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Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism

of repair after brain injury by forming a biobridge that facilitates biodistribution of

host cells from a neurogenic niche to the area of injury. We have observed the

biobridge in an area between the subventricular zone and the injured cortex using

immunohistochemistry and laser capture. Cells in the biobridge express high levels of

extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized

with a trail of MSCs graft. The transplanted stem cells then become almost undetectable,

being replaced by newly recruited host cells. This stem cell-paved biobridge provides

support for distal migration of host cells from the subventricular zone to the site of

injury. Biobridge formation by transplanted stem cells seems to have a fundamental

role in initiating endogenous repair processes. Two major stem cell-mediated repair

mechanisms have been proposed thus far: direct cell replacement by transplanted grafts

and bystander effects through the secretion of trophic factors including fibroblast growth

factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin,

and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking

observation of biobridge formation by transplanted stem cells represents a novel

mechanism for stem cell mediated brain repair. Future studies on graft-host interaction

will likely establish biobridge formation as a fundamental mechanism underlying

therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe

and efficient therapies not only for traumatic brain injury but also for other neurological

disorders. The aim of this review is to hypothetically extend concepts related to the

formation of biobridges in other central nervous system disorders.
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AVANT GARDE MECHANISM OF TRANSPLANTED STEM CELLS
FOR BRAIN REPAIR

Stem cells provide a unique opportunity to understand fundamental cell biology processes and
for developing new therapeutic strategies to cure neurological diseases (Yasuhara et al., 2006,
2008; Tajiri et al., 2012). Despite recent progress in the field, mechanisms underlying proven
therapeutic effects of stem cells are still poorly understood. Two major schools of discipline can
be recognized regarding stem cell mediated brain repair mechanisms that follow degenerative
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disorders (Borlongan et al., 2004; Pastori et al., 2008; Tajiri et al.,
2014). The first supports the concept of cell replacement, where
dead or dying cells are directly replaced by transplanted stem
cells. The second argues in favor of indirect rescue of the damaged
brain parenchyma by transplanted stem cells (bystander effects)
through secretion of growth factors (Lee et al., 2007; Redmond
et al., 2007).

Stem cells self-renew and differentiate into multiple lineages
(Hong et al., 2011). They exist at early developmental stages
and also throughout adulthood (Ma et al., 2010), and have
been shown to participate in homeostasis regulation (Kim et al.,
2011). Furthermore, stem cells are a fundamental component
of endogenous repair mechanisms and their transplantation
into injured organs is associated with therapeutic benefits
(Mazzocchi-Jones et al., 2009; Hargus et al., 2010; Lee et al.,
2010; Andres et al., 2011; Borlongan, 2011; Barha et al., 2011;
Jaskelioff et al., 2011; Liu et al., 2011; Mezey, 2011; Wang
et al., 2011; Yasuda et al., 2011). The adult brain possesses two
major stem cell niches: the subventricular zone (SVZ) and the
subgranular zone, located the wall of the lateral ventricle and
in the dentate gyrus (DG) of the hippocampus (Carlén et al.,
2009; Sanai et al., 2011), respectively. Quiescent neural stem cells
(NSCs) have been described in other brain regions (Robel et al.,
2011). The discovery that stem cells are activated after brain
injury represents a landmark finding in the search for effective
therapies for brain diseases, and has triggered the exploration of
novel promising approaches in regenerative medicine (Yasuhara
et al., 2006; Mazzocchi-Jones et al., 2009; Hargus et al., 2010; Lee
et al., 2010; Andres et al., 2011; Barha et al., 2011; Borlongan,
2011; Jaskelioff et al., 2011; Liu et al., 2011; Mezey, 2011; Wang
et al., 2011; Yasuda et al., 2011; Tajiri et al., 2012). This research
allowed for the translation of new stem cell biology concepts into
clinical trials designed to treat brain disorders (Pollock et al.,
2006; Yasuhara et al., 2009; Seol et al., 2011).

Despite substantial progress in the development of clinically-
relevant therapeutic strategies, studies aimed at understanding
the mechanisms underlying stem cell-mediated brain repair
are still needed to develop safer and more effective therapies.
Our group recently showed improvement of traumatic brain
injury (TBI) outcomes in rats after intracerebral transplantation
of notch-induced human bone marrow-derived mesenchymal
stromal cells (referred to as SB623 cells, supplied by SanBio
Inc.; Tajiri et al., 2013, 2014; Duncan et al., 2015). Through the
investigation of SB623 cells’ mechanism of action, our study
corroborated the beneficial effects of stem cell transplantation
after TBI and provided support for a groundbreaking new
stem cell mediated repair mechanism in the brain termed
“biobridge.” If was noted that transplanted stem cells can form
a “biobridge” connecting the neurogenic niche to the site of brain
injury, allowing distal migration of host neurogenic cells and
initiation of endogenous repair mechanisms (Tajiri et al., 2014;
see Figure 1, Top). In this paper, characteristics and properties
of these stem cell paved biobridges are discussed, specifically in
regards to the distinct biobridge-mediated mechanism of repair
in rats subjected to TBI. Importantly, the clinical significance of
this discovery is discussed, andwe argue in favor of characterizing
this unique stem cell-mediated brain repair mechanism in search

of much-needed efficient treatments for neurological disorders
and brain injury.

FORMATION OF “BIOBRIDGES” IN
EXPERIMENTAL MODELS OF TBI BY
STEM CELLS

After TBI surgery, rats were transplanted intracerebrally with
SB623 cells (gene-modified human mesenchymal stromal cells;
Zhao et al., 2007; Yasuhara et al., 2009; Tajiri et al., 2014). During
the first 3 months, these rats underwent neurological tests to
examine the therapeutic effects of SB623 cells transplantation.
SB623 cells transplanted rats showed significant improvement
in both motor and neurological tests. Moreover, histological
assessment revealed a significant reduction in the damage of
both the impact and peri-impact area of cortex associated
with TBI insult. After transplantation, SB623 cell survival rates
were low (0.60 and 0.16% at 1 and 3 months, respectively).
Despite the low survival rate of grafted cells, amelioration of
both functional behavior and histopathology was achieved. One
month after transplantation, it was found a significant increase
of Ki67 and nestin, markers of endogenous cellular proliferation
and immature neural differentiation, in the peri-injured cortical
areas and SVZ. Concurrently, a stream of SB623 cells migrating
along the corpus callosum (CC) of transplanted animals was
found. At 3 months, SB623 cells transplanted TBI animals
showed a significant upregulation of neural differentiation and
proliferation markers in the peri-impact cortical area. Nestin
and doublecortin (DCX) (immature neurons) were used to
identify the migrating cells across the CC from the SVZ to the
impacted cortex. Following histological analyses, we examined
the formation of the biobridge using laser technology to monitor
the cells exiting the SVZ and migrating toward the site of injury.
On the other hand, while TBI animals infused with the control
vehicle showed increased cellular proliferation, the newly formed
cells were limited to the SVZ and cortex (CTX), failing to
demonstrate any patterns of migration (Tajiri et al., 2014; Duncan
et al., 2015).

UPREGULATION OF MATRIX
METALLOPROTEINASE-9 (MMP-9) AND
BIOBRIDGE FORMATION IN TBI

The biobridge associating the SVZ and the impacted cortex
mainly consisted of vastly proliferative, uncommitted, and
migratory cells (Tajiri et al., 2014). Further analysis revealed
that animals transplanted with SB623 cells showed a two and
nine-fold upregulation of matrix metalloproteinase-9 (MMP-
9) activity and expression at 1 and 3 months, respectively
(Tajiri et al., 2014). Later, in vitro studies demonstrated that
SB623 cells enhance migration of endogenous cells via MMP-
rich signaling cues. These signals are important for endogenous
cell migration and for promoting functional recovery of injured
tissue. Only 1 month after TBI, immature Nestin-positive
and proliferative Ki67-positive cells were detected in the peri-
injured areas and SVZ. Upregulated expression of MMP-9 in
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FIGURE 1 | Schematic representation of the stem cell-mediated brain repair in TBI biobridge from our experimental data and hypothetical stroke

biobridge. (Top) Transplanted stem cells into the injured TBI brain secrete extracellular matrix and metalloproteinases (MMP-9)forming a biobridge between the

neurogenic niche (SVZ) and pre-impact area to guide endogenous stem cells to the area of injury. (A), TBI injury; (B), Activation of endogenous repair mechanisms; (C),

Decreased repair Mechanism. (D), Transplant of exogenous stem cells; (E) Exogenous stem cells secretion of trophic factors and MMP9 and ECM able to create

biobridges of neurovascular matrix; (F), migration of endogenous cells following the biobridge toward the injury site. (G) Elimination of exogenous cells, but

maintenance of recovery processes by endogenous stem cells. (Bottom) Hypothesized formation of the stroke biobridge, thereby transplanted stem cells may also

secrete extracellular matrix and metalloproteinases (MMP-9) contributing to the formation of biobridges and enhancing the migration of endogenous stem cells

between the neurogenic niche (SVZ) and peri-infarct area of the cortex and peri-infarct area of the striatum. (A), Stroke injury; (B), Activation of endogenous repair

mechanisms; (C), Decreased repair Mechanism. (D), Transplant of exogenous stem cells; (E), Exogenous stem cells secretion of trophic factors and MMP9 and ECM

able to create biobridges of neurovascular matrix; (F), Migration of endogenous cells following the biobridge toward the cortex, and striatum (site of injury). (G),

Elimination of exogenous cells, but maintenance of recovery processes by endogenous stem cells.

the biobridge suggests this neurovascular proteinase is highly
important for its formation. Interestingly, this proteinase was

upregulated in the control group; however, there was a reversal

to sham levels at 3 months post TBI. These results demonstrate
the key role of MMP-9 in long-term neural regeneration and

functional recovery, accounting for yet another aspect of the

action mechanisms through which stem cells intervene during

regeneration of damaged brain tissue.
To provide further proof that biobridge formation is

accelerated after the transplantation of SB623 cells, an in

vitro study was performed by co-culturing primary rat cortical

neurons and SB623 cells (Tajiri et al., 2014). These cells were
cultured in either the presence or absence of the MMP-9
inhibitor Cyclosporin-A (Duncan et al., 2015). It was noted

that migration of SB623 cells was improved after primary

rat cortical neurons were added. Induced migration was later

suppressed by theMMP-9 inhibitor. Although endogenous repair

processes begin immediately after TBI, the beneficial effects are

limited to the neurogenic SVZ and quiescent neurogenic resident
cells surrounding the impacted area. Because, endogenous
mechanisms for brain repair are not typically efficient enough
to deliver a strong defense against TBI or other disease-induced
cell death mechanisms, exogenous cells are transplanted to
support the active migration of endogenous stem cells from the
neurogenic niche to the site of injury (Tajiri et al., 2014). In the
peri-injured cortical areas, stem cell transplants may create a
biobridge composed of a neurovascular matrix, allowing newly
formed endogenous cells to migrate efficiently to the site of
injury. Once the biobridge is established, exogenous cells slowly

disappear and are replaced by newly formed endogenous cells
that sustain recovery even when the transplanted stem cells
are no longer present (Duncan et al., 2015). Of note, previous
studies have shown that different cells from notch-inducedMSCs
from various sources of tissues including umbilical cord blood,
peripheral blood (PB), brain can also upregulate the expression
of MMP-9 and other extracellular matrix metalloproteinases
(Barkho et al., 2008; Sobrino et al., 2012; Lin et al., 2013).

INJURY-SPECIFIC STEM CELLS
MIGRATION BETWEEN THE NEUROGENIC
NICHE AND THE ISCHEMIC TISSUE

Results discussed thus far support the involvement of SB623
cell transplants in the regeneration of the traumatically injured
brain through the formation of a biobridge between the SVZ
and the peri-injured cortex (Duncan et al., 2015). Formation of a
biobridge is a novel mechanism which describes how cell grafts
can engage in injury-specific migration between neurogenic
and non-neurogenic sites whereby normal cellular motility is
restricted. Both in vitro and in vivo results have shown that
transplantation of SB623 cells can improve the histopathological
and behavioral deficits associated not only with TBI, but also with
stroke, spinal cord injury, and Parkinson’s disease (Wang et al.,
1996; Tang et al., 1998; Chiang et al., 2001; Failor et al., 2010;
Rinholm et al., 2011; Xiong et al., 2011; Merson and Bourne,
2014; Buono et al., 2015; Ranasinghe et al., 2015; Heiss and
Zaro-Weber, 2017).
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Despite the existence of neurogenic niches in the adult brain,
such as the SVZ, that mobilize endogenous cells to repair the
stroke brain, a major limiting factor for endogenous repair is
the absence of effective cellular migration to the area of injury
(Ekdahl et al., 2009; Ducruet et al., 2012; Hassani et al., 2012;
Wang et al., 2012; Trueman et al., 2013). Recent findings show
that SB623 cell transplantation can improve these endogenous
mechanisms by chaperoning new cells from the neurogenic
SVZ, through a non-neurogenic area, to the site of injury. The
fundamental mechanism of action of SB623 cells therefore is
to form biobridges containing MMP-9 and extracellular matrix
(ECM), which can lead newly formed cells from the neurogenic
area into the ischemic area. In other words, once SB623 cells
have successfully constructed these biobridges, endogenous stem
cells are facilitated to take part in the regeneration process. As
an application of this discovery, the active role of MMP-9 and
ECMs in addressing this pathology is identified, which represents
an additional therapeutic target for treatment of central nervous
system (CNS) injury (Park et al., 2009; del Zoppo et al., 2012).
Previously, it has been demonstrated that endogenous MMPs
secreted by neural progenitor cells are involved in both the
differentiation potential of these cells and with their chemokine-
induced cell migration capabilities (Barkho et al., 2008).
Interestingly, the expressions of endogenous MMPs specifically
MMP-3 and MMP-9 were upregulated after experimental injury
to the brain (Barkho et al., 2008). Thus, not only exogenous
MMP-9 from grafted cells are important for the migration and
proliferation of endogenous neural progenitor cells, but also
their own enhanced MMP-9 expression after a molecular or
mechanical insult thereby mediating their respond to extrinsic
cues (Barkho et al., 2008). Interestingly, it has been demonstrated
that various sources of cells including umbilical cord blood,
peripheral blood (PB), and the adult brain can influence the
functions and levels of MMPs and ECMs (Barkho et al., 2008;
Sobrino et al., 2012; Lin et al., 2013), suggesting a potential for
MMPs and ECM to as act as biobridge analogs comparable to the
present function of Notch-induced SB623 MSCs.

GRAFT SURVIVAL VS. BYSTANDER
EFFECT

The specific mechanism of action that transplanted SB623 cells
employ when integrating into the host tissue and interacting
with endogenous stem cells is not well understood. Notably,
graft survival is minimal, suggesting the interaction of grafted
cells is even more complex. However, low graft survival also
indicates that the therapeutic effects of biobridge formation
outlast the survival time of SB623 cells. This observation
reinforces the notion that endogenous cells begin to play a
primary role in the observed therapeutic process after the
formation of the biobridge pathway. Inhibition of MMP-9
hindered neurogenic migration from SVZ into damaged tissues.
Additionally, after MMP-9 inhibition, there was a remarkable
delay in neurovascular regeneration. This experimental result
supports the idea that MMP-9 secreted by transplanted cells
reinforce the neurovascular unit and induce host-cell migration
to the area of injury. However, there is the possibility that cells

may wander along the vascular beds. Arguably, the mechanisms
might include functional and increased proliferation of the
surviving neurons by either cell-to-cell interaction or the
bystander effect of secretomes from the stem cells, including
cytokines, chemokines, trophic factors, neurotrophic factors,
and long non-coding ribonucleic acid (lncRNA) that work
as signaling molecules and anti-inflammatory modulators in
conjunction with the biobridge to afford neuroprotection and
synaptic plasticity (Tajiri et al., 2014). These data have suggested
a theory for how the formation of a biobridge could lead to an
amelioration of function and recovery after CNS injury.

POTENTIAL THERAPEUTIC BENEFITS OF
BIOBRIDGE FORMATION IN STROKE
PATHOLOGY

Adult stem cells are undifferentiated cells that are found
throughout the body after early development. In the brain, most
of these cells are found in the SVZ of the lateral ventricles and the
subgranular zone (SGZ) of the hippocampal dentate gyrus (DG).
Adult stem cells generally have limited functions outside of these
niches that provide the cells with specific microenvironments
wherein stem cells remain in an undifferentiated and self-
renewable state. The concept of a niche as a specialized
microenvironment housing mammalian stem cells was first put
forward by Schofield almost 30 years ago (Schofield, 1978). The
niche comprises a basic unit of tissue physiology, integrating
signals that mediate the balanced response of stem cells with the
needs of the organism. The interaction between stem cells and
the more recently documented neurogenic niche must be fully
understood if we are to achieve the ultimate goal of designing
stem cell therapies targeting CNS injuries.

Our study (Tajiri et al., 2013) proposed the concept of the
biobridge mechanism as a cell-mediated repair strategy after TBI.
To optimize the translation of this concept to clinical trials of
SB623 cells not only in TBI but also in other neurodegenerative
disorders, it will be imperative to monitor long-term safety
and efficacy of the therapy in animal models. Meanwhile, basic
science research will continue in order to gain a more concrete
understanding of the stem cell-mediated mechanism of repair in
in order to advance the concept of biobridges formation in other
neurodegenerative diseases.

Indeed, aside from mechanical brain injury, there are
many other neurodegenerative conditions characterized by a
“biological gap” between the site of injury and the neurogenic
niche that endogenous stem cells have difficulty traversing.
Stem cell biobridges facilitate functional remodeling by
promoting a series of interactions between endogenous stem
cells and damaged tissue by promoting neuronal differentiation,
enhancing neural processing, encouraging regeneration of
cortical tissue, aiding in intercellular communication, reducing
inflammation and scar formation (Tajiri et al., 2013, 2014;
Duncan et al., 2015). Thus, a more in-depth understanding of the
concept of the stem cell-paved biobridge in neurodegenerative
diseases potentially amendable by this therapeutic action,
including ischemic stroke, hypoxic-ischemic encephalopathy
(HIE), and cerebral palsy (CP) among others, may yield
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important therapeutic benefits (Tajiri et al., 2014). These
disorders are each characterized, in part, by sites of cellular
degeneration, separated from neurogenic areas of the brain that
could otherwise facilitate the recovery of severe damaged cells
(Failor et al., 2010; Rinholm et al., 2011; Xiong et al., 2011; Tajiri
et al., 2013; Merson and Bourne, 2014; Tajiri et al., 2014; Duncan
et al., 2015; Ranasinghe et al., 2015; Heiss and Zaro-Weber,
2017).

BIOBRIDGE INDUCED-CELL MIGRATION
FOR NEURORESTORATION IN ISCHEMIC
STROKE PATHOLOGY

Ischemic stroke is characterized by the disruption of blood flow
to a region within the brain. Minutes after infarction, areas
with the largest decrease of blood flow are irreversibly damaged
resulting in the formation of the necrotic core. Areas that are
less damaged and still able to maintain metabolic functions
are termed ischemic penumbra which surrounds the necrotic
core (Taylor et al., 2008; Broughton et al., 2009; Tajiri et al.,
2013, 2014; Duncan et al., 2015; Heiss and Zaro-Weber, 2017).
Total or partial circulation blockade within the CNS results in
cerebral ischemic injury which instigates deprivation of glucose
and oxygen resulting in the activation of complex pathological
pathways and neuronal cell death (Xiong et al., 2011; Merson and
Bourne, 2014; An et al., 2015; Duncan et al., 2015; Bivard et al.,
2016). In order to prevent further degeneration and necrosis
of the penumbra, blood flow must be re-established within a
narrow window on 4.5 h post stroke. Accumulating evidence
suggests using tissue plasminogen activator (tPA) therapy within
this therapeutic window (4.5 h post stroke) may be beneficial,
however, this treatment involves risk and is therefore limited in
its application (Graham, 2003; Hess and Borlongan, 2008; Yang
et al., 2009; Eissa et al., 2012; Duncan et al., 2015).

In stroke, while the ischemic core cannot be recovered,
the penumbra has the potential for repair (Tajiri et al., 2014).
Following the finding of the formation of the biobridge in a TBI
model, it is not out of contest to think that intracerebral stem cell
transplantation within an experimental ischemic stroke model
will also result in an equivalent biobridge formation from the
neurogenic niche to the infarct area, i.e., cortex and striatum,
whereby functional recovery will be facilitated by the promotion
of endogenous stem cells migration to the area of injury (see
Figure 1, Bottom). To this end, the biobridge has the ability to
form a path to the tissue in need of neurorestoration and confer
therapeutic benefit in CNS injury (Stone et al., 2013; Tajiri et al.,
2013, 2014; Duncan et al., 2015).

The capacity of the biobridge to induce migration of
cell across otherwise impenetrable tissues to a damaged area
warrants great possibilities for the ischemic tissue. For the
biobridge formation in stroke, ECM and MMP-9’s secretion
and upregulation would be closely characterized to examine the
therapeutic benefits of this mechanism and evaluate each of
the infarcted areas for markers of neuroregeneration (Yasuhara
et al., 2008; Borlongan, 2011). It has been shown that different
types of stem cells are able to modify the expression and
function of ECM and MMP-9, including stem cells found in

umbilical cord, adult brain and PB (Sobrino et al., 2012; Lin
et al., 2013). Interestingly, immune modulation is one of the
mechanism being studied for the improved functional recovery
post-MSC transplantation post ischemic stroke (Yoo et al., 2013).
However, the formation of the biobridge is able to further assist
by inducing the release of a variety of immunomodulatory
and trophic cytokine and chemokines post transplantation
(Hsieh et al., 2013). Previously, It has been well established
that waves of secreted pro-inflammatory and anti-inflammatory
cytokines mediate the immune response throughout the brain
and are able to increase the activation and recruitment of
immune cells to the area of injury for initial repair (Ekdahl
et al., 2009). Indeed, experimental studies will be necessary to
confirm the formation of the biobridge and its capability to
relocate endogenous stem cells to the site of injury in stroke
pathology.

The neurological and histological functional benefits provided
by stem cell transplantation through biobridge formation
is indicative of the strong connection between endogenous
and exogenous repair mechanisms. The beneficial effects of
the biobridge mechanism of repair in TBI warrants further
investigation in other neurological disorders including stroke.
If the formation of this cellular conduit is also efficacious in
other neurodegenerative diseases, it could open new venues
of potential improvement in the regenerative potential and
therapeutic effect of stem cell therapy within the brain of many
different neurodegenerative diseases.

Like in TBI, it is possible that a biobridge would form an
uninjured brain area to the damaged area post transplantation
of stem cells to support endogenous repair mechanisms
and function as a neurorestoration mechanism (Tajiri et al.,
2013, 2014; Duncan et al., 2015). In order to exploit the
therapeutic potential of the biobridge in the treatment of other
neurological disorders, additional investigations are necessary
to further elucidate the mechanism by which these cells work
in conjunction with neurogenic niches to enhance and support
regeneration.

MULTI-FACETED MECHANISM INVOLVING
STEM CELL THERAPY

As previously discussed, the main mechanisms of action for stem
cells are thought to be either direct cell replacement and/or
the release of trophic factors such as FGF-2, EGF, stem cell
factor, erythropoietin, and BDNF (Snyder et al., 1997; Borlongan
et al., 2004; Lee et al., 2007; Redmond et al., 2007; Pastori et al.,
2008; Acosta et al., 2014; Tajiri et al., 2014; Acosta et al., 2015;
Duncan et al., 2015). Recently, we proposed a third mechanism
in which transplanted stem cells, through the formation of a
biobridge, recruit endogenous stem cells from neurogenic niches
and mobilize them (Alvarez-Buylla et al., 2008) to the impact
and peri-impact areas. One can reasonably hypothesize that the
biobridge promotes the migration of endogenous stem cells by
releasing migratory trophic factors i.e., cysteine-x-cysteine motif
chemokine ligand 14 (CXCL14) and monocyte chemoattractant
protein 1 (MCP1) or by constructing a physical “bio-highway”
linking the niche to the injured site. Recent studies have suggested
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that ECM synthesis plays an important role in this process. For
example, one study demonstrated that successful migration of
interstitial cells depends on scaffold porosity, deformation of the
nucleus, and modulators such as pericellular collagenolysis and
mechano-coupling (Wolf et al., 2013). Another study revealed
that IL-1β induced secretion of trophic factors and adhesion
components in the ECM including collagen and laminin, thus
enhancing the migration and recruitment of monocytes (Carrero
et al., 2012).

To achieve clinically relevant outcomes from stem cell therapy
in experimentalmodels of neurodegeneration, it is key to evaluate
the fate of recruited endogenous stem cells. Neurogenesis is
not necessarily equivalent to the formation of new, integrated
neurons in the neural circuit, and it is imperative that further
studies characterize the physiology and functionality of new
cells in vivo to determine their contribution to sustenance
or regeneration of damaged neural networks. Moreover, to
produce beneficial effects, stem cells must differentiate into the
relevant disease-phenotype (Hong et al., 2011), i.e., basal ganglia
neurons or substantia nigra neurons for Huntington’s disease and
Parkinson’s disease, respectively (Gantz et al., 2011; Dupuis et al.,
2013; Fieblinger et al., 2014; Escande et al., 2016). The biobridge
might help newly differentiated stem cells migrate toward the
desired area of effect. However, it is important to consider that
both transplanted stem cells and endogenous stem cells may
differentiate into neurons. If the stem cells do not differentiate
into functional neurons, we suggest that the biobridge may also
contribute to neurogenesis via the by-stander effect. By directing
the flow of stem cells to the injured area, the biobridge may help
concentrate growth factors and/or other beneficial molecules
such as anti-inflammatory, anti-apoptotic, and anti-oxidative
stress reducers.

The concept of the biobridge shares some resemblances with
the use of olfactory ensheathing glia in the treatment of spinal
cord injury (Tajiri et al., 2014; Duncan et al., 2015). In vivo
and clinical studies strongly suggest that transplantation of
olfactory ensheathing cells (OECs) in combination with specific
physical training might provide therapeutic benefits for CNS
injuries and neurodegenerative diseases. OECs are capable of
producing cell adhesion molecules and growth factors that
facilitate the survival of neurons and promote neurite outgrowth

(He et al., 2013). Furthermore, transplantation of OECS and
Schwann cells (SCs) in a sub-acute phase of spinal cord contusion
increased the number of spared/regenerated supraspinal fibers,
enhanced tissue integrity, reduced cavitation, and improved
overall anatomical outcomes (Barbour et al., 2013). In many
spinal cord injury models, the therapeutic outcomes of OEC
transplantation have been attributed to the secretion of growth
factors, axonal and neuronal regeneration, and/or remyelination
(Roet et al., 2013; Tajiri et al., 2014). While there are similarities
between the discussed biobridge and the transplantation of OECs
in spinal cord injury, there is one major difference between
the two therapies. The OECs in the transplantation model
were accompanied by artificial scaffolds comprised of laminin
and fribronectin. In contrast, the biobridge occurs without any
artificial biomaterials as the stem cells remodel matrices and
promote the migration of the endogenous stem cells themselves.

An occurrence similar to the biobridge concept was
documented in Parkinson’s disease studies, where dopamine-
secreting cells were transplanted along the nigrostriatial pathway
rather than only in the striatum to mimic the natural afferent
and efferent dopaminergic pathways (Wang et al., 1996; Tang
et al., 1998; Chiang et al., 2001; Tajiri et al., 2014; Duncan
et al., 2015). These studies artificially created a bridge between
the substantia nigra and the striatum by micro-injections of
immature cells along the nigrostriatal pathways. Collectively,
these studies suggest that successful stem cell therapy depends
on various overlapping treatment processes, mainly through by-
stander effect, biobridge formation and to a less extent cell
replacement, which work together to promote the observed
therapeutic benefits (Tajiri et al., 2013, 2014).
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