
REVIEW
published: 13 June 2017

doi: 10.3389/fcell.2017.00062

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2017 | Volume 5 | Article 62

Edited by:

Marietta Herrmann,

AO Foundation, Switzerland

Reviewed by:

César Nombela Arrieta,

University of Zurich, Switzerland

Julien Y. Bertrand,

Université de Genève, Switzerland

Eirini Trompouki,

Max Planck Institute of Immunobiology

and Epigenetics, Germany

*Correspondence:

Keiyo Takubo

keiyot@gmail.com

Specialty section:

This article was submitted to

Stem Cell Research,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 30 January 2017

Accepted: 24 May 2017

Published: 13 June 2017

Citation:

Morikawa T and Takubo K (2017) Use

of Imaging Techniques to Illuminate

Dynamics of Hematopoietic Stem

Cells and Their Niches.

Front. Cell Dev. Biol. 5:62.

doi: 10.3389/fcell.2017.00062

Use of Imaging Techniques to
Illuminate Dynamics of
Hematopoietic Stem Cells and Their
Niches
Takayuki Morikawa and Keiyo Takubo*

Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan

Continuous generation of blood cells over an organism’s lifetime is supported by

hematopoietic stem/progenitor cells (HSPCs) capable of producing all hematopoietic

cell subtypes. Adult mammalian HSPCs are localized to bone marrow and regulated by

their neighboring microenvironment, or “niche.” Because interactions of HSPCs with their

niches are highly dynamic and complex, the recent development of imaging technologies

provides a powerful new tool to understand stem cell/niche biology. In this review, we

discuss recent advances in our understanding of dynamic HSPC/niche interactions

during development, homeostasis, disease states or aging with a focus on studies

advanced by imaging analysis. We also summarize methods to visualize HSPCs and

niche cells in vivo, including use of HSPC reporter mice and chemical probes. Findings

emerging from these investigations could suggest novel therapies for diseases and aging.
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INTRODUCTION

In mammals, a lifetime supply of mature blood cells by a process known as hematopoiesis is
maintained by differentiation and proliferation of hematopoietic stem/progenitor cells (HSPCs)
in response to physiological or pathological stimuli. Removal of aging hematopoietic cells by
phagocytes is a physiological stimulus for blood cell generation, while massive loss of mature
blood cells due to infection, inflammation or bleeding functions as a pathological stimulus for
hematopoiesis. Both types of stimuli alter gene expression and/or post-transcriptional events that
prompt cell cycle activation or changes in cell fate decisions by hematopoietic stem cells (HSCs) to
producemore fate-restricted progenitors. Those cells then producemature blood cells to supply lost
populations. Based on analysis of the hematopoietic system, which emerges fromHSCs, one trillion
blood cells are reportedly produced daily in an average human weighting 70 kg under physiological
conditions (Ogawa, 1993). The detailed analysis of spatiotemporal regulation of hematopoiesis
could foster development of novel therapies and diagnostics for infection, immunological disease,
and hematological malignancies.

Use of imaging techniques has revealed that hematopoietic activities in both steady state and
pathological conditions are dynamic and that their sequence is regulated spatiotemporally by
interaction with the niche. Further development and application of imaging techniques, including
in vivoHSC labeling, has revealed critical details relevant to the biology of the hematopoietic system
(Kataoka et al., 2011; Chen et al., 2012; Koechlein et al., 2016; Sawai et al., 2016). Here, we review
recent advances relevant to in vivo and in vitro imaging analysis of HSCs and their niches and
discuss future directions.
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HSC VISUALIZATION

Labeling Strategies Useful for HSC
Tracking
Flow cytometry is commonly used to identify and purify HSCs
in bone marrow. In this method, bone marrow cells stained by
fluorophore-labeled antibodies that recognize HSC cell surface
markers are sorted and injected into immunosuppressed mice.
Consequently, donor HSCs engraft in bone marrow, enabling
prospective identification and isolation of HSCs that exhibit
self-renewal and multi-differentiation capacity in vivo. However,
this method cannot provide spatial and temporal information
relevant to HSC dynamics with the niche, an analysis that
requires bonemarrow dissection. The direct visualization of bone
marrow is required to analyze HSCs in the context of the niche.

Microscopic analysis has helped define HSC niche structure
(Table 1): briefly, confocal microscopy is used to scan bone
marrow sections stained immunohistochemically and provides
clear image at high speed (Joseph et al., 2013). Whereas it is
hard to obtain images from deep part of tissue by using confocal
microscopy, the light sheet microscopy allows us to visualize the
deep portion of bone marrow (Chen et al., 2016; Greenbaum
et al., 2017). Intravital deep imaging enabled by multi-photon
microscopy has allowed analysis of cellular and oxygen dynamics
in murine calvarial bone marrow.

Classically, labeling of HSPCs by fluorescent dyes, including
carboxyfluorescein succinimidyl ester (CFSE), has been used to
track transplanted HSPCs in bone marrow, and methods used
to detect transplanted fluorophore-labeled HSPCs include flow

TABLE 1 | Listed are advantages and disadvantages of major options for imaging the HSC niche (Lieschke and Currie, 2007; Joseph et al., 2013).

Equipment Advantages Disadvantages Possible outcome

Electron microscope Very high resolution Unsuitable for in vivo imaging Ultrastructural features of HSC niche

Confocal microscope High resolution High scan speed Limited observing depths

Photo-bleaching effect

Phototoxic impact

Positional relationship between

HSPC and niche cells

Multi-photon microscopy Deeper observation depth

Minimum photo-bleaching effect

Lower phototoxicity

Limited scan speed Expense Dynamics of HSPCs and niche in bone

marrow

Light sheet microscopy Excellent observation depth

High scan speed Minimum photo-bleaching

effect

Lower phototoxicity

Unsuitable for tissue with strong light

scattering property

Conformation of niche structure in whole

bone marrow

TARGETS

In vitro Many tissues can be subjected to observation

Numerous types of factors can be visualized

Physiological properties may not be

revealed

Microstructure of HSC niche in long bone

In vivo Biological responses can be observed Limited observable regions Pathophysiological phenomenon in the

HSC niche

DIMENSION

2D Distance can be measured Unsuitable for structural understanding of

bone marrow

Distance between HSPC and niche cells

3D Tissue geometry is easy to understand Limited temporal resolution Shape and alignment of HSPCs and niche

cells

SPECIES

Mouse Various transgenic lines for HSPCs and niche

cells are available

Poor tissue transparency HSPC/niche interactions in bone marrow

Zebrafish Higher optical clarity More rapid life cycle Anatomical similarity to terrestrial

mammals is limited

HSPC/niche interactions during

development

cytometry, confocal microscopy, or multi-photon microscopy.
Given that fluorophore-labeled cells lose fluorescence at each
cell division (Weston and Parish, 1990; Lyons and Parish, 1994),
fluorescence intensity also reflects the cell division history of
transplanted cells over time (Takizawa et al., 2011). Insertion of
intravital flexible microprobe into mouse femoral bone reveals
that transplanted CFSE-labeled HSCs associate with vascularized
structures in the femoral head (Lewandowski et al., 2010).

HSPC labeling requires HSPC isolation and incubation with
dyes ex vivo prior to transplantation, and therefore this method
allows analysis of only short-term dynamics after transplantation.
Various transgenic reporter zebrafish and mice have been
established to obtain spatial and temporal information relevant
to normal dynamics of HSPCs by imaging analysis (Table 2).
For example, promoter/enhancers of genes expressed primarily
in murine HSCs (such as Evi1, Hoxb5, Pdzk1ip1, or Musashi2)
are utilized to drive expression of fluorescent protein reporter
genes (Kataoka et al., 2011; Chen et al., 2012; Koechlein et al.,
2016; Sawai et al., 2016). Reporter mice enabling detection of
HSCs and endothelial cells (ECs) have also been used to identify
HSCs in bone marrow (Gazit et al., 2014; Acar et al., 2015).
Although discrepancies in location between endogenous factors
and reporter constructs occasionally occur, transgenic animals
harboring reporters are powerful tools useful to visualize HSPCs
in various hematopoietic organs, including bone marrow.

Imaging of HSC Movement and Location
Transgenic reporter mice have made it possible to detect HSCs
and track their fate in vitro and in vivo based on fluorescence
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TABLE 2 | Examples of key studies using reporter mice to detect HSPCs.

Driver element Reporter Methods Analysis References

Zebrafish CD41 (Tg) GFP Zebrafish In vivo Imaging

Clonal fate

mapping

Confocal microscopy

Flow cytometry

Henninger et al., 2017

Zebrafish runx1 (Tg) GFP mCherry Zebrafish In vivo Imaging Confocal microscopy

Flow cytometry

Tamplin et al., 2015

Zebrafish runx1 (Tg) GFP Zebrafish In vivo Imaging Confocal microscopy

Flow cytometry

Hall et al., 2012

Zebrafish CD41 (Tg) GFP Zebrafish In vivo Imaging Confocal microscopy Kissa and Herbomel,

2010

Mouse Msi2 (KI) eGFP Mouse In vivo Imaging Confocal microscopy Koechlein et al., 2016

Mouse Hoxb5 (KI) Tri-mCherry Mouse In vivo

In vitro

Transplantation

Tissue clearing

Flow cytometry

Lightsheet microscopy

Chen et al., 2016

Mouse Pdzk1ip1 (Tg) GFP Mouse In vitro Doxycycline chase

Transplantation

Flow cytometry Sawai et al., 2016

Human CD34-tTA (Tg) H2B-GFP Mouse In vivo Doxycycline chase

Transplantation

Flow cytometry Bernitz et al., 2016

Mouse α-catulin (KI) GFP Mouse In vitro Tissue clearing

Immunostaining

Confocal microscopy

Multi-photon microscopy

Acar et al., 2015

Mouse Fdg5 (KI) mCherry Mouse In vivo Transplantation Flow cytometry Gazit et al., 2014

Mouse Vwf (Tg) eGFP Mouse In vivo Transplantation Flow cytometry Sanjuan-Pla et al., 2013

Mouse Scl-tTA (Tg) H2B-GFP Mouse In vivo

In vitro

Doxycycline chase

Immunostaining

Flow cytometry

Confocal microscopy

Sugimura et al., 2012

Mouse Evi1 (KI) GFP Mouse In vivo Transplantation Flow cytometry Kataoka et al., 2011

Mouse Ly6a (Tg) GFP Mouse Ex vivo Imaging Confocal microscopy Boisset et al., 2010

Mouse Scl-tTA (Tg) H2B-GFP Mouse In vivo Doxycycline chase Flow cytometry Wilson et al., 2008

Tg, Transgenic; KI, Knock-in; tTA, Tetracycline-controlled transactivator protein.

imaging. For instance, mice created using knock-in of a reporter
driven by the RNA-binding protein Musashi2 (Msi2) enabled
confocal laser scanning microscopy analysis of HSPC movement
in calvarial bone marrow (Koechlein et al., 2016); that study
revealed that HSPCs residing near vessels migrate toward close
proximity to endosteum (Figure 1).

Also, GFP knock-in into the α-catulin gene, which is
dominantly expressed in HSCs, allowed detection of HSCs in
the niche (Acar et al., 2015). Use of these mice combined
with techniques to clear bone and bone marrow has provided
microscopic evidence that the HSC niche is perisinusoidal in
bone marrow (Acar et al., 2015).

Tracking of HSC Division
In addition to the HSC-specific promoter/enhancer-based
labeling techniques, the non-dividing phenotype of highly
primitive HSCs has been exploited to analyze and purify HSCs.
Retaining of 5-bromo-2-deoxyuridine (BrdU) by long-term
quiescent HSCs serves as a way to detect this cell type (Wilson
et al., 2008). However, non-dividing cells that retain the BrdU
label can be identified only after fixation, which kills cells, and
this approach is not suitable to isolate living, quiescent HSCs for
further analysis.

To resolve this difficulty, a tetracycline (Tet)-inducible
expression system employing a histone H2B/fluorescent protein
fusion gene was developed (Wilson et al., 2008; Foudi et al.,

FIGURE 1 | Illustration of in vivo and in vitro bone marrow imaging. (Upper left

panel) Calvarial bone marrow subjected to in vivo imaging. Use of reporter mice

and in vivo staining allows HSPC detection in calvarial bone marrow. (Lower

left panel) Intravenous injection of fluorescent dye (red) and second harmonics

generation (blue), respectively, identify blood vessels and bone. HSPC

behavior is analyzed using a chemical or genetic fluorescent reporter (green).

(Right panel) Schematic showing femoral and tibial bone marrow, including

HSPCs and niche cells, as revealed by immunostaining. Niche components

and their spatial relationships can be observed by imaging analysis.
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2009; Sugimura et al., 2012; Bernitz et al., 2016; Säwén et al.,
2016). This system is based on the idea thatmature hematopoietic
cells and HSPCs express the basic helix-loop-helix transcription
factor stem cell leukemia (Scl, also known as Tal1), a factor that
regulates embryonic and adult hematopoiesis by HSC production
and maintenance (Robb et al., 1995; Shivdasani et al., 1995;
Mikkola et al., 2003).

A knock-in mouse line harboring the tetracycline
transactivator (tTA) under control of endogenous Scl could
mark Ter119+ erythroid cells, Gr-1+ granulocytes, CD41+

megakaryocytes and lineage marker (Lin)-negative c-Kit+

HSPCs (Bockamp et al., 2006). This line is then crossed to a
transgenic line expressing the histone H2B-GFP fusion protein
under control of a tetracycline-responsive regulatory element
(TRE). In Scl-tTA::TRE-H2B-GFP double heterozygous mice,
greater than 80% of HSC/MPPs express GFP at high levels. In
one analysis, after 70 days of doxycycline chase, Lin− GFPbright

cells were highly enriched for non-cycling HSCs (Wilson et al.,
2008). Using this system, non-dividing GFPbright HSCs and niche
cells were visualized by confocal microscopy, and HSCs were
seen in contact with N-cadherin-positive osteoblasts and these
osteoblasts activate non-canonical Wnt signaling in the HSC
niche (Sugimura et al., 2012). Another seminal study using the
hCD34-tTA::TRE-H2B-GFP line showed that HSCs reach a state
of complete dormancy after four self-renewal events (Bernitz
et al., 2016). The identity of factors that regulate spatiotemporal
dynamics of HSC division over this time is a topic for future
investigation.

As noted above, while simultaneous identification of multiple
cell types remains imperfect due to the limited number of
fluorescent dyes applicable to a single experiment, the emergence
of novel imaging technologies has facilitated analysis of HSPC
movement and molecular interactions in the niche.

USE OF IMAGING TECHNOLOGIES TO
ANALYZE THE HSC NICHE DURING
DEVELOPMENT

Imaging technology can reveal spatiotemporal cellular
interactions and dynamics in the HSC niche. In particular,
transgenic animal lines expressing fluorescent proteins in
niche cells enable visualization of HSPC interaction with the
hematopoietic microenvironment (Table 3). Zebrafish are now
a powerful model in which to define mechanisms relevant
to hematopoiesis and characterize HSC interactions with the
microenvironment that govern development (Lieschke and
Currie, 2007). In zebrafish, hematopoietic cell lineages are
derived from posterior lateral mesoderm (PLM) cells, and Notch
signaling between PLM cells and their scaffold, somitic cells, is
required for hematopoietic development (Kobayashi et al., 2014).
Using two-dimensional (2D) time-lapse live imaging of zebrafish
embryo has revealed that HSCs are derived directly from aortic
endothelium during development (Bertrand et al., 2010; Kissa
and Herbomel, 2010). HSPCs then enter the bloodstream and
arrive at the endothelial network in the ventral region of the
embryo called the caudal hematopoietic tissue (CHT). HSPCs

subsequently attach to the endothelium and remodel the CHT
vascular plexus to form a surrounding pocket serving as a site for
HSPC division (Tamplin et al., 2015).

Zebrafish models have also been useful to define embryonic
HSC niche function. For example, nitric oxide production
in the aorta-gonad-mesonephros (AGM) region is critical
for a larval hematopoietic response to bacterial infection,
as shown by studies using three-dimensional (3D) confocal
live imaging (Hall et al., 2012). Since zebrafish embryos are
relatively easy to manipulate, some have employed clonal
mapping using multi-color genetic labeling and reported
evidence suggesting that a limited number of HSC clones
contributes to life-long hematopoiesis (Henninger et al., 2017).
While wild-type zebrafish embryos are of high clarity, a
transgenic line is now available with a body transparent
enough for imaging analysis in adult fish (White et al.,
2008).

In mammals, bone marrow HSCs are derived from embryonic
hemogenic ECs in AGM. Fetal HSCs from AGMmigrate to fetal
liver (FL) or spleen and then expand their number. Analysis
of Ly6a (Sca-1)-GFP transgenic mice, in which HSPCs are
GFP-positive (Ma et al., 2002), combined with 3D confocal
microscopy, has revealed the precise timing of HSC emerging
can be visualized at the embryonic aortic endothelium (Boisset
et al., 2010). Confocal microscopy-based 3D imaging of Ly6a-
GFP embryos has revealed that HSPCs from FL interact with
ECs (Tamplin et al., 2015). By improving sample preparation and
imaging technology, longer time-lapse imaging of developmental
stages will provide a more complete picture of HSC migration
between organs.

Other imaging analysis has suggested that portal vessel-
associated pericytes serve as critical HSC niche components
in mouse FL (Khan et al., 2016). Specifically, in mice at
birth, portal vessels change from a Neuropilin-1+Ephrin-
B2+ artery to EphB4+ vein phenotype, resulting in pericyte
loss and HSC release from FL. Perivascular lodgment of
HSPCs induces active remodeling of the perivascular niche
to promote HSPC expansion and maintenance in FL during
development.

Post-natal hematopoiesis in mammals occurs mainly in
bone marrow. Essential processes of bone development and
ossification precede bone marrow development and begin
embryonically. In the case of long bones, mineralization of
cartilage is followed by blood vessel invasion of the central
region of that tissue. Blood then perfuses bones, and actively
dividing HSPCs arrive as early as E16.5 in mice, as revealed
by 2D immunohistochemical analysis (Coskun et al., 2014).
A recent study using in vitro imaging system reported that
these HSPCs in fetal bone marrow switch from actively-dividing
to quiescent, a transition mediated by osteoblast activity, as
loss of osteolineage cells in Osx−/− mice perturbs induction
of HSPC quiescence (Coskun et al., 2014). Another study
reports active division of murine HSCs in bone marrow until
3 weeks of age, but after 4 weeks HSCs stop dividing and
become quiescent (Bowie et al., 2006). However, molecular and
environmental cues that induce these phenotypic changes remain
unclear.
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TABLE 3 | Examples of key studies using reporter mice to detect niche cells by genetically expressing fluorescent protein.

Driver element Reporter Target cell Model Analysis References

Zebrafish kdrl (Tg)

Zebrafish cxcl12a (Tg)

GFP, mCherry

DsRed2

ECs Stromal cells Zebrafish In vivo Confocal microscopy

Flow cytometry

Tamplin et al., 2015

Zebrafish kdrl (Tg)

Zebrafish fli1 (Tg)

GFP, DsRed

mCherry

ECs ECs Zebrafish In vivo

In vitro

Confocal microscopy

Flow cytometry

Kobayashi et al., 2014

Zebrafish kdrl (Tg) mCherry ECs Zebrafish In vivo Confocal microscopy

Flow cytometry

Hall et al., 2012

Zebrafish kdrl (Tg) GFP, dTomato ECs Zebrafish In vivo Confocal microscopy Kissa and Herbomel,

2010

Zebrafish kdrl (Tg) mCherry ECs Zebrafish In vivo Confocal microscopy

Flow cytometry

Bertrand et al., 2010

Mouse Efnb2 (Tg)

Mouse Flk1 (Tg)

GFP GFP ECs ECs Mouse In vivo Multi-photon

microscopy

Bixel et al., 2017

Mouse Sca-1 (Tg)

Rat nestin (Tg)

EGFP EGFP ECs ECs Mouse In vivo

In vitro

Confocal microscopy

Multi-photon

microscopy

Itkin et al., 2016

Rat nestin (Tg) GFP MSCs Mouse In vivo Multi-photon

microscopy

Spencer et al., 2014

Mouse Cxcl12 (KI) GFP MPCs Mouse In vitro Confocal microscopy Greenbaum et al., 2013

Rat nestin (Tg) GFP MSCs Mouse In vitro Confocal microscopy Kunisaki et al., 2013

Mouse CxclL12 (KI)

Mouse Scf (KI)

Rat Col2.3 (Tg)

DsRed GFP GFP EC PVSCs

Perivascular cells

Osteoblasts

Mouse In vitro Confocal microscopy Ding and Morrison, 2013

Mouse Scf (KI)

Rat nestin (Tg)

Rat nestin-cre (Tg)

Rat Col2.3-cre (Tg)

Mouse Lepr-cre (KI)

GFP GFP Cherry

loxP-EYFP

loxP-EYFP

loxP-EYFP

Perivascular cells

PVSCs PVSCs

Osteoblasts

PVSCs

Mouse In vitro Confocal microscopy Ding et al., 2012

Mouse Foxp3 (KI) GFP Tregs Mouse In vivo Multi-photon

microscopy

Fujisaki et al., 2011

Mouse Cxcl12 (KI) GFP CAR cells Mouse In vitro Confocal microscopy Omatsu et al., 2010

Rat Col2.3 (Tg) GFP Osteoblasts Mouse In vivo Multi-photon

microscopy

Lo Celso et al., 2009

Mouse Vegfr2 (KI)

Rat Col2.3 (Tg)

GFP GFP Sinusoidal ECs

Osteoblasts

Mouse In vitro Confocal microscopy Hooper et al., 2009

Many of these lines have been used for imaging studies. Tg, Transgenic; KI, Knock-in; EC, Endothelial cells; PVSCs, Perivascular stromal cells; CAR cells, CXCL12-abundant reticular

cells.

THE ADULT HSC NICHE

Structural and Regional Analysis of the
Adult HSC Niche
Imaging analysis has demonstrated complex interactions
between HSC and niche cells, as illustrated in Figure 1. In adult
mouse bone marrow, the perivascular region is the major HSC
niche and is composed of various cell types that function in
HSC maintenance. To understand how HSC and various niche
cells interact, it is crucial to know the histological structure and
properties of bone marrow including vasculature components.

The types of blood vessels in bone marrow are described
as follows. Arterial blood flow in bone marrow is mainly
supplied by nutrient vessels that penetrate cortical bone.
These vessels merge and then form the central artery
of bone marrow. Arterioles branch from the central
artery toward cortical bone and anastomose with the
sinusoid. Transition zone vessels connect arterioles and
sinusoidal vessels. Sinusoidal vessels then connect with
the central vein, and blood flows from bone marrow
through the nutrient vein (Li et al., 2009; Acar et al., 2015;
Morikawa and Takubo, 2016). These vessels are classified by
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morphological or cellular characteristics revealed by imaging
analysis.

Based on imaging analyses of bone marrow, both arteriolar
and sinusoidal regions serve as HSC niches (Nombela-Arrieta
et al., 2013). Functionally, arteriolar niche cells promote HSC
quiescence and sinusoids represent a proliferative HSC niche
(Kunisaki et al., 2013). In vivo imaging is now an essential
not only to track cell movement but to obtain information
relevant to blood flow and vascular permeability in bone marrow.
Sinusoid exhibits higher vascular permeability than do arteries
or arterioles, a property important for bidirectional trafficking
of HSCs and differentiated cells between bone marrow and the
circulation (Itkin et al., 2016). 3D vascular structural analysis and
blood flow measurement using multi-photon laser microscopy
suggest that sinusoidal blood flow and shear stress are lower
than that seen in the arteriole (Bixel et al., 2017). This study
shows that blood flow profiles modulate HSPC homing in the
bone marrow vasculature and employs calvaria and femur for in
vivo imaging and FACS analysis, respectively. Since it is known
that hematopoiesis continues in flat bone predominantly in
aged human, hematological differences exhibited by these bones
are particular interest in future studies. Because the impact of
anesthesia or surgical stress on hematopoiesis remains unclear, it
is important to carefully interpret results from intravital imaging
analysis.

Imaging in mouse has also identified a function of the
endosteal region as a regulatory environment for HSCs. For
example, ex vivo imaging of mouse bone reveals that engrafting
HSCs are maintained in the endosteal region after irradiation
(Xie et al., 2009). Furthermore, in vivo imaging shows that
transplanted HSCs dive into close proximity to endosteum (Lo
Celso et al., 2009), supporting the idea that the latter functions in
HSC homing to damaged bone marrow.

Interaction between Niche Cells and
HSPCs in Adult Bone Marrow
Endothelial Cells
Bone marrow endothelium expresses the adhesion molecule
E-selectin, playing role in the homing and engraftment of
circulating HSPCs (Hidalgo et al., 2002; Katayama et al., 2003).
Imaging techniques provides evidence that perisinusoidal HSC
proliferation is stimulated by cellular interactions with E-selectin
expressed on ECs (Winkler et al., 2012). Sinusoidal ECs also
express vascular endothelial cell growth factor (VEGF) receptor
2, and VEGF signaling is required to reconstitute hematopoiesis
and maintain HSCs after myeloablation (Hooper et al., 2009).
Moreover, Notch ligand secreted by sinusoidal ECs promotes
HSC proliferation (Butler et al., 2010).

Confocal microscopy of bone marrow from cytokine stem cell
factor (Scf)-GFP knock-in mice revealed that ECs, which form
the inner lumen of blood vessels, function in HSC maintenance
by producing SCF (Ding et al., 2012).

Mesenchymal Stromal Cells
Mesenchymal Stromal cells (MSCs), which are associated with
sinusoidal ECs, have been proposed as niche cells, as they
produce factors important to maintain HSCs, such as SCF

and CXCL12 (Omatsu et al., 2010; Ding and Morrison, 2013;
Greenbaum et al., 2013). Mice engineered to harbor fluorescent
reporters at the Scf or Cxcl12 loci provide support that MSCs
highly express both genes and are required for HSC the
maintenance in bone marrow. The application of tissue clearing
methods to bone analysis has increased light transmission of
tissue harboring fluorescent protein tags. Tissue clearing and
whole bone marrow imaging by using light sheet microscopy of
α-catulin-GFP mice demonstrates that in perisinusoidal regions,
HSCs reside primarily with MSCs, which highly express the
leptin receptor and Cxcl12 (Acar et al., 2015). In support of
this finding, others have applied a tissue clearing method to
bone marrow plugs of Hoxb5-Tri-mCherry mice, in which HSCs
are specifically marked (Chen et al., 2016). In this analysis,
Hoxb5+ HSCs are localized to the perivascular localization of
bone marrow. Most of these HSCs are quiescent (Chen et al.,
2016). Additional advances in tissue clearing techniques in mice
now enable whole body imaging (Tainaka et al., 2014). These
types of methodologies could allow analysis of HSPC distribution
throughout the entire body.

Analysis using Nestin-GFP transgenic mice indicates that
arterioles are associated with Nestin-GFPbright perivascular
stromal cells (Kunisaki et al., 2013). These cells have MSC
properties ex vivo, highly express the pericyte marker NG2, and
reside close to HSCs. Analysis of Nestin-GFP transgenic mice
also shows that Nestin-GFPdim cells associate with sinusoids
(Kunisaki et al., 2013). Nestin-GFPbright cells are more quiescent
than Nestin-GFPdim cells and highly express HSC niche factors.
The periarteriolar niche may maintain HSCs in a more primitive
state than those in the sinusoidal niche (Kunisaki et al., 2013).

Neurons and Non-myelinating Schwann Cells
Immunohistochemical analysis shows that the periarteriolar
niche, which harbors Nestin-GFPbright, cells, is innervated by
sympathetic neurons (Méndez-Ferrer et al., 2008). Bone marrow
sympathetic nerves release noradrenaline from terminals, an
activity that reduces Cxcl12 expression in bone marrow stroma
cells. As a result, sympathetic signaling activated by G-CSF
promotes HSC release from the niche (Katayama et al., 2006;
Méndez-Ferrer et al., 2008). The periarteriolar sympathetic nerve
fibers are ensheathed by non-myelinating Schwann cells that
activate a latent form TGF-β to maintain HSC quiescence
(Yamazaki et al., 2011). 2D confocal imaging of bone marrow
reveals that non-myelinating Schwann cells colocalize with HSCs
and run parallel to arterioles and sympathetic nerves (Yamazaki
et al., 2011; Itkin et al., 2016). These observations support
the idea that the periarteriolar region forms a neurovascular-
stromal unit that regulates HSC dynamics in vivo. Also, intravital
imaging of the steps of that migration of G-CSF-stimulatedHSPC
mobilization from the niche is an area for further investigation.

Hematopoietic Cells
In addition to mesenchymal lineage cells, hematopoietic cells
function as HSC niche cells. While platelet production is a
major function of megakaryocytes, they also produce niche
factors, among them, Cxcl4, TGF-β, and thrombopoietin, in
bone marrow. Confocal microscopy, whole-mount imaging and
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computational modeling suggest that megakaryocytes and HSCs
co-localize (Bruns et al., 2014; Nakamura-Ishizu et al., 2014; Zhao
et al., 2014).

Macrophages are critical for G-CSF-induced mobilization of
HSCs and are considered a niche cell (Winkler et al., 2010;
Chow et al., 2011). Confocal microscopic analysis reveals that
macrophages reside in the vicinity of Nestin+ MSC niche
cells, and crosstalk between these two cell types enhances HSC
retention in the niche.

Regulatory T (Treg) cells suppress immune responses. Survival
time of transplanted allogenic HSPCs in Treg cell-depleted mice
is shorter than that seen in intact mice as revealed by analysis
of FoxP3-GFP reporter mice (Fujisaki et al., 2011). Treg cells
suppress immune responses at the HSC niche. In vivo imaging
analysis using multi-photon microscopy also reveals spatial
interactions between Treg cells colocalizing with HSPCs (Fujisaki
et al., 2011).

Non-cellular Elements
Non-cellular elements also serve as HSC niche factors. Studies
using computer simulations of pO2 distribution suggest that the
hematopoietic compartment is relatively hypoxic (Chow et al.,
2001), a condition that maintains HSCs by various mechanisms,
including lowering levels of reactive oxygen species (ROS).
Imaging has been used to assess the relationship between hypoxia
and HSCs stemness. Imaging analysis using oxygen-sensing
chemical probes now provides better understanding of molecular
oxygen distribution in bone marrow. When incorporated
into hypoxic tissues, pimonidazole, a hypoxia probe, can be
detected by immunohistochemistry or flow cytometry with anti-
pimonidazole antibodies. Using this technique, the HSPCs in
bone marrow were found to be hypoxic (Takubo et al., 2010;
Nombela-Arrieta et al., 2013).

Improved tissue clearing techniques combined with 3D
imaging of thick bone marrow sections confirm that the hypoxic
property of HSPCs is independent of their distance from the
vasculature (Nombela-Arrieta et al., 2013). HSCs utilize the
cellular hypoxia-response system to maintain quiescence and
glycolytic metabolic properties (Takubo et al., 2010, 2013). Direct
analysis of the bone marrow niche using a phosphorescence
lifetime-based O2 sensing technique and intravital microscopy
suggests that (i) bone marrow extracellular space is generally
hypoxic and (ii) pO2 in the periosteum region, where arterioles
reside, is higher than in the peri-sinusoidal region located far
from the endosteum (Spencer et al., 2014). This study provided
local pO2 information at different regions of bone marrow.
Additional dynamic analysis of 2D/3D oxygen distribution
in bone marrow and other organs will be required to fully
understand how hypoxia maintains stemness of HSC.

USE OF IMAGING TO ANALYZE
LEUKEMIA, INFECTION, AND
AGE-RELATED EVENTS IN THE HSC
NICHE

In vivo imaging of bone marrow using a custom-built
fluorescence confocal/multiphoton microscope revealed

that pre-B-cell acute lymphoblastic leukemia (ALL) cells
preferentially home to bone marrow vessels that express the
adhesion molecule E-selectin and Cxcl12 (Sipkins et al., 2005).
ALL cells also locally metastasize to Cxcl12-expressing vascular
niche cells (Colmone et al., 2008). ALL cells also alter niche
cell properties, decrease Cxcl12 production and induce SCF
overexpression in bone marrow. In vivo time-lapse imaging of
the T-ALL niche also reveals that T-ALL cells directly induce
osteoblast shrinking and blebbing (Hawkins et al., 2016).
Acute myelogenous leukemia and myeloproliferative neoplasms
remodel the bone marrow microenvironment by disrupting
niche cells, such as MSCs, neurons and Schwann cells (Arranz
et al., 2014; Hanoun et al., 2014). As part of the host defense
system, immune cells are consumed during infection, activating
hematopoietic stem cells to supply blood cells (King and Goodell,
2011). Toll-like receptors and interferon receptors on HSPCs
sense infection stress and activate a myeloid differentiation
pathway called “emergency myelopoiesis” (Nagai et al., 2006).
HSPCs also directly recognize the bacterial product bis-(3′-
5′)-cyclic dimeric guanosine monophosphate (c-di-GMP)
through the innate immune sensor STING. Activation of the
c-di-GMP/STING pathway mobilizes HSPCs to peripheral blood
(Kobayashi et al., 2015). c-di-GMP also suppresses expression
of niche factors (namely, Cxcl12, SCF and Angiopoietin-1)
in various non-hematopoietic niche cells. c-di-GMP induces
expansion of the sinusoidal area of bone marrow, as revealed
by 2D immunohistochemical analysis. Furthermore, in vivo
time-lapse imaging during acute infection shows that HSC
motility is more significantly activated after infection than in
steady state (Rashidi et al., 2014). Infectious stress induces HSPC
niche remodeling and facilitates HSPC mobilization.

Physiological aging also changes properties of theHSPC niche.
Confocal imaging techniques have revealed that bone marrow
arteries covered with the α-smooth muscle actin+ cells decrease
in number and become more permeable with aging in mice
(Kusumbe et al., 2016). Imaging analysis of animal models of
hematological disease or aging will provide pathophysiological
insights with potential therapeutic application.

CONCLUSION

The dynamics of hematopoiesis are tightly regulated by HSPCs
and their niches within the bone marrow. Imaging techniques
provide novel methods to define spatiotemporal regulation of
complex multicellular microenvironments like bone marrow
that every year we know more and more (Joseph et al., 2013).
Although various methodological and technological hurdles
remain, use of diverse techniques brings increasing insight into
HSC interaction with niche cells and reveals how hematopoietic
homeostasis is achieved in a dynamic manner.

Here, we have provided examples of imaging-based
investigation of various hematopoietic activities, including
developmental, physiological and pathological conditions and
aging. Studies discussed here focus not only on stem cell location
but on properties of the niche environment, such as local oxygen
conditions. We anticipate that visualization of HSC cellular
status in the niche will define additional mechanisms underlying
hematopoiesis and leukemogenesis and potentially suggest novel
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therapies for blood cell diseases. Achieving this aim will require
development of novel chemical and genetic probes of the cell
cycle, metabolism, and signaling status and application of those
methods to HSPC biology.
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