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Osteoclasts are giant bone cells formed by fusion from monocytes and uniquely capable

of a complete destruction of mineralized tissues. Previously, we have demonstrated

that in energy-rich environment not only osteoclast fusion index (the number of nuclei

each osteoclast contains), but also cytoplasm volume per single nucleus was increased.

The goal of this study was to investigate the regulation of metabolic sensor mTOR

during osteoclast differentiation in energy-rich environment simulated by addition of

pyruvate. We have found that in the presence of pyruvate, the proportion of mTOR

associated with raptor increased, while mTOR-rictor-mediated Akt phosphorylation

decreased. Inhibition of mTOR with rapamycin (10 nM) significantly interfered with

all aspects of osteoclastogenesis. However, rapamycin at 1 nM, which preferentially

targets mTOR-raptor complex, was only effective in control cultures, while in the

presence of pyruvate osteoclast fusion index was successfully increased. Inhibition of Akt

drastically reduced osteoclast fusion, however in energy-rich environment, osteoclasts of

comparable size were formed through increased cytoplasm growth. These data suggest

that mTOR-rictor mediated Akt signaling regulates osteoclast fusion, while mTOR-raptor

regulation of protein translation contributes to fusion-independent cytoplasm growth. We

demonstrate that depending on the bioenergetics microenvironment osteoclastogenesis

can adjust to occur through preferential multinucleation or through cell growth, implying

that attaining large cell size is part of the osteoclast differentiation program.

Keywords: osteoclast, monocyte fusion, cell growth, mTOR, Akt

INTRODUCTION

Osteoclasts are bone cells uniquely capable of a complete destruction of mineralized tissues.
Osteoclast function is required physiologically during development for proper bone shaping and
tooth eruption, as well as in adult life to provide access to bone-stored minerals (Feng and
Teitelbaum, 2013; Segeletz and Hoflack, 2016). Pathologically, osteoclasts are responsible for
bone destruction in degenerative, inflammatory and metabolic bone disorders (Henriksen et al.,
2011; Boyce, 2013). Osteoclasts are known as giant cells formed by fusion of monocytes, cells of
hematopoietic origin. Single osteoclasts can contain between 3 and 100 nuclei, varying in diameter
between 10 and 300 µM (Gardner, 2007; Akchurin et al., 2008; Kopesky et al., 2014). Importantly,
it has been demonstrated that large osteoclasts are more likely to be observed during pathological
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bone resorption, and are more active and more responsive to
environmental stimuli (Lees andHeersche, 1999, 2000; Lees et al.,
2001; Trebec et al., 2007). A number of molecular mediators were
reported to be important for osteoclast fusion, including DC-
STAMP (Yagi et al., 2005), CD9 (Ishii et al., 2006), V0 subunit d2
of the lysosomal H+-ATPase (ATP6V0d2) (Kim et al., 2006), and
Fra-2-regulated LIF/LIF-receptor signaling (Bozec et al., 2008).
Nevertheless, the complete sequence of events leading from
stimulation of osteoclastogenesis by receptor activator of nuclear
factor κB ligand (RANKL) to formation of large polykarions
capable of bone destruction is incompletely understood.

We have previously demonstrated that supplementation of
cultures with moderate amounts of metabolic energy substrates,
such as pyruvate, stimulates osteoclastogenesis resulting in
formation of more and larger osteoclasts (Fong et al., 2013). We
have found that addition of pyruvate augmented mitochondrial
respiration, resulting in a three-fold increase in ATP levels and
inhibition of AMP-activated protein kinase (AMPK). AMPK is
a metabolic sensor stimulated by increase in AMP/ATP ratio
that signifies cell inability to cope with the energy demands
(Finley and Haigis, 2009). AMPK acts to decrease the cell
metabolic expenditure and to improve energy production by
inducing mitochondrial biogenesis and fatty acid oxidation.
AMPK counterpart is mTOR, which is suppressed when nutrients
are limited. mTOR exists in two complexes. mTORC1 (with
raptor, PRAS40 and mLST8) regulates protein synthesis through
phosphorylation of an activator of translation, ribosomal protein
p70 S6 kinase (S6K) and an inhibitor of translation eukaryotic
translation initiation factor 4E binding protein 1 (4E-BP1)
(Foster and Toschi, 2009; Laplante and Sabatini, 2013). mTORC2
(with rictor, mSIN1, proctor, and mLST8) affects cytoskeletal
organization and survival (Sarbassov et al., 2005a; Gaubitz et al.,
2016). mTOR signaling was shown to be important for osteoclast
formation and survival (Glantschnig et al., 2003; Sugatani and
Hruska, 2005; Hu et al., 2016; Dai et al., 2017), especially in the
setting of experimental bone metastasis (Hussein et al., 2012;
Abdelaziz et al., 2014, 2015; Mercatali et al., 2016). Akt has
been reported as a target of mTORC2 complex (Sarbassov et al.,
2005a), as well as an upstream regulator of mTOR activity as part
of the PI3K/Akt pathway (Lee et al., 2007). Akt has also been
implicated in regulation of osteoclast differentiation and survival
(Gingery et al., 2003; Sugatani and Hruska, 2005; Kawamura
et al., 2007; Hu et al., 2008; Kwak et al., 2008). The role of mTOR
in cell growth in general is well appreciated, however, its specific
contribution to regulation of osteoclast size is not completely
understood.

The goal of the present study was to examine the role of
mTOR signaling in regulating osteoclast size through fusion
and/or growth. We used supplementation with low levels of
pyruvate (1 mM) to simulate an energy-rich environment which
we previously found to actively modulate osteoclast size.

Abbreviations: AMPK, AMP-activated protein kinase; 4E-BP1, eukaryotic

translation initiation factor 4E binding protein 1; mTOR, mechanistic target

of rapamycin; DC-STAMP, Dendritic cell-specific transmembrane protein; OC,

osteoclast; Py, pyruvate; RANKL, receptor activator of NF- κB ligand; Rapa,

rapamycin; S6K, p70 S6 kinase.

MATERIALS AND METHODS

Cell Culture Reagents
Fetal bovine serum (FBS) was from HyClone (SH 30396-03),
Dulbecco’s modified Eagle’s medium (DMEM, 319-020-
CL), pyruvate (600-110-EL), L-glutamine (609-065-EL),
penicillin/streptomycin (450-201-EL), trypsin/ethylenediamine
tetraacetic acid (T/E, 325-042-EL) were from Wisent Inc.
Rapamycin (PHZ1233) was from Sigma-Aldrich Co. Akt
inhibitor (1L6-Hydroxymethyl-chiro-inositol-2-(R)-2-
O-methyl-3-O-octadecyl-sn-glycerocarbonate) was from
Calbiochem (124005). Recombinant human M-CSF (300-25)
was from Peprotech Inc. Recombinant glutathione S-transferase-
soluble RANKL was purified from the clones kindly provided by
Dr. M.F. Manolson (University of Toronto).

Osteoclast Cultures
This study was carried out in accordance with the
recommendations of the Canadian Council on Animal Care. The
protocol was approved by the McGill University Animal Care
Committee. Mouse bone marrow cells were collected from 6
weeks old C57BL6/J mice (Charles River) as described previously
(Boraschi-Diaz and Komarova, 2016). Cells were cultured in
75 cm2 tissue culture flasks (1.5× 107 cells per flask) with M-CSF
(25 ng/ml) for 24 h, then non-adherent cells were collected and
plated at 5 × 104 cells/cm2 in α-MEM supplemented with 1%
penicillin-streptomycin and 10% FBS, M-CSF (50 ng/ml) and
RANKL (100 ng/ml). Medium was changed every other day.
RAW 264.7 cells (ATCC) were cultured in 25 cm2 tissue culture
flasks in DMEM supplemented with 1% penicillin-streptomycin
and 10% FBS. To generate osteoclasts, RAW 264.7 cells were
plated at 5× 103 cells/cm2. On day 1 and 3, mediumwas changed
and M-CSF (50 ng/ml) and RANKL (50 ng/ml) were added. Cell
cultures were fixed using 4% paraformaldehyde and stained for
tartrate-resistant acid phosphatase (TRAP, Sigma-Aldrich Co,
387A). Osteoclasts were identified as multinucleated (more than
3 nuclei) TRAP-positive cells and were further characterized
by image analysis using PixeLINK Capture SE R© software
(PixeLINK) and Image J. For each experimental condition, the
cell surface area and nuclei number of 35–100 osteoclasts were
evaluated.

Confocal Microscopy
Osteoclasts were generated from RAW 264.7 cells on glass
coverslips. Fixed cells were incubated with the fluorescent
lipophilic membrane probe DiI (5 µl/ml, Vybrant R© DiI,
InvitrogenTM, V-22885), Alexa 488-conjugated Phalloidin
(Invitrogen A12379), and DAPI stain (Invitrogen D1306), and
visualized with confocal microscope (LSM510, Carl Zeiss Inc.)
with Plan Apochromat 63×/1.4 NA oil objective. Image stacks
were collected and 3D shape was reconstructed and analyzed
using LSM510 software. Images of at least 20 fields/condition
were used to evaluate osteoclast height.

Protein Extraction and Immunoblotting
Cell lysates were extracted in RIPA lysis buffer containing
50 mM Tris, pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 1
mM EDTA, 1mg/ml aprotinin, 2mg/ml leupeptin, 0.1mM
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phenylmethylsulfonyl fluoride, 20mM sodium fluoride, 0.5 mM
sodium orthovanadate, and centrifuged at 12,000 g for 10 min
at 4◦C. Supernatant was collected, and protein was measured
using a Quant-iTTM protein assay kit (Invitrogen). Twenty to
forty micrograms of lysates was separated on a 7.5 or 12%
SDS-PAGE and transferred to a nitrocellulose membrane (0.45
µm, 162-0115, Bio-Rad) using 10mM sodium borate buffer.
The membranes were blocked in 5% milk in TBST buffer
(10mM Tris-HCl, pH 7.5, 150mM NaCl, 0.05% Tween 20)
for 1 h at room temperature, and incubated overnight at 4◦C
with primary antibodies: p-Akt (1:1,000, #9271, Cell Signaling),
Akt (1:1,000, #9272, Cell Signaling), p-4E-BP1 (1:1,000, #9451,
Cell Signaling), 4E-BP1 (1:1,000, #9452, Cell Signaling), p-S6K
(1:1,000, #9234, Cell Signaling), p-TSC2 (1:1,000, #3615p, Cell
signaling), TSC2 (1:1,000, #4308p, Cell signaling), α-tubulin
(1:5,000, T9026, Sigma), and calnexin (1:1,000, NBP2-43765,
Novus Biologicals). The blots were visualized with horseradish
peroxidase-conjugated secondary antibodies (anti-rabbit, 170–
5046; anti-mouse, 170–5047 Bio-Rad) and a chemiluminescence
system (Super signal West Pico; 34080, Pierce).

Immunoprecipitation
Lysis buffer with 0.3% CHAPS instead of 1% triton was
used to preserve the integrity of the mTOR complexes.
Four micrograms of mTOR antibody (1:200, #2972, Cell
Signaling) were added to the cleared cell lysates and incubated
with rotation for 90 min. Twenty-five microliters of 50%
slurry of protein G-sepharose were added and incubation
continued for 1 h. Immunoprecipitates captured with protein
G-sepharose were washed with the CHAPS lysis buffer,
centrifuged briefly and the supernatant was removed from
the protein G-Sepharose. Thirty microliters of loading buffer
were added to the beads, boiled at 95–100◦C for 5 min,
loaded on an SDS-PAGE, and analyzed by immunoblotting
for mTOR (1:200; #2972; Cell Signaling), raptor (1:200;
#2280; Cell Signaling), and rictor (1:200; #2114; Cell
Signaling).

RNA Isolation and RT-PCR
Total RNA was isolated from primary cultures using the RNeasy
mini kit and QIAshredder columns (Qiagen, 74104 and 79654).
For real-time PCR, 1 µg of total RNA was reverse transcribed
using a cDNA archive kit (Applied Biosystems, 74322171).
Real-time PCR was performed using 7,500 Applied Biosystems
instrument using SYBR Green Universal PCR Master Mix
(Applied Biosystems, 4367659) and the following primers:
Dcstamp forward 5′-CTTCCGTGGGCCAGAAGTT-3′, and
reverse 5′-AGGCCAGTGCTGACTAGGATGA-3′ and Gapdh
forward, 5′-TTCCGTGTTCCTACCCCCAA-3′, and reverse,
5′-GATGCCTGCTTCACCACCTT-3′.

Statistical Analysis
Data are presented as representative images, representative
experiments, or as means ± standard error of the mean, with n
indicating the number of independent experiments. Differences
were assessed by Student t-test or ANOVA with Tukey post-hoc
test and accepted as statistically significant at P < 0.05.

RESULTS

Larger Osteoclasts Are Formed in the
Presence of Pyruvate
Previously, we have demonstrated that addition of moderate
amounts of pyruvate stimulates osteoclast formation and
growth (Fong et al., 2013). We further examined the effect
of pyruvate (1 mM) on osteoclast size (Figure 1). Addition
of pyruvate resulted in formation of larger osteoclasts
(Figures 1A,B), both through an increase in fusion, evident
by higher osteoclast nucleation (Figure 1C) and through
an increase in cytosolic growth evident by increased planar
area per nucleus (Figure 1D). Since osteoclasts are known
to considerably change their shape (Holloway et al., 1997;
Komarova et al., 2003), we examined if planar cell area
accurately reflects osteoclast size. Using confocal analysis,
we examined the height of osteoclasts containing different
numbers of nuclei (Figure 1E). On non-resorbable substrates,
such as glass (Figure 1F) or fibronectin (data not shown),
osteoclasts containing different nuclei number exhibited
similar heights, while on calcium phosphate significant
correlation between the height and the number of nuclei

in the osteoclast was observed (Figure 1G), likely reflecting
resorption–associated change in osteoclast shape. Nevertheless,
osteoclast height was similar in the absence or presence of
pyruvate and independent of the differentiation substrate
(glass, fibronectin, or calcium phosphate; Figure 1H),
indicating that osteoclast planar area reflects osteoclast
size.

mTOR Is Regulated by Pyruvate
We have previously demonstrated that the effects of pyruvate on
osteoclastogenesis are mediated by AMPK (Fong et al., 2013).
Since mTOR is a known downstream target of AMPK, we
considered its role in regulation of osteoclast size (Figure 2A).
mTOR can form complex with raptor, mTORC1, which regulates
protein synthesis, or with rictor, mTORC2, which regulates
cytoskeleton organization. We assessed the expression of mTOR,
rictor, and raptor in control and pyruvate-treated cultures, and
found that in cells treated with pyruvate, mTOR protein levels
did not change, but expression of raptor strongly increased
(Figures 2B,C). We next examined if addition of pyruvate can
affect mTOR distribution between mTORC1 and mTORC2.
Cell lysates were collected after 48 h treatment of RAW 264.7
cells with RANKL in the absence or presence of pyruvate,
and immunoprecipitated with mTOR antibody. Treatment with
pyruvate increased the amount of raptor co-precipitated with
mTOR, while to a smaller degree decreasing the amount of rictor
(Figure 2D), suggesting a shift toward preferential formation of
mTORC1 in energy-rich conditions. Another potential regulator
of mTOR signaling, TSC2, was also affected by addition
of pyruvate (Figure 2E). To confirm mTORC1 activation in
pyruvate-treated cultures, we assessed its direct phosphorylation
targets p70S6K and 4E-BP1. Treatment with pyruvate for
6 h had minor but positive effects on phosphorylation of
4E-BP1 and strongly increased phosphorylation of p70S6K
(Figures 2F,G).
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FIGURE 1 | Osteoclast size is increased in the presence of pyruvate. Osteoclast precursors were treated with RANKL (50 ng/ml) for 4 days without (white bars)

or with (black bars) pyruvate. (A) Representative images of osteoclasts generated from RAW 264.7 cells in the absence or presence of pyruvate (Py, 1 mM). Scale bar

applies to both images, white outlines indicate representative osteoclast sizes. (B–D) Average osteoclast planar area (B), number of nuclei per osteoclast (C), and

area per nucleus (D). Data are means ± SE; n = 3 independent experiments. *p < 0.05 indicates statistical significance assessed by paired t-test compared to

samples cultured without pyruvate. (E–H) RAW264.7 cells were treated with RANKL (50 ng/mL) for 5 days, re-plated on glass coverslips uncoated (glass), coated with

fibronectin (FN), or coated with calcium phosphate (CaP), cultured for 24 h without or with pyruvate, fixed and stained for actin using Alexa 488-conjugated phalloidin

(green), membrane using DiI (red), and nuclei using DAPI (blue). (E) Representative images of osteoclasts on uncoated glass (left), fibronectin-coated glass (middle),

and calcium-phosphate (right). Scale bar is 100 µm, white outlines indicate representative osteoclast sizes, white arrows point at single osteoclast nucleus. (F,G) The

correlation between the number of nuclei and height of osteoclasts was assessed for 32–48 cells cultured on glass (F), or calcium phosphate (G). (H) Average

osteoclast height in samples cultured on different substrates with or without pyruvate. Data are means ± SD, n = 14–31 osteoclasts per condition, no significant

difference.

mTOR Is Important for Osteoclastogenesis
We next used rapamycin to assess the role of mTOR in
osteoclast differentiation (Figure 3A). At low concentration (l
nM) rapamycin was shown to target raptor of the mTORC1

complex, while at high concentration (more than 10 nM) it
inhibits both mTORC1 and mTORC2 complexes (Acosta-
Jaquez et al., 2009). We found that in control cultures
addition of 1 or 10 nM rapamycin results in significant,
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FIGURE 2 | mTOR signaling is altered in the presence of pyruvate. Osteoclast precursors were treated for 6 h–2 days with RANKL, with or without pyruvate (1

mM) and cell lysates were collected. (A) Schematics of mTOR signaling pathway examined. Star * indicates that the role of AMPK was established in the previous

study (Fong et al., 2013). (B,C) After 2 days of culture, the levels of mTOR, rictor and raptor were assessed. (B) Representative immunoblots, α-tubulin was used as a

loading control. (C) Quantification of protein levels in cultures treated with pyruvate relative to untreated cultures (dashed line). (D) Cell lysates shown in (B) were

immunoprecipited with anti-mTOR antibody and levels of raptor and rictor bound to mTOR were assessed. The number above the blot indicates rictor or raptor

protein levels relative to mTOR. (E–G) Cell lysates were collected after 6–12 h, and the levels of phospho- and total TSC2 (E); phospho- and total 4E-BP1, and

phospho-p70S6K (F) were examined; α-tubulin was used as a loading control. (G) Immunoblots were quantified for levels of phosphorylated proteins to total proteins

(black bars), except for p-p70S6K, which was normalized to tubulin; or levels of total proteins to tubulin (white bars) and expressed relative to cultures without

pyruvate (dashed line).

dose-dependent reductions in osteoclast numbers, size, and
nucleation (Figure 3, white bars). However, the presence
of pyruvate modified the effectiveness of rapamycin at low
(l nM), but not high (10 nM) concentration. While 1 nM
rapamycin still significantly inhibited osteoclast formation in
pyruvate-supplemented cultures (Figure 3B), it was unable
to reduce the size and nucleation of osteoclasts that were
formed (Figures 3C,D). Thus, mTOR activity is required
in both normal and high-energy environment, however
only in high energy environment osteoclast size can be
successfully increased in the absence of mTOR/raptor complex,
likely through increased fusion mediated by mTOR/rictor
complex.

Akt Phosphorylation Is Regulated by
Pyruvate
Osteoclast differentiation involves multiple pathways including
Akt signaling (Gingery et al., 2003), which in turn was shown

to act both upstream and downstream of mTOR signaling
(Sarbassov et al., 2005b; Ma and Blenis, 2009; Figure 4A). We
examined if pyruvate affects Akt during osteoclastogenesis and
found that Akt phosphorylation was suppressed in the presence
of pyruvate (Figure 4B). To examine if Akt acts upstream or
downstream of mTOR, we examined phosphorylation of both
targets as well as mTOR-regulated p70S6K in cells cultured
without pyruvate in the presence of specific inhibitors of Akt
and mTOR. As expected, addition of rapamycin decreased
mTOR and p70S6K phosphorylation (Figure 4C). In addition,
Akt phosphorylation was dramatically decreased in rapamycin-
treated cells (Figure 4D). In contrast, inhibition of Akt,
while predictably reducing Akt phosphorylation, did not
affect phosphorylation of mTOR or p70S6K (Figures 4C,D).
Taken together, these data indicate that during osteoclast
differentiation, Akt acts downstream of mTOR, and that
exposure to pyruvate results in downregulation of Akt
phosphorylation.
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FIGURE 3 | mTOR pathway is important for osteoclastogenesis.

Osteoclast precursors were treated for 4 days with RANKL, without (white

bars) or with (black bars) pyruvate (1 mM), and in the absence or presence of

mTOR inhibitor rapamycin (Rapa, 1 or 10 nM) and the effect of mTOR

inhibition on osteoclast fusion and growth was assessed (A). (B) Average

number of osteoclasts formed in different conditions. (C) Average osteoclast

size. (D) Average number of nuclei per osteoclast. Data are means ± SEM, n

= 5–7 independent experiments, *p < 0.05 indicates statistical significance for

the effects of pyruvate at the same levels of rapamycin; #p < 0.05 indicates

statistical significance for the effects of rapamycin at the same levels of

pyruvate assessed by paired t-test.

Akt Pathway Mediates Osteoclast Fusion
To investigate the role of Akt in osteoclastogenesis, we used an
Akt inhibitor. Significantly fewer osteoclasts were formed in the
presence of Akt inhibitor both in the absence and presence of
pyruvate (Figure 5A), even though the effect of Akt inhibition
was less pronounced in the presence of pyruvate, and pyruvate
significantly increased osteoclastogenesis when Akt was inhibited
(Figure 5A). In contrast, inhibition of Akt was not as effective in
reducing the size of osteoclasts that were formed (Figures 5B,C).
We next examined if osteoclast size increased through cell
fusion or through cytoplasm growth. Average number of nuclei
per single osteoclast was dramatically reduced when Akt was
inhibited both in the absence and presence of pyruvate, consistent
with inhibition of precursor fusion (Figure 6A). However,

osteoclast surface area per nucleus was increased in the presence
of Akt inhibitor, especially when cells were supplemented with
pyruvate (Figure 6B), indicating that osteoclasts increase in size
through fusion-independent cell growth, and that this process
requires an energy-rich environment. In keeping with the role of
Akt in osteoclast fusion, we have found that Akt inhibition dose-
dependently reduced the gene expression of the key osteoclast
fusion factor, DC-STAMP (Figure 6C).

DISCUSSION

Taken together our data indicate that two distinct processes
occur simultaneously during the formation of large osteoclasts:
continuous fusion and fusion-independent cytoplasm growth.

FIGURE 4 | AKT acts down-stream of mTOR signaling. To examine if Akt

is upstream or downstream of mTOR signaling (A), osteoclast precursors were

treated with RANKL (50 ng/ml) for 2–3 days with and without pyruvate (1 mM).

(B) The levels of phosphorylated (Ser473) and total Akt in control and

pyruvate-supplemented cultures, α-tubulin was used as a control for protein

loading. (C) Cells cultured without pyruvate were exposed to Akt inhibitor (AI, 5

µM) or rapamycin (1, 10, or 100 nM), and mTOR phosphorylation, total mTOR

levels and phosphorylation of p70S6K was assessed, calnexin was used as a

protein loading control. The numbers above the blots indicate phospho-S6K

levels relative to calnexin. (D) The effect of Akt inhibitor or rapamycin on Akt

phosphorylation. The numbers above the blots indicate phospho-Akt levels

relative to total Akt. To be noted, all the lanes were parts of the same gel,

however, the lane order was changed, resulting in discontinuity.

Regulation by mTOR appears to be critical in defining the
relative contribution of these processes, with mTOR-raptor
complex, which is known to control protein synthesis, being
responsible for fusion-independent growth; and mTOR-
rictor mediated Akt signaling stimulating osteoclast fusion
(Figure 6D). This regulation is flexible and responsive
to changes in cell microenvironment. In an energy-rich
environment the proportion of mTOR associated with raptor
increases, while mTOR-rictor-mediated Akt phosphorylation
decreases, resulting in increase in fusion-independent cytoplasm
growth. Importantly, in energy-rich environment, osteoclasts
of comparable size are formed even when fusion is drastically
reduced by Akt inhibition, suggesting that cytoplasm growth can
compensate for reduced fusion. These data further imply that
increasing cell size is an important part of osteoclastogenesis
program.
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FIGURE 5 | Akt signaling is important for osteoclastogenesis.

Osteoclast precursors were treated for 4 days with RANKL (50 ng/ml), without

or with pyruvate (1 mM), and in the absence or presence of Akt inhibitor (5

µM). (A) Average numbers of osteoclasts formed in different conditions. (B)

Average osteoclast size. (C) Representative images of osteoclasts generated

in the absence or presence of pyruvate and Akt inhibitor (5 µM). Scale bar

applies to all images. Data are means ± SE, n = 3 independent experiments,

*p < 0.05, **p < 0.01 indicate statistical significance for the effects of pyruvate

at the same levels of Akt inhibitor; #p < 0.05, ##p < 0.01 indicate statistical

significance for the effects of Akt inhibitor at the same levels of pyruvate

assessed by paired t-test.

Multinucleation and large cell size are prominent features
of osteoclasts, and were long suggested to be important for
osteoclastic resorption (Bar-Shavit, 2007). It has been shown
that in DC-STAMP-deficient mice osteoclast fusion is specifically
disabled, resulting in formation of munonucleated cells that
otherwise contain all the necessary resorptive machinery (Yagi
et al., 2005). Importantly, these mononucleated osteoclast-like
cells demonstrated significant reduction in their resorptive

FIGURE 6 | Akt signaling mediates osteoclast fusion. Osteoclast

precursors were treated for 4 days with RANKL, without or with pyruvate (1

mM), and in the absence or presence of Akt inhibitor (5 µM). (A) Average

numbers of nuclei per osteoclast. (B) Average planar area per nucleus. Data

are means ± SE, n = 3 independent experiments, *p < 0.05, **p < 0.01

indicates statistical significance for the effects of pyruvate at the same levels of

Akt inhibitor; #p < 0.05 indicates statistical significance for the effects of Akt

inhibitor at the same levels of pyruvate assessed by paired t-test. (C) Relative

expression of Dcstamp in osteoclast cultures treated with pyruvate and Akt

inhibitor at 1, 5, 10 µM. Data are means ± SD, n = 3 replicates, *p < 0.05

indicates statistical significance for the effects of Akt inhibitor assessed by

ANOVA. (D) Schematics of proposed signaling events mediating the effect of

bioenergetics on osteoclast fusion and growth.

activity normalized to a single nucleus (Yagi et al., 2005).
Direct comparison of osteoclasts containing different number of
nuclei demonstrated that large osteoclasts have higher relative
expression of many osteoclast markers including integrins αv
and β3, cathepsin K, and RANK compared to small osteoclasts
(Trebec et al., 2007). However, whether it is the number of
nuclei or the cytoplasmic size that is essential for osteoclastic
resorption is not clear. Our data suggest that obtaining large size
is an important objective of osteoclastogenesis, and that it can
be attained either through monocyte fusion, or through fusion-
independent cytoplasm growth, or through the combination of
these processes. To understand why large cell size can increase
osteoclast resorptive activity we should consider that the process
of resorption occurs on the surface of the bone, therefore for
an osteoclast with the radius of R, the area it can attach to and
engage in resorption is proportional to R2. On the other hand,
osteoclast function is based on the specific protein content within
the volume of the cell, which with the increase in osteoclast size
changes proportionally to R3. Therefore, a 10-fold increase in cell
radius, from 10 µm normal for monocytic precursors to 100 µm
common for osteoclasts, results in 10-fold increase in cell volume
per unit area under resorption, providing 10 times more protein
(assuming uniformity of protein content), such as proteases, for
secretion, as well as ATP, necessary for ATPase function. Thus,
we propose that it is overall cell size, rather than nucleation, that
is important for osteoclast function, however whether osteoclasts
target a predetermined cell size, or a maximal size that can be
attained within a differentiation window remains to be resolved.
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Wehave found thatmTOR signaling is central for determining
osteoclast size. Two distinct complexes can be formed by
mTOR—mTORC1, which contains raptor as mTOR binding
partner and regulates protein synthesis in part through
phosphorylation of p70S6K and 4E-BP1, and mTORC2 with
rictor as mTOR binding partner, which affects cytoskeletal
organization and lipid metabolism (Sarbassov et al., 2005a; Foster
and Toschi, 2009; Ma and Blenis, 2009; Laplante and Sabatini,
2013; Gaubitz et al., 2016). Previous studies demonstrated
the important role of mTOR in osteoclast differentiation and
survival (Glantschnig et al., 2003; Sugatani and Hruska, 2005;
Hu et al., 2016; Dai et al., 2017). We have found that mTOR
association with raptor and rictor was affected by the nutrient
availability during osteoclast differentiation. In addition, Akt,
which is also known to regulate osteoclast differentiation and
survival (Sugatani and Hruska, 2005; Gingery et al., 2008; Kwak
et al., 2008), was found to be a downstream target of mTOR.
Previous studies have suggested that mTORC2 directly regulates
AKT activity (Sarbassov et al., 2005b), our data suggest that
such regulation may occur in our experimental conditions.
Pharmacological inhibition of Akt resulted in strong decrease in
fusion, which in energy-rich environment was compensated by
increase in cytoplasmic growth. Of interest, we have previously
demonstrated that inhibition of a mitogen activated protein
kinase ERK1/2 during osteoclastogenesis also significantly
decreased osteoclast nucleation while increasing cell area/nucleus
(Tiedemann et al., 2009), suggesting that ERK and Akt pathways
may be part of the same pathway that regulates osteoclast fusion.
Based on these data, we hypothesize the following sequence of
events: in control cells, mTOR is distributed between mTORC1
fraction that regulates protein synthesis (and thus transcriptional
output) and mTORC2 fraction that through activation of Akt
regulates cell fusion (and thus genome content). Energy-rich
environment permits a large increase in transcriptional output,
and thus mTORC1 fraction increases. In turn, since the protein
synthesis requirements are met through upregulated translation,
increase in genome content through cell fusion is not required,
and thus mTORC2 fraction decreases. It has been previously
demonstrated that all osteoclast nuclei are similarly engaged in
transcription, and that transcriptional activity of osteoclast nuclei
is strongly upregulated when osteoclasts engage in resorption
(Boissy et al., 2002). Our data suggest that genome content and
transcriptional output are closely regulated during osteoclast
formation as well as osteoclast function.

Energy availability was found to significantly affect the
execution and the outcome of the osteoclastogenesis process. We
have previously demonstrated that metabolic sensor AMPK was
significantly inhibited during osteoclastogenesis in the presence
of pyruvate (Fong et al., 2013). AMPK is directly linked to
energy metabolism, since it is activated by an increase in AMP
reflecting cell inability to cope with energy demands. AMPK
activation leads to energy conservation through inhibition of
cell growth, lipogenesis and protein biosynthesis (Gwinn et al.,
2008; Lage et al., 2008). mTOR is a target and a counterpart

of AMPK signaling—activation of AMPK leads to mTOR
inhibition, reducing energy used in protein synthesis. Cell
growth and proliferation are known to be regulated by mTOR
according to nutrient and energy status (Sarbassov et al.,
2005a; Gwinn et al., 2008). In our studies, we have found
that in the presence of pyruvate AMPK was inhibited, while
mTORC1 complex was stimulated, leading to cell growth.
Importantly, we have found that the presence of small amount
of pyruvate, 1 mM, significantly decreased the effectiveness
of mTOR/Akt inhibitors in reducing osteoclastogenesis.
Taken together these data demonstrate that osteoclastogenesis
is energy-dependent and bioenergetics-tailored process,
and also suggest that bioenergetics microenvironment can
significantly modify the effectiveness of inhibitors of involved
pathways.

This study demonstrates that osteoclasts can attain
large cell size through cell fusion thus increasing
genome content, or through cell growth by increasing
transcriptional output. Since osteoclasts of large size have
been implicated in the pathological bone resorption,
better understanding of the regulation of osteoclast size
is important for development of selective inhibitors
targeting osteoclasts actively engaged in pathological bone
destruction, while preserving physiological levels of osteoclast
activity.
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