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The concept that blood supply is required and necessary for cancer growth and

spreading is intuitive and was firstly formalized by Judah Folkman in 1971, when he

demonstrated that cancer cells release molecules able to promote the proliferation of

endothelial cells and the formation of new vessels. This seminal result has initiated one of

the most fascinating story of the medicine, which is offering a window of opportunity

for cancer treatment based on the use of molecules inhibiting tumor angiogenesis

and in particular vascular-endothelial growth factor (VEGF), which is the master gene

in vasculature formation and is the commonest target of anti-angiogenic regimens.

However, the clinical results are far from the remarkable successes obtained in pre-clinical

models. The reasons of this discrepancy have been partially understood and well

addressed in many reviews (Bergers and Hanahan, 2008; Bottsford-Miller et al., 2012;

El-Kenawi and El-Remessy, 2013; Wang et al., 2015; Jayson et al., 2016). At present

anti-angiogenic regimens are not used as single treatments but associated with standard

chemotherapies. Based on emerging knowledge of the biology of VEGF, here we sustain

the hypothesis of the efficacy of a dual approach based on targeting pro-angiogenic

pathways and other druggable targets such as mutated oncogenes or the immune

system.
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VEGF-TARGETED ANTI-ANGIOGENIC THERAPY

During tumor progression, some clones experience the “angiogenic switch” by interrupting the
balance between angiogenesis inducers and inhibitors and show pro-angiogenic phenotype. As
a result, initial lesions or dormant metastases become more aggressive (Hanahan and Folkman,
1996; Wicki and Christofori, 2008). Angiogenesis inhibitors were postulated as anticancer drugs in
the early 1970s (Folkman, 1971). Of all identified molecules that lead the blood vessel formation,
VEGFA appears the main molecular driver of tumor angiogenesis. Indeed VEGFA is overexpressed
in the majority of solid tumors and for this reason is the dominant target for antiangiogenic
drugs (Carmeliet and Jain, 2000; Ferrara, 2002; Kerbel, 2008). VEGF/platelet-derived growth factor
(PDGF) protein family is characterized by the presence of a structural motif with eight conserved
cysteine residues forming the typical cystine-knot structure and include a wide range of angiogenic
inducers: VEGFA, VEGFB, VEGFC, VEGFD, VEGFE, and placental growth factor (PLGF). The
main signaling tyrosine kinase receptor (TKR) is VEGF-receptor, VEGFR2 (also known as KDR)
(Ferrara and Kerbel, 2005). Two other VEGFRs are VEGFR1 and VEGFR3 (Figure 1). In embryo
as well as in solid tumors VEGF expression is primarily stimulated by hypoxia and VEGFA
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FIGURE 1 | Main molecular targets of anti-angiogenic drugs approved for patients treatment.

transcription is promoted by hypoxia-inducible factor-1α
(HIF1α) and−2α (HIF2α) that sense the reduced pO2 (Semenza,
2009).

Besides favoring the tumor feed, a consequence of “angiogenic
switch” is the abnormality of the vessel architecture and defects of
microcirculation rheology. The aberrant amounts of angiogenic
inducers accelerate the proliferation of endothelial cells with a
reduced time frame to allow the whole capillary maturation.
As consequence, capillaries are tortuous, irregularly fenestrated
with reduced pericyte coverage and leaky. These morphological
aberrations induce the increase of interstitial pressure with the
decrease of convective transport of small molecules including
chemotherapeutics (Nagy et al., 2006; Jain, 2014).

The rationale proposed by Dr. Folkman to exploit
anti-angiogenic compounds in clinical settings was to starve
cancer and induce its dormancy. Currently, preclinical data
suggest that a drastic pruning of tumor vasculature results in a
selection of more aggressive cancer clones, which sustain disease
progression (Ebos et al., 2009; Pàez-Ribes et al., 2009; Maione
et al., 2012). Of interest, some studies failed to document such
effects in other preclinical models (Singh et al., 2012).

However, before reaching the whole collapse of vascular
bed, VEGF pathway blockade is characterized by an early
and transient phase in which vessels assume normal shape
and function (Folkman, 2006; Carmeliet and Jain, 2011; Goel
et al., 2011). This normalization is characterized by rescue of
the balance between inhibitors and inducers of angiogenesis,
reduction of leakage and interstitial pressure, improvement of
tumor perfusion and oxygenation, and drug delivery. This effect

is potentially sensitizing for radiotherapy and increases tumor
exposure to cytotoxic chemotherapy (Jain, 2005, 2014).

The degree of vascular normalization correlated with
increased survival in glioblastoma multiforme (GBM) preclinical
models (Kamoun et al., 2009) and patients (Sorensen et al.,
2012; Batchelor et al., 2013). Vascular normalization can
also improve trafficking of immune effector cells into tumor
microenvironment and prolongs the survival of tumor-bearing
mice receiving active immunotherapy (Huang et al., 2013; Jain,
2014; Kwilas et al., 2015).

Anti-Angiogenic Regimens in Advanced
Cancers
In general, the inhibition of tumor angiogenesis can be
reached by the withdrawal of pro-angiogenic molecules or by
inhibiting the signaling pathways triggered by these molecules.
Most of angiogenesis inhibitors approved in human cancers
targets VEGFA and its VEGFRs pro-angiogenic–mediated
signals. The pioneer of angiogenesis inhibitors is the VEGFA-
targeted monoclonal antibody bevacizumab (Ferrara et al., 2004;
Kerbel, 2008; Figure 1). In contrast to most preclinical studies,
monotherapy with bevacizumab failed to increase patients’
overall survival (OS) (Jain, 2005), but in combination with
chemotherapy it can extend progression free survival (PFS)
and/or OS in several cancer types including metastatic colorectal
cancer (mCRC) (Hurwitz et al., 2004; Giantonio et al., 2007;
Cunningham et al., 2013) and recurrent GBM (Vredenburgh
et al., 2007; Friedman et al., 2009). Based on the results of these
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trials, bevacizumab was approved for the treatment of patients
with late stage CRC, non-small cell lung cancer (NSCLC),
ovarian cancer, metastatic cervical cancer, metastatic renal cell
carcinoma (RCC), and GBM, only when given in combination
with chemotherapy (Table 1). As concern breast cancer, Food
and Drug Administration (FDA) approved the combination
of bevacizumab with paclitaxel for the treatment of human
epidermal growth factor receptor 2 (HER2)-negative metastatic
breast cancer (Miller et al., 2007). However, three further phase
III trials, failed to confirm the efficacy of the association of
bevacizumab with chemotherapy in metastatic breast cancer
(Miles et al., 2010; Brufsky et al., 2011; Robert et al., 2011a)
resulting in the withdrawal of approval by FDA.

Aflibercept, the “VEGF-trap,” is a fusion protein engineered
by joining the second Ig-like domain of VEGFR1 and the
third Ig-like domain of VEGFR2 to a human IgG1 Fc-fragment
(Holash et al., 2002). This soluble decoy receptor shows one-
to-one high-affinity binding to all isoforms of VEGF and PLGF
(Figure 1). Clinical randomized phase III trials using aflibercept
were performed for several solid cancers (Ciombor et al.,
2013) and the addition of this compound to standard therapies
lengthened PFS and OS in mCRC patients who progressed on
bevacizumab therapy (Van Cutsem et al., 2012a). FDA approved
aflibercept in combination with leucovorin, 5-fluorouracil and
irinotecan (FOLFIRI) for treating patients after progression
with oxaliplatin-containing regimen (Ciombor et al., 2013;
Table 1). Furthermore, promising experimental models propose
aflibercept as a promising candidate to treat, hepatocarcinoma
(HCC) (Torimura et al., 2016), a highly vascular tumor with the
development of neoarteries in parallel with tumor growth.

Ramucirumab is a monoclonal antibody that binds the
extracellular domain of VEGFR2 and interferes with VEGF
binding to its receptor. FDA and EMA (European Medicines
Agency) approved this compound either as single agent or in
association with paclitaxel in subjects affected by metastatic
gastric and gastroesophageal junction cancer after progression on
fluoropyrimidine or platinum containing protocols (Fuchs et al.,
2014; Wilke et al., 2014; Figure 1). Subsequently, ramucirumab
was approved for the second-line treatment of NSCLCwith active
disease progression or after platinum-based therapy and for the
treatment of mCRC in combination with FOLFIRI in patients
whose disease was insensitive to bevacizumab, oxaliplatin and
fluoropyrimidine (Table 1).

A number of small molecules inhibiting the TK activity
of VEGFR, principally (VEGFR2) have been approved as
single therapies (Figure 1). Among this class of agents, the
pioneer drugs have been sorafenib and sunitinib. Sorafenib is
a multikinase inhibitor that targets VEGFR1-3, PDGFRβ, FLT-
3, Ret, c-kit, RAF-1, BRAF (Wilhelm et al., 2004). Due to
its anti-proliferative, apoptotic, anti-angiogenic and anti-fibrotic
effects, sorafenib is a compound with a potent antitumoral
activity. Sorafenib is currently the only approved systemic
treatment for HCC (Llovet et al., 2008) and several reports
have stressed the role of VEGF in the vascularization process
of this neoplasia (Miura et al., 1997). Sorafenib has also been
approved for the treatment of advanced renal cell carcinoma
(RCC) and thyroid cancers (Table 1). The multi-targeted kinase
inhibitor sunitinib (VEGFRs, PDGFRs, FLT3, CSFF1R) has
been approved for RCC and pancreatic neuroendocrine tumors
(Table 1).

TABLE 1 | Approved VEGF-targeted therapy for oncology.

Drug Brand name Mechanism Indications

Bevacizumab Avastin (Genentech) Monoclonal anti-VEGF antibody CRC; NSCLC; RCC; GBM; epithelial ovarian

cancer; fallopian tube cancer; primary peritoneal

cancer; cervical cancer

Aflibercept Zaltrap (Sanofi and Regeneron

Pharmaceuticals)

Recombinant fusion VEGF protein CRC

Ramucirumab Cyramza (Eli Lilly and Company) Monoclonal anti-VEGFR2 antibody CRC ; NSCLC; gastric or gastroesophageal

junction adenocarcinoma

Sorafenib Nexavar (Bayer) Multi-TKI (VEGFRs, PDGFRs, RAF, KIT, FLT3, RET) RCC, HCC, thyroid cancer

Sunitinib Sutent (Pfizer) Multi-TKI (VEGFRs, PDGFRs, FLT3, CSF1R, RET) RCC, pancreatic neuroendocrine tumors,

gastrointestinal stromal tumors

Regorafenib Stivarga (Bayer) Multi-TKI (VEGFRs, PDGFRs, FGFRs, TIE2, KIT,

RET, RAF)

GIST, CRC, HCC

Pazopanib Votrient (GlaxoSmithKline) Multi-TKI (VEGFRs, PDGFRs, FGFR1, c-Kit) RCC, soft tissue sarcoma

Axitinib Inlyta (Pfizer) Multi-TKI (VEGFRs, PDGFRs, c-Kit) RCC

Vandetanib Caprelsa (AstraZeneca) Multi-TKI (VEGFRs, EGFR, RET) medullary thyroid cancer

Lenvatinib Lenvima (Eisai) Multi-TKI (VEGFRs, FGFRs, PDGFRa , RET, c-Kit) thyroid cancer, RCC

Cabozantinib Cometriq (Exelixis)/Cabometyx (Exelixis) Multi-TKI (VEGFRs, cMet, AXL) medullary thyroid cancer, RCC

CSFR1, colony stimulating factor 1 receptor; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; FLT3, Fms-like tyrosine kinase 3; GBM, glioblastoma multiforme; GIST,

gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; KIT, stem cell factor receptor; MET, hepatocyte growth factor receptor; NSCLC, non-small cell lung cancer; PDGFR,

platelet-derived growth factor receptor; RAF, rapidly accelerated fibrosarcoma; RCC, renal cell carcinoma; RET, rearranged during transfection; VEGFR, vascular endothelial growth

factor receptor.

Anti-angiogenic therapies currently approved by the US Food and Drug Administration (FDA) for the treatment of malignancies (July 2017).

For reference see http://cancer.gov.
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Subsequently, other agents were developed with similar
targets but are characterized by better toxicity profiles. This
second-generation of multi-kinases inhibitors have improved
target affinity and less off target effects thus allowing lower
concentrations of active drugs to be administered with significant
activity. Regorafenib belongs to this second-generation of oral
multikinase inhibitors that blocks the activity of several kinases,
including those involved in the regulation of tumor angiogenesis
(VEGFR1-3 and TIE2), oncogenesis (KIT, RET, RAF1, BRAF and
BRAFV600E) and the tumor microenvironment (PDGFRβ and
FGFR). Moreover, it has been recently shown that regorafenib
also exerts anti-metastatic activity because of its capability to
inhibit epithelial-mesenchymal transition (Fan et al., 2016).
This drug represents a significant improvement over the first-
generation of TKI due to its higher specific activity leading to
greater pharmacology potency (Wilhelm et al., 2011). Recently,
a phase III study showed that regorafenib extended OS and
PFS in mCRC patients previously progressed on standard
therapies (Grothey et al., 2013). Regorafenib is now approved
for the treatment of mCRC and gastrointestinal stromal tumors
(Demetri et al., 2013; Table 1).

Among the second-generation multi-kinases class of
inhibitors also pazopanib (Gupta and Spiess, 2013), cabozanitinib
(Singh et al., 2017), lenvatinib (Fala, 2015), axitinib (Tyler, 2012),
and vandetanib (Degrauwe et al., 2012) have been approved as
single therapies in specific indications (Table 1).

Recently, based on the result of the phase III LUME-Lung
1 trial (Reck et al., 2014) EMA, but not FDA, approved the
use of nintedanib, an oral multi-kinases inhibitor, targeting
VEGFR1-3, FRGFR1-3, PDGFRα-β, RET, FLT3, and Src family
kinases, combined with docetaxel for the second-line treatment
of NSCLC (Lazzari et al., 2017). Moreover, phase II LUME-
Meso trial suggested an improvement of PFS of malignant
pleural mesothelioma treated with nintedanib in combination
with standard treatments (Scagliotti et al., 2016).

Anti-Angiogenic Regimens in Adjuvant
Settings
The use of VEGF pathway inhibitors has been started to
investigate in phase II and III trials in adjuvant (post-surgical)
and neoadjuvant (pre-surgical) settings. Anti-angiogenic agents
are used in the adjuvant setting according to the concept
that halting angiogenesis after the removal of primary tumor
may prevent local relapse micrometastasis spreading tumors.
However further clinical and preclinical findings raise doubts
on the efficacy of VEGF pathway inhibitors in this setting (Ebos
and Kerbel, 2011). Actually, many phase III adjuvant trials with
VEGF-targeted therapy failed in CRC, breast cancer, RCC and
HCC (de Gramont et al., 2012; Cameron et al., 2013). The reasons
of these disappointing results are largely unknown. Probably the
different biology of micrometastases from that of established
metastatic disease may alter the response to anti-angiogenic
agents (Vasudev and Reynolds, 2014).

In neoadjuvant settings, antiangiogenic treatments are used to
downsized a tumor, resulting in potentially surgically treatable
lesion. Furthermore, it might be used to reduce the risk of local

relapse or metastasis. Interestingly the use of bevacizumab (with
chemotherapy) in an neoadjuvant setting showed a pathological
complete response in breast tumors (Bear et al., 2012; von
Minckwitz et al., 2012; Earl et al., 2015; Sikov et al., 2015).
Of interest, the efficacy of bevacizumab in promoting vascular
normalization in breast tumors correlated with a high baseline
microvessel density (MVD), suggesting that basal MVD is a
potential biomarker of response to bevacizumab in breast cancer
(Tolaney et al., 2015).

The Combination of Anti-Angiogenic
Regimens with Chemotherapy
As reported above, anti-angiogenic regimens targeting the
excess of angiogenic inducers (e.g., bevacizumab or aflibercept)
show clinical benefits when associated with cytotoxic therapies
(chemotherapy or radiation). Two different observations sustain
this rationale. First, this combined strategy can destroy two
separate compartments of tumors: cancer cells and endothelial
cells (Teicher, 1996). Furthermore, there is a possible synergistic
effect of chemotherapy on endothelial compartment by inhibiting
endothelial cell cycle. Metronomic chemotherapy is based on this
premise and aims at controlling tumor growth by the frequent
administration of conventional chemotherapeutic agents at very
low doses to target activated endothelial cells in tumors as well
as cancer cells, the advantages of which include minimal adverse
effects and a rare chance of developing acquired drug resistance
(Kerbel, 2015). Second, the vascular normalizing effects of anti-
angiogenic regimenmodifies the pharmacokinetics parameters of
small molecules and favors the delivery of cytotoxic drugs (Zhou
et al., 2008; Emblem et al., 2013).

In contrast to anti-angiogenic compounds neutralizing the
excess of angiogenic inducers, TKIs do not show any clinical
improvement when administered with standard therapies. For
instance, attempts to combine anti-angiogenic TKIs with
chemotherapy did not improve PFS in mCRC (Carrato et al.,
2013) and metastatic breast cancer (Robert et al., 2011b).
Indeed, VEGF receptor TKIs exhibit single-agent activity and
are effective as monotherapy, while show toxicity in combination
with chemotherapy (Jain et al., 2006).

MECHANISMS OF RESISTANCE TO
ANTI-ANGIOGENIC REGIMENS

Despite the partial clinical success VEGF-targeted therapies in
cancer, some refractory patients do not respond to the treatments
(intrinsic resistance) or undergo to acquired resistance after
transitory benefits (Bergers and Hanahan, 2008). The extent of
refractoriness differs for VEGF blockers and for different cancer
types and metastatic settings. Intrinsic and acquired modes of
resistance recognize partially overlapping mechanisms, but on
the clinical point of view the later represents the most difficult
obstacle to achieve better clinical results with anti-angiogenic
regimens.

Here we summarize the principal cellular and molecular
mechanisms leading to the cancer resistance to anti-angiogenic
compounds.
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The Vascular Features of the Tumors
The development of anti-angiogenic strategies started before the
genomic revolution signed by the first description of human
genome and was largely based on a reductionist perspectives and
approaches. VEGF was identified as the master tumor angiogenic
inducer and “sprouting angiogenesis” (i.e., the formation of
capillaries from pre-existing vessels by endothelial sprouting
triggered by angiogenic inducers and followed by formation
of endothelial tubes, which undergo maturation by pericyte
recruitment and extracellular matrix remodeling) as the almost
unique mode to sustain the tumor vascularization (Bussolino
et al., 1997). The ability of a cancer clone to trigger an
angiogenic response is strictly dependent on its pattern of
genomic alterations (Rak et al., 1995; Arbiser, 2004), which evolve
along the time of the disease and under the pressure exerted by
pharmacological treatments. This situation can be exacerbated
by the recent genomic findings revealing evidence of branched
evolution, wherein tumors consist of multiple distinct subclones
that share a common ancestor but differ in terms of subtle or
deep genomic alterations that occur later in the evolution of
the cancer (Swanton and Govindan, 2016). Such subclones may
be intermixed within one tumor sample or regionally separated
within a primary tumor, between primary and metastatic sites,
or between metastatic sites (Abbosh et al., 2017; Jamal-Hanjani
et al., 2017).

Moreover, communication circuits between cancer and
stroma cells result in the production a plethora of angiogenic
inducers that can support vascular growth and fitness in the
presence blockers of VEGF action. This scenario can precede the
use of anti-VEGF therapy and explain the intrinsic resistance or
be triggered by VEGF inhibitors resulting in a mode of adaptive
resistance (Jayson et al., 2016).

Pre-clinical studies identified numerous candidates that can
substitute VEGF in sustaining tumor angiogenesis and include
angiopoietins (Ang), ephrins, fibroblast growth factor-1 (FGF1)
and−2 (FGF2) (Casanovas et al., 2005), prokineticin-1 (Bv8)
(Shojaei et al., 2007b), hepatocyte growth factor (HGF) (Shojaei
et al., 2010; Cascone et al., 2017), IL-8 (Huang et al., 2010),
platelet-derived growth factor C (PDGFC) (Crawford et al.,
2009), VEGFC (Li et al., 2014), and PLGF (Fischer et al.,
2007). Most of these studies also show that co-targeting of
VEGF and the candidate factor improves therapeutic response.
In support to this, clinical evidence show that circulating
levels of pro-angiogenic factors, including FGF2, HGF, PLGF,
and PDGF can become elevated in patients related to the
development of acquired resistance to VEGF blockade (Kopetz
et al., 2010).

A more intricate connection exists between the resistance
to anti-VEGF therapies and Dll4/Notch axis. In sprouting
angiogenesis the expression of Dll4 and Notch are increased by
VEGFA and counteract the its proangiogenic effect (Thurston
et al., 2007). Interestingly, up-regulation of Dll4 induces
resistance to bevacizumab in GBM preclinical models, and is
in turn overcame by Notch inhibition by γ-secretase inhibitors
(Li et al., 2011). Moreover, it has been also reported that high
Dll4 expression is predictive of favorable clinical response to
anti-VEGF regimen in ovarian cancer (Hu et al., 2011).

VEGF blockers and more in general all compounds devised to
interfere with an angiogenic inducer halt sprouting angiogenesis.
However, established evidences indicate that the tumor mass
can be vascularized by vessel co-option, a process wherewith
tumor cells simply incorporate pre-existing capillaries from
surrounding tissue (Holash et al., 1999). Recently, it has reported
in metastases blood supply occurs by the non-angiogenic
mechanism of vessel co-option (Donnem et al., 2013; Frentzas
et al., 2016). The prevalence of vessel co-option in breast cancer
and in liver metastasis of CRC (Frentzas et al., 2016) could
explain why anti-angiogenic therapies were poorly effective in
approaching metastatic breast cancer and showed a moderate
efficacy in metastatic CRC.

Pre-clinical evidences support the role of vessel co-option
in the onset of resistance to anti-angiogenic regimens in GBM
(Rubenstein et al., 2000), HCC (Kuczynski et al., 2016), and in
metastasis to lungs (Bridgeman et al., 2017), lymph nodes (Jeong
et al., 2015), and liver (Frentzas et al., 2016). Adjuvant trials in
thousands of patients with breast cancer and CRC (de Gramont
et al., 2012; Cameron et al., 2013) have been negative probably
because micrometastases co-opt existing vessels. Therefore,
vessel co-option—mediated blood delivery to the growing tumors
andmetastases can contribute to both adaptive (e.g., inmetastatic
disease) and intrinsic resistance.

Besides vessel co-option other tumor vascularization
mechanisms have been described and are not sustained by
sprouting angiogenesis. They include vascular mimicry, in which
tumor cells replace endothelial cells to form the capillary wall;
tumor vasculogenesis, which is characterized by the recruitment
of endothelial precursors from bone marrow and intussusceptive
angiogenesis characterized the duplication of a pre-existing
vessel by a splitting mechanism. However the clinical relevance
of these mechanisms in mediating resistance to anti-angiogenic
compounds remain unclear (Lyden et al., 2001; Semela et al.,
2007; Kirschmann et al., 2012).

Finally some tumors but in particular pancreatic ductal
adenocarcinomas can exhibit primary refractoriness, manifest
as a tumor type that is poorly vascularized with a prominent
fibrotic reaction and able to survive in adverse andmost probably
hypoxic conditions (Ryan et al., 2014). A similar circumstance
can explain the lack of the effect of anti-angiogenic regimens in
the treatment of prostate cancer (Taverna et al., 2013; Jayson et al.,
2016).

Tumor Microenvironment
The features of the stroma cells (leucocytes, pericytes, and
fibroblasts) in tumors can deeply influence the initial response
to angiogenic-regimens as well as the establishment of acquired
resistance.

A wide range of myeloid and lymphoid cells can dynamically
visit solid tumors. The presence of M2 polarized macrophages or
immature Tie2+ monocytes can configure a precise circumstance
rendering poorly effective the effects of VEGF blockers and
specific myeloid-mediated circuits are activated by anti-VEGF
therapies and trigger the onset of acquired resistance (Mantovani
and Allavena, 2015). Of notice, refractoriness to antiangiogenic
therapies, in GBM patients, is associated with higher numbers
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of CD68+ TAMs and CD11b+ myeloid cells and the increase of
these populations is associated with poor survival (Lu-Emerson
et al., 2013).

In particular, a specific circuit eliciting the acquired resistance
to anti-VEGF antibodies has been described and involves
CD11b+/Gr1+myeloid cells and TH17 lymphocytes, which
represent a subset CD4+ T cells producing IL-17. It is plausible
to envisage that in response to VEGF removal more TH17 are
recruited and/or start to produce IL-17, which in turn activates
the release of G-CSF from stroma cells (Chung et al., 2013).
G-CSF is an angiogenic inducer (Bussolino et al., 1989) and is
crucial for the mobilization and recruitment of CD11b+/Gr1+

population to the cancer microenvironment that are capable
of promoting VEGF-independent tumorigenesis (Shojaei et al.,
2007a). A second circuit entails Ly6Clo monocytes. Anti-
VEGF therapy up-regulates CX3CL1 expression, which facilitates
CX3CR1-dependent infiltration of Ly6Clo monocytes. These cells
attract neutrophils via CXCL5, resulting in the formation of
an immunosuppressive microenvironment with a reduction of
cytotoxic T lymphocytes (Jung et al., 2017).

Pericytes are mesenchymal cells with contractile properties
that patch the capillary outer surface and play a part in
vascular physiology. Pericytes are recruited on vessels by
PDGFB/PDGFRβ signaling both in physiologic and pathological
conditions (Abramsson et al., 2003). In most tumor, vessels are
surrounded by few pericytes, but in others a dense pericyte
coat with thick basement membrane is present; such vessels are
usually less sensitive to VEGF blockers (Bergers et al., 2003).
Of interest, several anti-angiogenic TKIs clinical-approved are
efficient blockers of both VEGF and PDGF receptors (e.g.,
sunitinib, sorafenib, pazopanib) and therefore may interfere in
pericyte coverage.

Finally, cancer associated fibroblasts (CAFs) or fibrocytic
cells recruited from bone marrow are cells that take part to
the acquisition of resistance to VEGF-blockers by producing
alternative pro-angiogenic substances (Crawford et al., 2009;
Mitsuhashi et al., 2015).

Besides the cellular components of the stroma, the features
of extracellular matrix can influence the refractoriness to anti-
angiogenic therapies. It has been recently noted in human
and mouse models of CRC liver metastatization that anti-
VEGF therapy results in abnormal deposition of proteoglycans,
in particular hyaluronic acid and sulfated glycosaminoglycans
(Rahbari et al., 2016). Interestingly, the depletion of hyaluronic
acid results in improved tumor perfusion and treatment efficacy
in the mouse model of liver mCRC (Rahbari et al., 2016). These
findings parallel the observation that anti-angiogenic therapy
increases collagen expression, as a consequence of increased
hypoxia, in murine models of pancreatic ductal adenocarcinoma
(Aguilera et al., 2014) and HCC (Chen et al., 2014).

Adaption of Tumor Cells to Stressed
Conditions
As discussed above, a negative consequence of a prolonged
treatment with anti-angiogenic regimens is the reduced blood
perfusion and metabolites’ exchanges, which evolve in hypoxia

and acidosis (Jain, 2014). Besides induction of epithelial-to-
mesenchymal program that favors an invasive and metastatic
tumor cell phenotype hypoxia is thought to select for tumor
cells with cancer stem cell properties that might further mediate
resistance to cytotoxic agents (Semenza, 2014). In mouse models,
hypoxic stress promoted by short-term treatment with anti-
VEGF molecules amplified tumor invasiveness and metastatic
progression (Ebos et al., 2009; Loges et al., 2009; Pàez-Ribes et al.,
2009). The rationale of this paradox is based on the effect on
tumor metabolism exerted by the massive vessel pruning and
the reduced blood perfusion. The generated hypoxic and acidotic
stresses kill a huge amount of cancer cells, but few of them change
their features to survive in these hostile conditions by adapting
their metabolism, changing the expression of proton pumps, or
through autophagy by activating AMP-kinase (Hu et al., 2012; Xu
et al., 2013; Fais et al., 2014).

In particular, HIF1-mediated response favors the selection
of more aggressive cancer clones (Semenza, 2009) and their
metastatic phenotype (Maione et al., 2012) thus explaining the
clinical observation that in some solid tumors anti-angiogenic
molecules are effective in increasing PFS but they show a
negligible effect on OS.

Furthermore, hypoxia favors an immunosuppressive
microenvironment by reducing the activity of cytotoxic T cells
and antigen-presenting cells and by skewing the polarization
of TAMs toward protumorigenic and immunosuppressive M2
phenotype (Mantovani and Allavena, 2015). In HCC, it was
demonstrated that increased hypoxia after sorafenib treatment
induced Gr1+ myeloid-derived suppressor cell recruitment
(Chen et al., 2014).

Several pre-clinical studies report that VEGF-targeted therapy
can promote increased tumor invasion and metastasis in a
hypoxia-independent manner. It was demonstrated that VEGF
suppresses HGF-dependent MET phosphorylation and tumor
cell migration through the formation of a VEGFR2/MET
heterocomplex. This mechanism could explain why VEGF
blockade leads to a proinvasive phenotype in preclinical mouse
models of GBM and in a subset of GBM patients treated with
bevacizumab (Lu et al., 2012).

Biomarkers and Anti-Angiogenic Therapies
The clinical efficacy of an anti-angiogenic regimen is based on
strategies mainly set-up to monitor the tumor cyto-reduction
along chemotherapic and radiotherapic treatments. However, the
effect of this kind of treatment does not necessarily induce a rapid
reduction of tumor mass detectable by imaging approaches or by
analyzing the decrease of plasmatic levels of molecules released
by the tumor (specific proteins, microRNA, mutated DNAs).
Similarly, the present knowledge does not allow predicting which
cancer patient can really benefit of an anti-angiogenic treatment.

Huge efforts have been made to evaluate the potential value
of circulating angiogenic inducers to address clinical strategies.
However high plasmatic levels of VEGF do not predict a response
to anti-VEGF/VEGFR2 compounds, and its fluctuation along
the treatment is independent from the clinical efficacy (Kopetz
et al., 2010). Recent studies have assessed the potential for other
biomarkers detectable in plasma. In particular, the pretreatment
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levels of soluble VEGFR1 inversely correlated with the outcome
of either bevacizumab and TKIs because it acts as an endogenous
VEGF trap (Meyerhardt et al., 2012; Zhu et al., 2013). Another
postulated biomarker is the increased amount of CXCL12, which
increased in subjects who escape to anti-angiogenic regimens
(Zhu et al., 2009; Batchelor et al., 2010) while low amount of IL-8
at the baseline seems to predict a poor response to bevacizumab
treatment in HCC (Boige et al., 2012). Conversely, low pre-
treatment levels of Ang-2 were associated with a prolonged
PFS in CRC treated with bevacizumab (Goede et al., 2010).
Many other works showed an increase of angiogenic molecules
along anti-angiogenic regimens and in particular bevacizumab,
suggesting that the VEGF removal can trigger the activation
of alternative pathways sustaining vascularization, reviewed in
Lambrechts et al. (2013).

An emerging diagnostic area still not investigated in anti-
angiogenic regimens is represented by circulating exosomes and
their cargos (Wang et al., 2016), including microRNA that are
promising markers in oncology (Lin and Gregory, 2015).

A second investigative area is the presence in primary tumors
of molecules or vascular features, which can predict the response
to angiogenesis inhibitors. Generally speaking, many data have
been provided such as microvessel density and the expression
of pro-angiogenic molecules (VEGFs, VEGFRs, HGF, PDGFs,
chemokines, and Ang) but the results are largely contradictory
and poorly robust in term of clinical analysis (Lambrechts et al.,
2013). In this context one of the more promising result is the
correlation between low level of neuropilin-1 expressed in a large
cohort of gastric cancers and the prolongedOS after bevacizumab
treatment (Van Cutsem et al., 2012b).

Tumors release a plethora of soluble molecules that have
a major impact on the biology of bone marrow. Besides
modifying the differentiation and the mobilization in particular
of myeloid cells, these molecules can promote the mobilization
of endothelial precursors. In particular it has been reported
that VEGFA or PLGF released by tumor, through a mechanism
dependent on metalloproteinase-9 and soluble Kit ligand,
increase the number of these cells in bloodstream, while CXCL12
and CXCR4 receptor favor their retention in perivascular site of
injured issues (Kopp et al., 2006). The preclinical observation that
the number of circulation endothelial precursors was increased
by vascular disrupting molecules (Shaked, 2006), many studies
focused on the possibility that these cells could be used to
monitor or predict the efficacy of anti-angiogenic drugs. Besides
the lack of a solid consensus on their phenotype (Ingram et al.,
2005) the clinical data on this approach in clinical oncology are
conflicting (Bertolini et al., 2006). For instance anti-angiogenic
treatment reduces circulating endothelial cells (Dellapasqua et al.,
2008), while metronomic therapy shows an opposite effect
(Mancuso et al., 2006).

A further promising area is the role exerted by specific
single nucleotide polymorphisms (SNPs) of candidate genes to
stratify responder and non-responder patients to anti-angiogenic
regimen associated with standard therapies. VEGFR1 rs9582036
associated with an improvement of PFS and OS in patients with
metastatic pancreatic adenocarcinoma treated with bevacizumab
associated with chemotherapy. On the contrary in renal-clear

carcinoma VEGFR1 rs7993418 correlated with PFS but not OS
in the bevacizumab group (Lambrechts et al., 2012). Another
example was reported in metastatic CRC where VEGFA rs833061
and VEGFR1 rs9513070 respectively associated with the objective
response rate and the OS in subjects treated with cytotoxic
chemotherapy plus bevacizumab (Sohn et al., 2014). Analysis
of genetic variants of other angiogenic-related genes in breast
cancer using neoadjuvant bevacizumab in combination with
chemotherapy compared to chemotherapy alone showed a
correlation between specific SNPs in term of pathologic complete
response but not in OS (Makhoul et al., 2017).

In recent years, dynamic contrast-enhanced (DCE)-MRI,
which enable non-invasive quantification of microvascular
structure and function in tumors, has been extensively evaluated
in clinical trials as a biomarker for predicting tumor vascular
response to anti-angiogenic treatments (Morotti et al., 2017).
VEGF blockade is believed to reduce tumor vascular permeability
and perfusion. Significant reductions in capillary permeability
have been observed in different studies of bevacizumab and
TKI in monotherapy or combination with cytotoxic agents
(O’Connor et al., 2012). More recently a further exploitation of
DCE-MRI termed vessel architectural imaging allowed the vessel
caliber estimation and can be considered a powerful biomarker of
the vascular normalization induced by anti-angiogenic therapies
(Emblem et al., 2013).

COMBINATION STRATEGIES

The partial effect of anti-angiogenic regimens in human cancers
and the wide range of mechanisms sustaining intrinsic and
acquired resistance represent a driving force for innovative
strategies. For example, the anti-angiogenic regimens could
improve their efficacy when associated with compounds targeting
other major biological processes (e.g., tumor proliferation or
apoptosis). In this context, the combination anti-angiogenic
molecules with other approaches such as kinase inhibitors,
chemotherapy, DNA repair inhibitors, radiotherapy, and
immunotherapy have been reported in many experimental and
human settings (Jayson et al., 2016).

Furthermore, nanotechnologies approaches could improve
the current pharmacokinetic profiles of anti-angiogenic drugs
and favor their selective accumulation in tumors and/or
induce a shift the microenvironmental equilibria toward tumor-
unfavorable conditions (El-Kenawi and El-Remessy, 2013).

Targeting Simultaneously VEGF and Other
Angiogenic Mechanisms
Multiple inhibition of concomitant proangiogenic pathways may
hamper cancer resistance or extend PFS. A first example deals
the simultaneous or sequential blocking of the VEGF and Ang
pathways in order to improve efficacy without increasing toxicity
(Monk et al., 2014). The tyrosine kinase (TIE2) receptor is
activated by its ligand Ang-1, which stabilizes vessels. Ang-2,
which antagonizes Ang-1 effects, is highly expressed in cancer,
destabilizing vessels and enabling sprouts under a chemotactic
gradient of VEGFA. However, the scenario is more intricate
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because Ang-2 has a partial agonist activity and has a pro-
angiogenic effect independent of its cognate receptor TIE2.
Increased amount of Ang-2 may be instrumental in eluding
the anti-VEGF therapy. Preclinical and clinical studies in
GMB reported that Ang-2 levels declined temporarily following
inhibition of the VEGF pathway but later rebounded as tumors
became resistant to the therapy (Batchelor et al., 2010; Chae
et al., 2010). More recently it has been hypothesized that dual
inhibition of VEGF and Ang-2 signaling respectively with TKI
cediranib and MEDI3617 (an anti-Ang-2-neutralizing antibody)
could prolong the temporal window of vascular normalization
and thereby enhances the survival benefit of anti-VEGF therapy
in two orthotopic murine model of GBM (Peterson et al., 2016).
This combinatorial effect is related to an increased amount of
recruited M1 polarized TAMs, which have anti-tumor effects.
This observation is further supported by the data of another
study showing that concurrent blockade of VEGF and Ang-2,
using a bispecific Ang-2/VEGF antibody, similarly increased the
M1/M2 ratio compared with VEGF-inhibition alone (Kloepper
et al., 2016). These results match previous preclinical studies
reporting a greater efficacy of combined VEGF and Ang-2
signaling inhibition as compared to single treatment (Brown
et al., 2010; Hashizume et al., 2010; Koh et al., 2010; Daly et al.,
2013; Kienast et al., 2013).

A second example is the association between VEGF blockade
with therapies targeting FGF. Pan inhibitors of the FGF
receptor (FGFR1-3), such as AZD4547 and BGJ398, elicited
potent anti-tumor activities in preclinical investigations and are
currently being evaluated in clinical trials (Chae et al., 2017).
In this context, the dual inhibition of VEGFRs and FGFRs
using brivanib produced enduring tumors stasis and angiogenic
blockade following the failure of VEGF-targeted therapies (Allen
et al., 2011).

A third approach exploits the possibility to target VEGF
signals and Notch pathway, which is fundamental in regulation
tip-stalk endothelial cell dynamics in sprouting angiogenesis
(Jakobsson et al., 2009). Down-modulation of the Notch ligand
Dll4 in combination with anti-VEGF therapy results in a greater
tumor growth inhibition than with each agent alone in ovarian
cancer models (Huang et al., 2016).

Fourth, HGF/c-MET pathway is driver and biomarker of
VEGFR-inhibitor resistance in NSCLC. Dual VEGFR/c-MET
pathway inhibition provide superior therapeutic benefit by
delaying the onset of the resistant phenotype (Cascone et al.,
2017). The efficacy of combining MET and VEGF inhibitors
showed beneficial effect in murine GBM overexpressing MET
(Okuda et al., 2017) and in pancreatic neuroendocrine tumors
(Sennino et al., 2012).

Simultaneous inhibition of angiogenesis and vessel co-option
may represent a further improvement of current therapeutic
approaches. It has been recently reported that inhibition of
angiogenesis and vessel co-option, by the knockdown of Arp2/3-
mediated cancer cell motility, is more effective than targeting
angiogenesis alone in a preclinical orthotopic model of advanced
CRC liver metastasis (Frentzas et al., 2016).

Finally, tumor angiogenesis may be also affected and regulated
by TGFβ family members, that exert a contradictory role in

endothelial cells by inhibiting cell migration and proliferation but
also acting as a proangiogenic factor and cooperating with VEGF,
PDGF, and FGF in autocrine/paracrine signaling (Guerrero
and McCarty, 2017). Preclinical studies have shown the anti-
angiogenic effect elicited by the TGFβ inhibition in HCC, CRC,
and GBM xenografts (Mazzocca et al., 2009; Zhang et al., 2011;
Akbari et al., 2014) offering the rationale for the combination
of TGFβ inhibitors with VEGF targeting agents (Neuzillet et al.,
2015). In particular, are under clinical investigation the efficacy
of the combination of galunisertib, a small molecule inhibitor
of TGFβRI, with sorafenib and ramucirumab in HCC and PF-
03446962, a monoclonal antibody against TGFβ, in combination
with regorafenib in CRC.

Targeting Simultaneously VEGF and
Oncogenic Drivers
Different oncogenic hits can perturb the balance between pro-
an anti-angiogenic molecules thereby promoting pathological
angiogenesis (Arbiser, 2004). For example, MAPK and PI3K-
AKT pathways, which are often altered in cancers, are strictly
connected with an increased transcription or translation of
angiogenic factors. Consequently, specific inhibitors of signaling
nodes of these pathways can induce vascular normalization and
improve blood perfusion and tumor oxygenation (Qayum et al.,
2009).

In particular, RAS activation increases VEGF and IL8 levels
and the inhibition of RAS activity by gene silencing suppresses
VEGF expression (Mizukami et al., 2005; Matsuo et al., 2009).
Moreover, when VEGF expression is inhibited in CRC cells
harboring KRAS mutations it has been reported a reduction
of in vivo tumorigenic potential, highlighting the relevance
of VEGF in exploiting the oncogenic potential of mutated
KRAS (Okada et al., 1998). The role of KRAS in supporting
angiogenesis is confirmed in NSCLC, where VEGF expression
correlates with KRAS activating mutations (Konishi et al.,
2000). We also described how mutated BRAF affected tumor
angiogenesis and proved that targeting BRAFV600E stabilized
the tumor vascular bed and abrogated hypoxia in mouse
xenografts (Bottos et al., 2012). It has been suggested that EGFR-
driven intracellular signaling may control angiogenesis and
pharmacological inhibition of EGFR reduces VEGF expression
in cancer cells (Ciardiello et al., 2001). It has been reported
that a mechanism of acquired resistance to EGFR inhibitors
is mediated by the increased secretion of VEGF, suggesting a
key role for tumor-induced angiogenesis in the development
of anti-EGFR resistance (Ciardiello et al., 2004). In NSCLC
preclinical models it was found possible overcome acquired
resistance to EGFR inhibitors by adding a VEGF blocker
(Naumov et al., 2009). Human epidermal growth factor
receptor 2 (HER2) is an oncogene overexpressed in more
malignant breast cancer. Trastuzumab, which targets HER2-
positive tumors strongly affect vascular shape and function and
caused vessel normalization, down-regulating the secretion of
VEGF and Ang-1 and in parallel up-regulating the expression
of the anti-angiogenic factor thrombospondin 1 (Izumi et al.,
2002).
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These data suggest that pharmacological inhibition of
oncogenes in tumor cells can restore a functional vasculature
and potentially blocks the specific angiogenic program activated
by individual tumors. Alternative strategy to target tumor
angiogenesis could rescue the equilibrium of angiogenic signals
by targeting the mutated oncogenes, which play a central role in
this process. In order to potentially reduce acquired resistance
combined strategy of anti-angiogenic and target therapies are
explored in the recent years in pre-clinical and clinical trials.

Cetuximab and panitumumab are monoclonal antibodies that
block the activation of EGFR and downstream RAS-RAF-MAPK
and the PTEN-PIK3CA-AKT pathways (Ciardiello and Tortora,
2008; Figure 2). These two drugs are currently approved for
the treatment of mCRC patients with all-RAS wild-type tumors.
It has been recently reported that combined treatment with
cetuximab and regorafenib induced synergistic anti-proliferative
and pro-apoptotic effects by blocking MAPK and AKT pathways
in orthotopic CRC xenograft models with primary or acquired
resistance to anti-EGFR (Napolitano et al., 2015). This beneficial
effect can be dependent on the inhibitor activities of regorafenib
on different tyrosine kinase receptors involved in angiogenesis
and potentially in the mechanism of resistance to cetuximab.
The results provide the rationale for the clinical development
of this combination. A phase I study was designed to evaluate
the antitumor property of this combination among patients with
advanced cancer refractory to several lines of therapy (Table 2).
This study demonstrated that the combination of regorafenib

and cetuximab showed a clinical benefit in all patients. It a
plausible that inhibition of one of the molecular targets of
regorafenib contributes to overcome resistance to previous anti-
VEGF or anti-EGFR therapy (Subbiah et al., 2017). These results
sustain the results of a previous work showing the cooperative
antitumor activity of cetuximab or erlotinib and sorafenib in
a xenograft model of NSCLC (Martinelli et al., 2010). More
recently, it has been also shown the prolonged antitumor activity
exerted by the combination of erlotinib with bevacizumab in
a xenograft model of EGFR-mutated NSCLC (Masuda et al.,
2017).

In the clinical setting, several studies are exploring the
possibility of combining anti-EGFR drugs such as cetuximab,
panitumumab or erlotinib, with different antiangiogenic drugs,
including bevacizumab or sorafenib (Table 2). The results
in unselected NSCLC or CRC cancer patients have been
contradictory. Two large randomized phase III studies have
evaluated the efficacy of the addition of cetuximab (CAIRO-2)
or panitumumab (PACCE) to an oxaliplatin-containing
chemotherapy doublet plus bevacizumab (Hecht et al., 2009;
Tol et al., 2009). Both studies showed that the addition of
the anti-EGFR antibodies did not improve the therapeutic
efficacy. However, the results of randomized phase II study in
NSCLC cancer patients selected for the presence of activating
EGFR gene mutations demonstrated a clinically relevant
increase of PFS by the combined treatment with erlotinib
associated with bevacizumab compared erlotinib alone (Seto

FIGURE 2 | Signaling molecules and immune checkpoint blocked by targeted therapy.
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TABLE 2 | Selected Clinical Trials of VEGF-targeted therapy in combination with oncogene-targeted therapy (July 2017).

Anti-angiogenic Target Therapy Phase Indications ClinicalTrials.gov Identifier

Bevacizumab Trastuzumab 2 Stage IV metastatic breast cancer NCT00428922

Bevacizumab Trastuzumab 3 Metastatic HER2+ breast cancer NCT00391092

Bevacizumab Trastuzumab 2 Breast cancer NCT01321775

Bevacizumab Trastuzumab 2 Metastatic HER2+ breast cancer NCT00364611

Bevacizumab Trastuzumab 2 Metastatic HER2+ breast cancer NCT00670982

Bevacizumab Trastuzumab 2 Metastatic HER2+ breast cancer NCT00392392

Bevacizumab Trastuzumab 2 Metastatic breast cancer NCT00405938

Sorafenib Trametinib 1 HCC NCT02292173

Sorafenib Refametinib 2 HCC NCT01204177

Sorafenib Refametinib 2 HCC RAS-mutated NCT01915602

Regorafenib Refametinib 1 Neoplasm NCT02168777

Bevacizumab Erlotinib 3 CRC NCT00265824

Bevacizumab Erlotinib 2 NSCLC EGFR-mutated NCT01562028

Bevacizumab Erlotinib 2 NSCLC EGFR-mutated NCT01532089

Regorafenib Cetuximab 1 Advanced cancers NCT02095054

Sorafenib Cetuximab 2 Squamos cell carcinoma of the Head and Neck NCT00815295

Sorafenib Cetuximab 2 CRC NCT00326495

Bevacizumab Trastuzumab 3 HER2-positive breast cancer NCT00625898

Pazopanib Lapatinib 2 HER2-positive breast cancer NCT00558103.

CRC, colorectal cancer; EGFR, epiderma growth factor receptor; HCC, hepatocellular carcinoma; HER2, human epidermal growth factor receptor 2 ; NSCLC, non-small cell lung cancer.

For reference see https://clinicaltrials.gov.

et al., 2014). This study provided the first evidence that the
addition of bevacizumab to erlotinib confers a significant clinical
improvement when used as first-line treatment for patients with
NSCLC carrying activating EGFR mutations. More recently,
the BELIEF trial (NCT01562028) provided further evidences
of benefit for the combined use of erlotinib and bevacizumab
in patients with EGFR-mutant NSCLC. Of notice, this study
was stratified by the presence of the pretreatment of the T790M
mutation with EGFR TKI (Rosell et al., 2017). Further, the
efficacy and safety of sorafenib and cetuximab association are
under evaluation also in patients with head and neck cancer and
CRC (Table 2).

It has been demonstrated a positive correlation between
elevated HER2 and VEGF levels and the poor outcome of
breast cancer (Konecny et al., 2004). Trastuzumab, a monoclonal
antibody against HER2, induces normalization and regression
of the vasculature in HER2-overexpressing human breast cancer
xenografts by lowering the amount of expressed proangiogenic
molecules while up-regulating thrombospondin-1, which has
anti-angiogenic activity (Izumi et al., 2002; Figure 2). Moreover,
in a breast cancer xenograft model, VEGF was found to be
elevated in the trastuzumab-resistant group, and sensitivity to
trastuzumab was restored upon treatment with bevacizumab
(Rugo, 2004). The small molecule inhibitor lapatinib, which
inhibits EGFR and HER2, associated with regorafenib showed
a greater anti-tumor activity than the compound alone in
xenograft models of CRC associated with a relevant reduction
of angiogenesis (Zhang et al., 2017). The result of this study
has provided the rationale for using HER2 and VEGF inhibitors
in clinical practice. Two large phase III trials evaluated the

efficacy of bevacizumab and trastuzumab with chemotherapy
in HER2+ metastatic breast cancer (BETH and AVAREL)
(Table 2). A modest improvement was seen in PFS, but the
most intriguing finding was a more specific benefit from
bevacizumab in the subgroup of patients with high levels
of plasmatic VEGFA (Gianni et al., 2013). Moreover, the
inhibition of VEGFRs and PDGFRs by pazopanib has been
assessed in a phase II trial in combination with lapatinib in
HER2-positive breast cancer. In this study the combination of
lapatinib and pazopanib was associated with a numerically higher
response rate without increase in PFS (Cristofanilli et al., 2013;
Table 2).

We have recently demonstrated that targeting the vascular
compartment with bevacizumab modulated the response to
BRAFV600E inhibition in melanoma and CRC xenograft models.
The final result is a synergistic antitumor effect and a delay of
the appearance of the acquired resistance to BRAF inhibition.
Of interest, we highlighted that this effect is the result of
two biological processes: 1) the recruitment of TAMs polarized
toward an M1-like phenotype and 2) the stroma remodeling
characterized by the reduction of collagen deposition and
the number of activated and tumor associated fibroblasts
(Comunanza et al., 2017).

In the recent years, there has been great interest in
developing clinically effective small-molecule inhibitors of the
Ras-Raf-MEK-ERK1/2 pathway (Samatar and Poulikakos, 2014).
Recently, (Bridgeman et al., 2016) provide preclinical evidence
that combining TKI, such as sunitinib or pazopanib, with a
MEK inhibitor (MEKI) is a rationale and efficacious treatment
regimen for RCC, showing a more effective suppression of
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tumor growth and tumor angiogenesis in vivo. Furthermore,
it has also been reported the enhanced antitumor activity
of a new combination regimen containing MEK inhibitor,
binimetinib (MEK162), paclitaxel and bevacizumab in platinum-
relapsing ovarian patient-derived xenografts (PDX) (Ricci et al.,
2017). These results support the ongoing clinical development
of MEK inhibitors and VEGF targeted combination therapy
(Table 2). In particular, a phase II clinical trial (NCT01204177)
investigating refametinib, a potent MEK1/2 inhibitor, in
combination with sorafenib as a first-line treatment for
subjects with advanced HCC showed that the combination
of the two drugs appeared clinically active. Of notice, the
majority of patients who responded to this regimen had
mutant KRAS tumors (Lim et al., 2014). Further clinical trials
are currently being conducted to explore this observation
(Table 2).

Targeting VEGF in Combination with
Immunotherapy
Immune checkpoint inhibition is exploiting in various tumors
with promising results. The programmed death protein 1
(PD-1), its ligand the programmed death ligand 1 (PD-L1)
and the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
are negative regulators of T-cell immune function (Figure 2).
Direct stimulation of the immune system with immune check-
point inhibitors, such as antibody against PD1-1/PD-L1 and
CTLA-4 has been reported in multiple cancers, resulting
in several promising clinical trials (Mahoney et al., 2015;
Callahan et al., 2016). Despite these exciting results, clinical
responses are of limited duration (Sharma and Allison, 2017).
A challenging aspect for the development of immune-therapies
will be their inclusion in the current therapeutic strategies.
Notably, tumor vasculature is an important co-regulator of
the immune system and different anti-angiogenesis pathways
interact with antitumor immunity through multiple mechanisms
(Motz et al., 2014). Of great interest, VEGF was recognized
as one of the critical molecule of immune suppression. VEGF
reduces adhesion molecules expression on endothelial cells, such
as intercellular adhesion molecule-1 (ICAM-1) and vascular
adhesionmolecule-1 (VCAM-1) impairing leukocyte-endothelial
interactions and leukocyte entry in injured tissues. This process
results in a dysfunctional tumor vasculature and hinders the
immune T effector cell infiltration into the tumors (Ohm, 2003;
Motz et al., 2014) and correlates with increased PD-1 expression
on CD8T cells (Voron et al., 2015). In addition to direct effects
on T cells, VEGF suppresses dendritic cell differentiation and
activity (Gabrilovich et al., 1998) and expands T regulatory cell
(Terme et al., 2013) andmyeloid-derived suppressor cells (Huang
et al., 2007). In patients with CRC bevacizumab improved the
antigen-presenting capacity of circulating dendritic cells (Osada
et al., 2008), revealing an additional mechanism for bevacizumab
on immune functions in the context of checkpoint blockade.
Interestingly, it has been recently shown that high serum levels of
VEGF were associated with decreased OS in advanced melanoma
patients treated with ipilimumab, an anti-CTLA4 antibody (Yuan
et al., 2014). In line with this, VEGF was decreased in patients

with metastatic melanoma responding to sequential anti-CTLA4
and anti-PD-1 therapy but increased in non-responders (Chen
et al., 2016) indicating a mechanism of therapeutic resistance
and a potential target to therapy (Ott et al., 2015; Voron et al.,
2015).

Besides to the effects on tumor vasculature, VEGF blockade
may have a positive impact on the immune mechanisms leading
to an anti-tumor response and preclinical studies support the
possibility to exploit anti-angiogenesis inhibitors in association
with molecule regulating innate and adaptive immunity. It
has been reported in preclinical models of melanoma that
blockade of the VEGF/VEGFR2 pathway increased the anti-
tumor activity of adoptively transferred T-cells (Shrimali et al.,
2010) and the combination of blocking VEGFR2 by the
specific monoclonal antibody DC101 with a cancer vaccination
showed a great anti-tumor effect by favoring CD8+ T cell
recruitment and reducing the number of regulatory T cells,
which have tumor immune-suppressive function (Huang et al.,
2012).

The positive effect on immune response obtained by
halting VEGF pathway can be further increased by combining
the block of Ang-2. A bispecific antibody, which bind both
VEGFA and Ang-2 showed a better effect as compared to
the single block, in many pre-clinical models and synergized
with PD-1 blockade. Mechanistically, the antagonistic effect
on these two angiogenic molecules favors the vascular
normalization with a more efficient recruitment of CD8+ T,
which is concomitantly characterized by the up-regulation
of PD-L1 on perivascular T cells (Schmittnaegel et al.,
2017).

Further, the addition of anti-PD1 antibody to the CXCR4
inhibitor AMD3100 and sorafenib augments the antitumor
immune responses mediated by CD8+ T cells in an orthotopic
murine models of HCC. The triple association showed a
significant activity both on primary tumors and on the lung
metastatic spreading (Chen et al., 2015).

More recently, a preclinical study provided evidences that
anti-PD-1 or anti PD-L1 therapy sensitized and prolonged
the efficacy of antiangiogenic therapy, and conversely,
antiangiogenic therapy improved anti-PD-L1 treatment by
supporting vascular changes, such as vessel normalization
and high endothelial venules formation, that facilitate enhanced
cytotoxic T cell infiltration and subsequent tumor cell destruction
(Allen et al., 2017).

Based on these preclinical and translational data supporting
synergy between angiogenesis inhibitors and checkpoint
blockers, multiple trials of combinatorial therapies are under
way and some have produced encouraging results. For example a
phase I trial data of combination of bevacizumab and ipilimumab
in patients with advanced melanoma showed disease control
and increased CD8 T-cell tumor infiltration, resulting in durable
patient response of more than 6 months (Hodi et al., 2014; Ott
et al., 2015).

Other clinical trials are evaluating the combination
between anti-angiogenic regimens and antibody targeting
PD1 (nivolumab, pembrolizumab) and PDL1 (MPDL-3280A)
(Table 3).
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TABLE 3 | Selected Clinical Trials of VEGF-targeted therapy in combination with immune checkpoint inhibitors (July 2017).

Anti-angiogenic Immunotherapy Phase Indications ClinicalTrials.gov Identifier

Bevacizumab Ipilimumab 2 Melanoma NCT01950390

Bevacizumab Ipilimumab 1 Melanoma NCT00790010

Bevacizumab Atezolizumab 2 CRC NCT02982694

Bevacizumab Atezolizumab 2 Melanoma brain metastases NCT03175432

Bevacizumab Atezolizumab 2 RCC NCT02724878

Bevacizumab Atezolizumab 3 RCC NCT02420821

Bevacizumab Nivolumab 2 Ovarian, Fallopian Tube Or Peritoneal Cancer NCT02873962

Bevacizumab Nivolumab 3 Glioblastoma NCT02017717

Bevacizumab Nivolumab 1 NSCLC NCT01454102

Bevacizumab Nivolumab 1 RCC NCT02210117

Bevacizumab Pembrolizumab 2 RCC NCT02348008

Bevacizumab Pembrolizumab 1/2 NSCLC NCT02039674

Bevacizumab Pembrolizumab 2 Glioblastoma NCT02337491

Bevacizumab Pembrolizumab 2 Melanoma/NSCLC brain metastases NCT02681549

Aflibercept Pembrolizumab 1 Solid tumors NCT02298959

Sunitinib Nivolumab 1 RCC NCT01472081

Axitinib Pembrolizumab 3 RCC NCT02853331

Axitinib Avelumab 3 RCC NCT02684006

Cabozantinib Nivolumab 3 RCC NCT03141177

CRC, colorectal cancer; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma.

For reference see https://clinicaltrials.gov.

CONCLUSION

Preclinical findings show that single-drug antiangiogenic therapy
delayed tumor growth but it was unable to determine tumor
regression (Jayson et al., 2016) and in general, clinical efficacy of
anti-angiogenic agents is lower than that observed in preclinical
cancer models (Ebos and Kerbel, 2011) with significant adverse
effects. The mechanisms that restrain the therapeutic efficacy of
anti-angiogenic drugs in cancer are still poor comprehended.
Moreover, an essential issue in the smart development of these
compound is the identification of predictive biomarkers to find
responder and non-responder patients. However biomarkers
that are predictive of response to anti-angiogenic therapy
in patients remain elusive (Jain et al., 2009; Vasudev and
Reynolds, 2014; Jayson et al., 2016) and the patients’ stratification
on the basis of the drivers mutations and on feature of
transcriptomic landscape including both gene coding and non-
coding RNAs could really ameliorate the selection of responder
patients.

Furthermore, biomarkers analysis and identification
could represent the rationale for novel and combinatorial

approaches, which could improve the clinical outcome exerted
by angiogenesis inhibition. In particular oncogenes and
immune response play a central role in the regulation of tumor
angiogenesis and for this reason represent two attractive targets
to develop combinatorial strategies. Many preclinical studies
encourage the clinical exploitation of this approach.
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