohnishi et al.,
2014a,b). Cellular reprogramming-associated generation of
undifferentiated dysplastic cells in various tissues notably
resembled those of Wilms’ tumors, the most common pediatric
kidney cancer, as well as those of pediatric blastomas such
as hepatoblastomas and pancreatoblastomas. These findings
support the notion that deleterious nuclear reprogramming-
associated epigenetic reorganization in certain organs and tissues
at discrete developmental stages can contribute to the initiation
and progression of pediatric tumors.

Pathological Versions of Nuclear
Reprogramming
The occurrence of PRTCs does not in itself provide sufficient
evidence that de-differentiation is involved in cancer
development. The number and complexity of the molecular
events required for de novo generation of stem cell-like cells
(e.g., chromatin decondensation, loss of differentiation marks,
transcriptional activation of stemness genes, suppression of
competing cell lineages factors, among others) is considered to
intrinsically prevent the initiation of pathological versions of
nuclear reprogramming-like processes in differentiated tissues,
including those of tumors (Pasque et al., 2010, 2011; Cantone
and Fisher, 2013; Brooks et al., 2015). Along this line, OSKM-
derived PRTCs have been viewed as mechanistically irrelevant
for most common sporadic cancers that afflict the elderly,
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where developmental biology is not commonly considered.
Nevertheless, in vivo nuclear reprogramming-related PRTCs
might form the basis of a new model of epigenetic tumorigenesis
when looked at in depth.

Upon reactivation of OSKM factors, PRTCs fully reprogram
into iPSCs, suggesting that the reorganization of epigenetic
landscapes associated with chronic, unresolved nuclear
reprogramming is adequate to generate epigenetically
heritable cancer-like phenotypes. If pathological nuclear
reprogramming reflects a cancer initiation phenomenon
driven purely by epigenetic mechanisms (Goding et al., 2014;
Menendez and Alarcón, 2014; Menendez et al., 2014), a testable
prediction would be that those cancers in which epigenome
rewiring establishes a permissive milieu for carcinogenesis
but requiring additional cooperating mutations for complete
malignant transformation, should behave as accelerated
models of oncogenesis. In contrast to sporadic forms, familial
paragangliomas associated with mutations in the succinate
dehydrogenase complex and the consequent accumulation of
the histone demethylase (HDM) inhibitor succinate, which
establishes a hypermethylator phenotype and the epigenetic
silencing of key differentiation genes (Letouzé et al., 2013; Yang
and Pollard, 2013), tend to present at a younger age (Lips et al.,
2006; Chetty, 2010). Patients with gliomas with gain-of-function
isocitrate dehydrogenase (IDH) mutations generating the
HDM oncometabolite/inhibitor 2-hydroxyglutarate (2HG),
which also establishes a hypermethylator phenotype that
stabilizes undifferentiated cellular states that may be targetable
and expanded later by subsequent transforming mutations,
are, on average, several years younger that those with wild-
type IDH gliomas (Bleeker et al., 2010; Cohen et al., 2013;
Popov et al., 2013; Dimitrov et al., 2015). Moreover, we have
recently identified how archetypal oncometabolites such as
2HG, by endowing cells with epigenetic states refractory
to differentiation, considerably enhances the global kinetic
efficiency of OSKM-driven nuclear reprogramming processes to
generate cancer stem cell (CSC)-like states de novo (Menendez
and Alarcón, 2016; Menendez et al., 2016). Altogether, these
observations strongly support the notion that pathological
versions of nuclear reprogramming could operate as primary
and causative mechanisms of cancer-associated epigenetic
rewiring.

Environmental Dedifferentiation of
Committed Cells into Stem Cell-Like
States In vivo
There is accumulating robust evidence showing that non-stem
cell compartments might be sources of newly generated pools
of cells sharing stem-like characteristics with endogenous, adult
stem cell counterparts in the same organ. The Weinberg group
originally addressed this question to demonstrate that stem-like
cellular states might arise de novo from more differentiated cell
types within the human mammary gland (Chaffer et al., 2011).
Moreover, a rare subpopulation of somatic cells of human breast
tissue was found to be poised to actively transcribe plasticity
and pluripotency markers such as Oct4, Sox2, and Nanog,

and to acquire a plastic cell state sensitive to environmental
programming (Roy et al., 2013).

Fully committed airway epithelial cells have been shown
to revert to stable and functional stem cell-like states in vivo
and, more importantly, to function as well as their endogenous
adult stem cell counterparts in repairing epithelial injury (Tata
et al., 2013). Upon crypt damage, Dll1+ intestinal secretory
progenitor cells exhibit plasticity by regaining stemness (van
Es et al., 2012). Additionally, the Wnt target gene leucine-
rich-repeat containing G-protein-coupled receptor (Lgr5), which
marks actively dividing stem cells in Wnt-driven, self-renewing
tissues such as small intestine and colon, stomach and hair
follicles (Barker et al., 2008), can be induced to form small Lgr5+

liver stem-like cells capable of generating hepatocytes and bile
ducts in vivo (Huch et al., 2013). Upon damage, committed cells
within tissues that have a low rate of spontaneous proliferation
have the capacity to generate Lgr5+ stem cell-like states de novo,
which are commonly observed in actively self-renewing tissues
(Barker et al., 2008; Huch et al., 2013).

The demonstration that aberrant termination of OSKM-
induced reprogramming in vivo results in tumor development
also revealed the unexpected activation of Lgr5 (Ohnishi
et al., 2014a). Since Lgr5 expression is not present in iPSCs,
and is neither transiently expressed during reprogramming of
fibroblasts nor in in vitro generated partially reprogrammed cells,
its presence in OSKM-driven tumorigenesis raised important
concerns regarding the relevance of this model as a proof-
of-concept for epigenetics-driven cancer development in vivo
(Hobbs and Polo, 2014; Ohnishi et al., 2014b). However, from
a reparative/regenerative perspective, it is tempting to suggest
that aberrantly terminated cellular reprogramming in vivo
recapitulates the natural functioning of a host genetic program
for resistance (e.g., regeneration of Lgr5+ stem-like cells from
Lgr5− cell populations) that is activated upon damage (Mosteiro
et al., 2016).

AGING AND CANCER: TWO SIDES OF
REPARATIVE CELLULAR
REPROGRAMMING

In close analogy to classical descriptions of nuclear
reprogramming as a key regenerative mechanism in plants,
invertebrates, teleost fishes, and amphibians (Brockes and
Kumar, 2002; Jopling et al., 2011; Sugimoto et al., 2011), we are
beginning to appreciate that the capacity of adult differentiated
cells to generate transiently active stem-like cellular states
challenges the commonly held belief that tissue-specific adult
stem cells are the sole contributors to self-cell therapy (Desai
and Krasnow, 2013). By functionally substituting tissue-specific
stem cells, transiently reprogrammed mature committed cells
might have a general role in adult tissue repair by operating
in a host program for resistance to damage and other tissue
adversities. In vivo reprogramming phenomena and consequent
epigenetic plasticity, however, might also instigate tumor cell-like
states by participating in the generation and maintenance of
the versatility—aberrant differentiation and transdifferentiation
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capacities—of the CSC-like cellular states (Friedmann-Morvinski
and Verma, 2014).

Cells with non-plastic chromatin will be less likely to undergo
malignant transformation, but they will also be less able to
respond to danger signals and, consequently, they will be
more prone to degeneration. In this regard, the cyclic and
transient expression of reprogramming factors in vivo has
recently been shown to increase lifespan in a murine model
of premature aging by remodeling the chromatin landscape
(Ocampo et al., 2016). Conversely, cells with more plastic
chromatin will be more adaptable in the face of cell intrinsic
or microenvironmental changes, but they might also provide
“molecular power” on a tissue’s susceptibility to undergo
aging-associated degeneration or cancer-associated malignant
transformation. Accordingly, chronic injury and aging have
been shown to render tissues highly permissive to in vivo
reprogramming (Mosteiro et al., 2016). The goal now is to define
the key players that are involved in regulating cellular plasticity,
both during physiological in vivo reprogramming, leading to
tissue rejuvenation, and during pathological conditions, where
increased plasticity-related tissue dedifferentiation associates
with cancer (Marión et al., 2017).

Epigenetic Plasticity and the Archetypal
Pro-Inflammatory Cytokine IL-6
We are beginning to appreciate the existence of a common
mechanism for epigenetic plasticity regulated by inflammatory
signaling. However, while it is widely accepted that chronic
inflammation may drive pathological changes in cell phenotypes,
whether an inflammatory signal that is short-term and
physiological can provide a molecular scenario capable of
driving self-cell therapy for resistance to damage and disease
remains a matter of discussion. The archetypal pro-inflammatory
cytokine IL-6, which dictates the transition from acute to chronic
inflammation, might illustrate how inflammation could have
both a beneficial and a harmful role in aging and cancer (Scheller
et al., 2011; Rincon, 2012; Hunter and Jones, 2015; Mauer et al.,
2015).

Somatic cells can detect PAMPs or DAMPs via PRRs
such as TLRs, the activation of which triggers the generation
and release of chemokines and cytokines (e.g., IL-6) that
contribute to inflammatory response (Kapetanovic et al., 2015;
Toubai et al., 2016). Such an acute activation of inflammatory
response provokes global changes in epigenetic modifiers,
favoring an open chromatin configuration and increasing
epigenetic plasticity. This temporary reprogramming would
replenish damaged, diseased, and lost cells in tissues challenged
with danger signals. The notion that inflammatory signaling
might innately operate to boost the production of stem cell-
like cellular states has been supported by the discovery that
IL-6 plays an early yet critical role during generation of
induced pluripotency. IL-6 is involved in reprogramming to
pluripotency during embryogenesis (Zolti et al., 1991; Austgulen
et al., 1995). Using non-dividing heterokaryons (murine ESCs
fused to human fibroblasts) in which reprogramming toward
pluripotency is efficient and rapid, the (undetectable) level of
IL-6 in ESCs dramatically increases 50-fold upon during nuclear

reprogramming (Brady et al., 2013). Moreover, exogenous
addition of IL-6 can functionally replace the oncogenic c-Myc
component of the Yamanaka cocktail during the generation of
iPSCs (Brady et al., 2013).

At sites of transient inflammation, acute resolution of
inflammatory response mediated by IL-6 (and downstream
activation of NF-κB) could be accompanied by beneficial
tissue regeneration (Cressman et al., 1996; Taub et al.,
1999; Lasry and Ben-Neriah, 2015; Chiche et al., 2017), or
reparative transdifferentiation (e.g., conversion of fibroblasts into
endothelial cells to increase microvascular density in response
to myocardial infarction-induced ischemic injury; Cooke et al.,
2015; Sayed et al., 2015). At sites of chronic inflammation, if the
culmination of transient reprogramming to stem-like epigenetic
states is not accompanied by a committed re-acquisition of
the original or alternative (but beneficial) differentiated cell
fate, unrestrained nuclear reprogramming-driven tissue plasticity
might impair the repair or replacement of damaged cells and at
the same time generate cancer-like cellular states.

Chronic inflammation-related reduced regenerative capacity
might be accompanied by permanent changes in target tissue
cells involving either their locking in unresolved stem-like
states or their transdifferentiation. Thus, while the IL-6-enriched
microenvironment of the ≈20% of tumors that are associated
with inflammation (e.g., chronic ulcerative colitis-associated
colon cancer; Coussens and Werb, 2002; Grivennikov et al.,
2010; Ben-Neriah and Karin, 2011; Balkwill and Mantovani,
2012) seems to have a dominant role in facilitating tumorigenesis
with expansion and maintenance of CSC-like cells, chronic
esophagitis caused by gastroesophageal reflux disease can
promote transdifferentiation of stratified squamous esophageal
epithelium into small intestine-like columnar epithelium (i.e.,
Barrett’s esophagus), which might later be the site of malignant
transformation (Kuilman et al., 2008; Vega et al., 2014; Kapoor
et al., 2015; Wang and Souza, 2016). Furthermore, tumors that
do not arise because of chronic inflammation appear to later
develop an IL-6-rich microenvironment, which supports tumor
progression and metastasis. Thus, an IL-6-driven inflammatory
feedback loop is a core epigenetic regulator of the dynamic
equilibrium that converts non-stem cancer cells into CSC-
like cells, and generates tumor heterogeneity in genetically
distinct cancer cells (Iliopoulos et al., 2011; Korkaya et al.,
2011, 2012; Krishnamurthy et al., 2014). Indeed, IL-6/NF-κB-
related signaling loops, which are recognized to lead to expansion
of CSC-like populations, are reminiscent to those activated
during chronic inflammation and wound healing, and provide a
mechanistic basis for the known link between inflammation and
the promotion of aggressive cancer phenotypes.

Senescence-Associated Inflammatory
Signaling (SAIS): From Organism-Wide to
Local Stress Response and
Para-Inflammation
The proposal that activation of in vivo cellular reprogramming
is a host genetic program for resistance to damage and disease
that could promote either “complete healing” of injured/diseased
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tissue or “incomplete healing” of old or cancerous tissues must
be compatible with the accepted hypothesis that the degenerative
and hyperplastic pathologies of aging, the most deadly of which is
cancer, are linked by a common biological phenomenon: cellular
senescence.

Cellular senescence is a persistent damage response in cells
experiencing unresolved or irreparable stress for a sustained
period of time. It has been causally linked to a wide variety
of processes including wound healing, aging, tumor prevention,
and tumor progression (Rodier and Campisi, 2011; Campisi,
2013; Tchkonia et al., 2013; Muñoz-Espín and Serrano, 2014;
Lasry and Ben-Neriah, 2015). The multi-faceted capabilities
of senescent cells involving both beneficial (tissue repair
and tumor suppression) and deleterious (aging and tumor
promotion) effects on organismal health can be viewed as
consequences of senescence-associated inflammatory signaling
(SAIS). Despite their loss of proliferative potential, senescent
cells are metabolically and transcriptionally active and express
a vast number of secreted proteins. With progressing age, an
organism-wide increase of the senescence-associated secretory
phenotype (SASP) ensues, which comprises a range of different
proteins that are well-known players in aging and age-related
diseases, including matrix-remodeling metalloproteases such as
MMP3, growth factors such as HGF and TGFβ, inflammatory
chemokines such as CCL2 and CLL11, and prominent pro-
inflammatory cytokines such as IL1α/β, IL-6, and IL-8 (Coppé
et al., 2008; Kuilman and Peeper, 2009; Orjalo et al., 2009; Rodier
et al., 2009; Gross et al., 2012; Acosta et al., 2013). While the
SASP of a cell varies according to tissue type and stressor, its
ability to maintain not only the senescent cell itself but also to
propagate the stress response and impact the microenvironment
through communication with neighboring cells, can lead to
organism-wide phenotypes via systemic inflammation that is
largely dependent on the core inflammatory cytokines IL-6
and IL-8.

The senescence inflammatory response (SIR) is a second
type of inflammation activated in senescent cells (Pribluda
et al., 2013; Aran et al., 2016). Unlike the SASP, SIR is
characterized by a small number of secreted factors and it is not
accompanied by recruitment of immune cells into the senescent
tissue. Intriguingly, SIR has a weak association with the NF-
κB signaling pathway, but mostly comprises innate immunity
proteins including members of the TLR activation pathway,
which has an important role in tissue homeostasis by regulating
inflammatory and tissue repair responses to injury (Rakoff-
Nahoum and Medzhitov, 2009). Most likely, SIR has a largely
epithelial-autonomous role and seems to contribute to tissue
protective senescence and to counteract tumor progression by
cooperating with bona fide tumor suppressor genes such as p53
(Pribluda et al., 2013; Aran et al., 2016). Inflammatory processes
such as transflammation and SIR might therefore be viewed as
intermediate, tissue-level stress responses and para-inflammatory
states, respectively, occurring between homeostasis and overt
inflammation (Medzhitov, 2008; Chovatiya and Medzhitov,
2014). Accordingly, whereas transflammation is triggered by
extrinsic assaults such as pathogens or tissue injuries, SIR seems
to be prompted by tissue-intrinsic assaults such as DNA damage.

SAIS: Connecting the Two Sides of
Reparative Cellular Reprogramming
SAIS can be integrated with the continuum of the
inflammatory spectrum that ranges from homeostatic states to
(transflammation-like) stress responses (NF-κB-dependent and
SIR-like), para-inflammation states, and finally overt (SASP-like)
inflammation. Local stress and para-inflammation responses
to extrinsic and intrinsic insults might arise first to respond
to tissue stress-related danger signals (PAMPs and DAMPs)
or to chronic tissue malfunction (DNA damage, senescence),
later evolving into more systemic increases in the expression
of major SASP factors, an organism-wide senescent phenotype
that is accompanied by either immune clearance of senescent
cells or attraction of inflammatory cells. Such multi-faceted,
temporal organization of inflammatory phenotypes functionally
converge into so-called “inflammaging,” defined as the low but
chronic levels of inflammation associated with many protracted
pathological conditions (e.g., atherosclerosis, diabetes mellitus,
autoimmune diseases, and neurodegeneration), which are
thought to drive age-related decline in function (Franceschi and
Campisi, 2014). The causal role of SAIS as a pivotal driver of
the age-related decline in tissue homeostasis is evidenced by: (a)
increased expression of genes linked to immune responses and
inflammation in aging tissues; (b) chronic activation of NF-κB;
(c) organism-wide elevated levels of major SASP factors such
as IL-6 in a number of models of physiological and accelerated
aging (Baker et al., 2008; Gregg et al., 2012; Wiley et al., 2016);
and (d) a prolonged healthspan and extension in lifespan upon
semigenetic clearance or pharmacological/directed elimination
of senescent cells with so-called senolytic drugs (Baker et al.,
2008, 2011, 2016; Zhu et al., 2015; Chang et al., 2016; Yosef et al.,
2016).

The temporal continuum of SAIS closely relates to the
well-recognized antagonistic pleiotropy of senescence (Campisi,
2005). Senescence can be beneficial early in life or under
transient conditions of injury. For instance, senescence promotes
correct patterning of the embryo (Muñoz-Espín et al., 2013;
Storer et al., 2013) and, after development, SAIS can be
beneficial by aiding in wound healing and limiting fibrosis
following acute damage (Krizhanovsky et al., 2008; Demaria
et al., 2014). However, it is later in life when SAIS, after
crossing arbitrary thresholds at both the cell-autonomous
and non-cell autonomous levels, is thought to be responsible
for many aging-related disorders. On the assumption that
terminally differentiated cells can transiently regain core stem
cell-like functional properties, one could hypothesize that
the beneficial or deleterious paths ensuing upon cellular
reprogramming-like cycles of tissue maintenance might be
dictated by cell-autonomous and non-cell autonomous SAIS
capable of making tissue cells not only transiently exceed
“reprogramming barriers,” but also to re-acquire the original
or alternative differentiated cell fate, in a difficult or easier
manner. The degree of deviation from the homeostatic state
might establish biological constraints delineating a multiple
thresholding algorithm that isolates zones of beneficial vs.
deleterious SAIS-regulated reparative cellular reprogramming
(Figure 2).
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FIGURE 2 | Senescence-associated inflammatory signaling (SAIS)-regulated in vivo reprogramming: a threshold model of epigenetic plasticity in

aging and cancer. The degree of senescence/inflammation deviation from the homeostatic state delineates a thresholding algorithm distinguishing beneficial vs.

deleterious effects of in vivo reprogramming. First, transient activation of innate immunity and/or SASP components (e.g., IL-6) might facilitate reparative cellular

reprogramming in response to acute inflammatory events. Second, NFκB-dependent and NFκB-independent (e.g., SIR) para-inflammation switches might promote a

long-lasting but reversible refractoriness to reparative cellular reprogramming. Third, chronic SASP might lock cells into highly plastic epigenetic states disabled for

reparative differentiation capacities.

Transflammation: Innate Immunity-Facilitated

Reparative Cellular Reprogramming
From a cell-autonomous perspective, transflammation involving
endogenous activation of innate immunity to PAMPs or DAMPs
might be sufficient to modify the expression or activity of
epigenetic modifiers to generate phenotypic fluidity for cellular
responses to pathogenesis or injury (Cooke et al., 2014). If acutely
resolved, such a temporal stress response-inflammatory process
might allow temporary cell reprogramming and re-acquisition
of the original or alternative cell fate in response to specific
environmental cues, leading to beneficial tissue rejuvenation
or transdifferentiation, respectively. Transflammation-driven
reparative cellular reprogramming, which is expected to mostly
involve increases in epigenetic plasticity to allow functional
malleability without the loss in cellular identity, might operate
as a bona fide protective response to challenge and eliminate
pathogens and also to biophysical tissue damage.

The above scenario, although lacking rigorous experimental
validation, is strongly supported by the recent uncoupling
of rejuvenation from dedifferentiation associated with

OSKM-driven reprogramming of somatic cells. First, brief
exposure to OSKM factors, allowing cells to transiently transition
through a plastic intermediate state without the complete loss
of cellular identity, allows indirect lineage conversion of human
fibroblasts to angioblast-like cells with reparative potential
in ischemic pathologies (Kurian et al., 2013). Second, at the
organism level, the cyclic and short-term expression of OSKM
factors can transiently revert premature aging phenotypes
including DNA damage responses and senescence-associated
features without involving the complete loss of cellular identity
(Ocampo et al., 2016).

Para-Inflammation Switches: Loss of Cellular

Resilience without Tissue Repair and Rejuvenation
Since unrestricted changes in cell identity may also predispose
to loss of tissue homeostasis, it is reasonable to suggest that
the optimal zone for innate immunity-facilitated cellular
reprogramming to operate as a reparative mechanism will
be small. Whereas the lower threshold is expected to be
greater than the baseline inflammatory value arising from
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disturbed/perturbed physiological homeostasis, a short arbitrary
“inflammatory distance” to the upper threshold should ensure
that protective inflammatory repair processes might become
pathogenic by altering the epigenetic states of damaged/diseased
tissue cells. The narrow nature of the optimal zone for
transflammation-driven reparative cellular reprogramming
should have two major consequences. First, exaggerated or
uncontrolled responses to PAMPs and DAMPs resulting in
acute systemic hyperinflammation or repeated, overshooting of
repair will overcome the upper threshold of the optimal zone of
innate immunity-facilitated reparative epigenetic plasticity, thus
impeding restoration of tissue homeostasis but eliciting collateral
tissue damage (e.g., fibrosis). Secondly, the inability to generate
new pools of stem-like cells, for instance, due to chronic baseline
inflammatory scenarios exceeding the upper threshold, might
hamper a crucial source of self-repair.

An unresolved scenario of continuous cell stress/tissue injury
accompanied by inappropriate resolution of endogenous (e.g.,
metabolic and genomic damage) or exogenous (e.g., pathogens,
biophysical stresses) assaults will associate with the activation
of senescence-associated para-inflammatory states. The baseline
SAIS level of such states will exceed the upper inflammation
threshold and will be characterized by a progressive loss of
cellular resilience that, however, will not be accompanied by
rejuvenation-like phenomena. These para-inflammatory states,
which can originate in a NF-κB-independent cell-autonomous
manner (e.g., SIR) or in a more systemic NF-κB-dependent
manner (Soria-Valles et al., 2016), would operate as senescence-
inflammatory friend-or-foe switches that, while originally
contributing to tissue protective senescence and counteracting
tumor progression, can also drive reprogramming-refractory
aging phenotypes and cancer-prone epithelial tissue (Figure 2).

Some testable predictions of the switching nature of SAIS
arising from para-inflammatory states include: (a) the initial
ability of para-inflammation SAIS to suppress the potential of
stressed cells acquiring a malignant state will be lost in response
to certain environmental and genetic clues (e.g., loss of tumor
suppressor genes); and (b) the reduction in SAISmight force such
para-inflammatory aging and malignant states to return to an
optimal zone of transient reprogramming for rejuvenation while
depleting cancer aggressiveness. Accordingly, aberrant NFκB
activation is known to impair somatic cell reprogramming and
to drive the aging phenotype while also promoting the expansion
of CSCs via cell- and non-cell autonomous mechanisms (Colotta
et al., 2009; Shostak and Chariot, 2011; Yamamoto et al., 2013;
Terlizzi et al., 2014; Soria-Valles et al., 2016). NFκB inhibition,
which is a potential therapeutic strategy to eliminate CSCs,
has been shown to delay DNA damage-induced senescence and
aging in mice and to significantly increase the reprogramming
efficiency of fibroblasts from patients with progeria syndrome
as well as from normal aged individuals (Tilstra et al., 2012;
Soria-Valles et al., 2015a,b). These findings lend weight to the
notion that targeting NFκB-related SAIS might modify the
thresholds for reparative cellular reprogramming. Moreover,
whereas para-inflammation-associated SIR is widely prevalent
in cancers harboring mutations in p53 (Aran et al., 2016), the
capacity for non-steroidal anti-inflammatory drugs (NSAIDs)

such as aspirin to exert protective effects against several cancers
(e.g., colorectal, pancreatic, lung, and breast; Rothwell et al., 2011;
Fraser et al., 2014; Streicher et al., 2014) might be related to their
ability to suppress key drivers of SIR in poor prognosis, para-
inflammated tumors (Aran et al., 2016). Interestingly, NSAIDs
can enhance cellular reprogramming even in the absence of Sox2
and c-Myc (Yang et al., 2011), thus providing further evidence
for the thresholding capacity of inflammation-epigenetic axes to
determine the optimal zones of cellular reprogramming-driven
phenotypic plasticity.

Chronic SASP and Loss of Tissue Homeostasis: The

“Stem-Lock” Zone
From a non-cell autonomous perspective, if the loss of
differentiation features following reprogramming is not
accompanied by re-acquisition of the original or alternative
differentiated cell fate, the resulting tissue plasticity might impair
the repair or replacement of damaged cells. The ability of SASP-
associated pro-inflammatory cytokines to regulate stemness and
nuclear reprogramming raises the notion that a SASP-impaired
local environment could interfere with tissue rejuvenation by
imposing the so-called “stem-lock” state (de Keizer, 2017).
Chronic inflammatory conditions via exposure to IL-1, which
normally functions as a key “emergency” signal and a master
regulator of SASP by inducing downstream effectors such as IL-6,
has been shown to impair tissue homeostasis and to induce an
aged appearance of the hematopoietic system by restricting stem
cell differentiation (Pietras et al., 2016). Moreover, biological
conditions linked to chronic senescence, such as tissue injury
or aging, favor in vivo OSKM-driven reprogramming via
enhanced production of IL-6 as shown by the appearance
of Nanog-positive cells in the vicinity of senescence areas
(Mosteiro et al., 2016).

While counterintuitive, the ability of SASP factors including
IL-6 to transiently create a permissive environment for in
vivo reprogramming capable of inducing cellular plasticity
and tissue regeneration (Ritschka et al., 2017), a prolonged
promotion of such progenerative response might reduce tissue
rejuvenation and promote aging by self-enhancing futile cycles of
SASP/IL-6-driven reparative cellular reprogramming. Compared
with young tissues containing few senescent cells where
transient SAIS might cause temporary reprogramming and
differentiation/proliferation to replenish cells, the prolonged
accumulation of senescent cells in tissues that are old or under
high levels of stress (e.g., following medical procedures such as
chemotherapy) might be accompanied by a defective clearance
of damaged, senescent cells, which can promote further SASP
accumulation. A situation of chronic SASP secretion might not
only counter the continued regenerative stimuli by promoting
cell-intrinsic senescence arrest in single damaged cells but also
paradoxically impose a permanent, locked gain of stem cell-
like cellular states with blocked differentiation capabilities in
surrounding cells (Figure 2). Such a scenario of prolonged
survival of senescent cells and enhanced phenotypic plasticity
of neighboring cells would drive a loss of tissue homeostasis
by impeding the reparative replenishment of damaged cells. As
mentioned earlier, core SASP factors such as IL-6 can mimic the
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effects of in vivo reprogramming (Mosteiro et al., 2016), thereby
favoring the emergence of CSC-like cellular states in neighboring
cancer cells (Cahu et al., 2012; Chang et al., 2015). Thus,
chronic SASP-driven loss of tissue homeostasis might go hand-
in-hand with an accelerated generation of trade-off forms of
undifferentiated types of cells with CSC-like states. Accordingly,
the protracted presence of senescent cells that can promote local
and systemic SASP in stressed normal tissue has recently been
shown to cause and exacerbate short- and long-term effects of
genotoxic stresses ranging from weakness and fatigue in skeletal
muscle to CSC-related cancer recurrence (Demaria et al., 2017).

SENESCENCE-INFLAMMATORY
REGULATION OF REPARATIVE CELLULAR
REPROGRAMMING IN AGING AND
CANCER: A THRESHOLD MODEL OF
EPIGENETIC PLASTICITY

Nuclear reprogramming-like phenomena inducing transient
epigenetic plasticity followed by cell differentiation and
replacement of damaged/diseased cells may constitute a
previously unrecognized route through which human tissue
responds to injury, stress, and disease. This may lead to either

acutely resolved tissue repair (e.g., transient gain of epigenetic
plasticity upon acute transflammation events) or, alternatively, to
undesirable, chronically unresolved tissue damage (e.g., lasting
gain of epigenetic plasticity upon chronic SASP responses).
Aging and cancer might thus be viewed as the consequence of an
unrestricted/unresolved stimulation of futile, non-reparative in
vivo reprogramming-driven epigenetic plasticity in response to
chronic, but reversible, senescence-inflammatory signaling.

We propose that the regulation of cellular
reprogramming/differentiation cycles of tissue repair by the
cell-autonomous/non-cell autonomous mechanisms that
initiate and propagate SAIS might suffice to outline a threshold
model of epigenetic plasticity in aging and cancer. A better
understanding of the biological constraints that determine how
the map of SAIS-regulated reparative in vivo reprogramming is
dynamically thresholded may provide therapeutic approaches
for aging and cancer (Figure 3). A first open question is whether
“epigenetic bursts” of innate immunity-facilitated reparative
epigenetic plasticity operate as physiological mimickers of the
transient amelioration of tissue functions without inducing
complete dedifferentiation, as apparently occurs upon short-
term induction of OSKM factors in animal models (Mahmoudi
and Brunet, 2016; Ocampo et al., 2016). In such a scenario,
the discovery and validation of small molecules, more likely

FIGURE 3 | Reparative reprogramming therapeutics: enhancing the body’s self-cell therapy for resistance to damage and disease. A cellular

reprogramming-centered view of epigenetic plasticity as a fundamental dimension of a tissue’s capacity to undergo successful repair may provide new therapeutic

approaches for aging and cancer. (1) Epigenetic modifiers: small molecules capable of mimicking the transient amelioration of tissue functions occurring upon

short-term induction of OSKM-induced nuclear reprogramming (Mahmoudi and Brunet, 2016; Ocampo et al., 2016) might increase epigenetic plasticity and to

enhance regeneration in aging tissues; (2) anti-inflammatory drugs: NFκB-targeting drugs and commonly employed NSAIDs might help reduce some aging- and

cancer-promoting inflammatory feedback loops to reestablish the functioning of reparative reprogramming; (3) IL-6-targeting and senolytic agents: IL-6 blockade and

senescent cell ablation might help unlock the chronic epigenetic plasticity of SASP-damaged tissues to successfully achieve tissue rejuvenation if accompanied by

reparative differentiation phenomena.
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epigenetic modifiers, capable of widening or re-establishing
the optimal zone of physiological in vivo reprogramming
would be expected to increase epigenetic plasticity and to
enhance regeneration in aging tissues. A second open question
is whether commonly employed NSAIDs (e.g., aspirin, sulindac
derivatives; Chan and Detering, 2013; Gurpinar et al., 2014)
and NFκB-targeting drugs (e.g., bortezomib, metformin;
Hirsch et al., 2013; Zhou et al., 2015) can reestablish stress
response-inflammatory thresholds compatible with reparative
reprogramming while eliminating aging- and cancer-promoting
inflammatory feedback loops. Finally, a third open question
concerns the clarification of how senescent cells operate as bona
fide sources of in vivo reprogramming. The discovery of the first
generation of senolytic drugs (Kirkland and Tchkonia, 2015; Zhu
et al., 2015, 2016; Chang et al., 2016) along with therapeutics
targeting core SASP components such as IL-6 (Krishnamurthy
et al., 2014; Kim et al., 2015; Heo et al., 2016; Zhong et al., 2016)
might be viewed as an obvious therapeutic avenue to stimulate
in vivo reprogramming-driven tissue rejuvenation. However, it
should be acknowledged that an ideal anti-aging therapy would
need not only to “unlock” the chronic epigenetic plasticity of
SASP-damaged tissues, but also to stimulate differentiation of
stem cell-like states to successfully achieve tissue rejuvenation
(de Keizer, 2017). Nonetheless, it would be interesting to evaluate
whether, beyond IL-6 blockade, senescent cell ablation might
also ameliorate the efficacy of cancer treatment modalities by
impeding the replenishment of treatment-refractory CSCs that
might de novo arise by cellular reprogramming-like phenomena
of non-CSC tumor counterparts.

The consideration of a cellular reprogramming-centered view
of epigenetic plasticity as a fundamental element of a tissue’s

capacity to undergo successful repair, aging degeneration or
malignant transformation should provide stochastic insights
into the current deterministic genetic paradigm for aging-
related diseases, thereby increasing the spectrum of therapeutic
approaches for physiological aging and cancer.
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