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A large number of proteins are synthesized de novo in the endoplasmic reticulum (ER).

They are transported through the Golgi apparatus and then delivered to their proper

destinations. The ER and the Golgi play a central role in protein processing and sorting

and show dynamic features in their forms. Ras super family small GTPases mediate the

protein transport through and between these organelles. The ER-localized GTPase, Sar1,

facilitates the formation of COPII transport carriers at the ER exit sites (ERES) on the ER

for the transport of cargo proteins from the ER to the Golgi. The Golgi-localized GTPase,

Arf1, controls intra-Golgi, and Golgi-to-ER transport of cargo proteins by the formation

of COPI carriers. Rab GTPases localized at the Golgi, which are responsible for fusion of

membranes, are thought to establish the identities of compartments. Recent evidence

suggests that these small GTPases regulate not only discrete sites for generation/fusion

of transport carriers, but also membrane dynamics of the organelles where they locate to

ensure the integrity of transport. Here we summarize the current understandings about

the membrane traffic between these organelles and highlight the cutting-edge advances

from super-resolution live imaging of budding yeast, Saccharomyces cerevisiae.
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INTRODUCTION

The earliest stages of intracellular membrane trafficking are comprised of interactions between the
endoplasmic reticulum (ER) and the Golgi apparatus (Golgi). These organelles are not stable but
rather exist as transient compartments in which size is maintained by the concomitant influx and
efflux of membrane material that is regulated by the secretory pathway. Small GTPases are the key
regulators of such membrane trafficking in most eukaryotic cells and, as they function as molecular
switches to regulate both generation and fusion of transport carriers, they are also able to perform
homeostatic compensation for their host organelles.

SAR1 ASSEMBLY AROUND ERES

The ER is the first organelle where secretory cargo proteins are incorporated into its lumen to await
the synthesis, modification and folding of nascent polypeptides for delivery to the Golgi apparatus.
Delivery of these cargo proteins from ER to the Golgi is facilitated by COPII vesicles consisting
of the inner coat Sec23-Sec24 and outer coat Sec13-Sec31 complexes. Recruitment of these coat
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proteins is triggered by the activation of Sar1 GTPase by
its guanine nucleotide exchange factor (GEF) Sec12, an ER-
resident membrane protein (Barlowe and Schekman, 1993). The
amphipathic helix of active Sar1 is exposed and associates with
the ER membrane to drive recruitment of the inner coat complex
by direct binding with Sec23 together with the enrichment of
cargo protein by the formation of the pre-budding complex.
Subsequent recruitment of the outer coat complex through the
interaction of Sec31 with Sar1-Sec23 leads to the caged structure
of the COPII lattice which forms the vesicles (Sato and Nakano,
2007).

ER-exit sites (ERES), or transitional ER sites, are the sites for
COPII carrier accumulation on the surface of the ER (Palade,
1975; Orci et al., 1991). In budding yeast, the network-like
structure of the ER is connected to the nuclear membrane
and expands underneath the plasma membrane. This unique
structure is facilitated by the reticulons in concert with
Yop1/DP1-family curvature-stabilizing proteins and also by the
action of an atlastin family protein-driven membrane fusion
(Voeltz et al., 2006; Hu et al., 2009). Detailed ER structural
composition is due to the connection of a branching tubule
network with flattened, fenestrated sheets (West et al., 2011).
Understanding of the structural organization of ERES has been
recently assisted by the help of live-cell observations (Okamoto
et al., 2012; Yorimitsu and Sato, 2012) and findings indicate
that it is not uniformly observed in the surface of ER but has a
relatively restricted formation. In the budding yeast S. cerevisiae,
ERES marked by Sec13 showed numerous punctate structures on
the network-like ER structure (Shindiapina and Barlowe, 2010;
Okamoto et al., 2012). Moreover, the restrictive distribution of
ERES is predominantly observed at the high-curvature domain
of the ER membrane (Okamoto et al., 2012). Observations of
the reticulon Rtn1 showed a non-uniform, restricted distribution
along the ER and significant accumulation at both the tubules and
sheet rims (De Craene et al., 2006; Voeltz et al., 2006; Okamoto
et al., 2012). Localization for Rtn1 and ERES marked with Sec13
were significantly overlapped, suggesting ERES preferentially
organized at the ER high-curvature domain (Okamoto et al.,
2012). This domain might have both positive and negative
curvatures that consist of various, differently shaped lipids
that form the saddle-like domains of ER membranes. What
is the underlying molecular mechanism of this non-uniform
distribution of ERES within the ER high-curvature domain?
The generally accepted idea is that construction of the COPII
transport carrier is initiated by the activation of Sar1 by the
ER membrane-localized GEF (Sec12) thereby causing Sar1-
GTP recruitment of Sec23/24 to form the pre-budding complex
(Figure 1A). One possible reason for the preference of ERES
to reside in the ER high-curvature domain could be based
on the structural preference of the Sar1-Sec23/24-cargo protein
pre-budding complex that might recognize a specific domain
of the ER (Bi et al., 2002). Another possibility includes the
regulation of Sar1 GTPase activity. Upon the activation of Sar1 by
Sec12, the Sar1 amphipathic helix inserts into the ER membrane
and this helix of Sar1-GTP may be favored by high-curvature,
tubule-enriched domains within the ER. Indeed, reticulon and
Yop1/DP1 mutations that result in a compromised ER tubular

network cause accumulation of ERES at the residual high-
curvature domain of the edge of unfenestrated peripheral ER
sheets (Okamoto et al., 2012). Insertion of the Sar1 amphipathic
helix generates deformation of ER membrane that is proposed to
mediate the formation and scission of COPII transport carriers
(Lee et al., 2005). It is also argued that a positive feedback
loop exists between the curvature, Sar1 GTPase, and membrane
deformation, as Sar1 GTPase is stimulated by the local curvature
of the ER membrane (Hanna et al., 2016; Jarsch et al., 2016).
Contrary to the preceding case, COPII carrier formation based on
this Sar1 positive feedback loop may contribute to the generation
of high-curvature domains within the ER membrane.

Live cell imaging suggests that the localization of Sar1 is not
strictly confined to ERES but is rather distributed throughout
the ER membrane together with some punctate accumulations
near ERES. Detailed inspection of the relationship between
Sar1 and Sec13 revealed that Sar1 accumulates at the rims of
COPII-coated membranes and is also excluded from the rest
of Sec13-labeled COPII-coated membranes (Kurokawa et al.,
2016). Sec16, a component of ERES, could be the key player
for the restrictive accumulation of Sar1 at the rim. It has
been proposed that Pichia postoris, a different budding yeast,
Sec16 functions to maintain a ring of Sar1 at the edge of the
COPII-coated membrane (Bharucha et al., 2013). Recruitment of
Sec16 to ERES is dependent on the Sar1 GTPase cycle, thereby
inhibiting Sec23-mediated GTP hydrolysis by Sar1 (Kung et al.,
2012; Yorimitsu and Sato, 2012; Iwasaki et al., 2017; Figure 1B).
These observations have posited Sec16 as the regulator of COPII
turnover. Both enhancement and inhibition of Sar1 GTPase
activity is important for Sar1 at the rims of COPII-coated
membranes as defects in either function compromises the specific
localization of Sar1 (Kurokawa et al., 2016). It is noteworthy that
in P. pastoris, ERES is also found at flat-surface of the nuclear
membrane (Mogelsvang et al., 2003). P. postoris Sec16 has been
shown to recruit Sec12 at ERES, which counts as an additional
layer of Sar1 regulation at ERES (Montegna et al., 2012). Thus,
not only Sar1 activation, but also Sar1 GTPase cycling, facilitates
COPII carrier formation within the ERES, thereby limiting the
specific localization of Sar1. In any case, further investigation
may reveal how the roles of the high-curvature domain, its
lipid composition, and the regulation of Sar1 GTPase activity
are interconnected with each other and how this determines the
significant preference for ERES to reside within the ER.

ASSOCIATION OF ERES AND THE GOLGI

The greater part of eukaryotes exhibit a tight cis to trans
association between each compartment of the Golgi cisternae
to form the stacks. Golgi stacks are functionally interconnected
with ERES by the formation of the ER-Golgi intermediate
compartment (ERGIC) or vesicular tubular clusters (VTCs)
(Budnik and Stephens, 2009; Johnson et al., 2015). These
organelles are structurally distinct from the ER and the Golgi
and are generated by the homotypic fusion of COPII vesicles
(Hobman et al., 1998; Xu and Hay, 2004) whereas in budding
yeast, each cis to trans cisterna of the Golgi is dispersed
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FIGURE 1 | Regulation of COPII transport carrier at ERES. (A) A model for COPII transport carrier formation. (B) Recruitment of Sec16 to ERES regulates Sar1

localization at the rim of COPII-coated membrane.

throughout the cytoplasm (Losev et al., 2006; Matsuura-Tokita
et al., 2006). How, then, is the faithful delivery of the cargo
proteins from the ER to the Golgi established? Admittedly, free
COPII-vesicles are less visible in electron microscopic studies
than COPI- and clathrin-coated vesicles within the cells. A reason
for this observation could be that transport by COPII-vesicles is
over a relatively short distance and is a short-lived event, making
free COPII vesicles hard to observe in electron microscopic
observations. In S. cerevisiae, COPII transport is immediately
completed upon generation at ERES by reaching to the floating
cisternae in the cytoplasm. Indeed, we have recently shown that
the cis-Golgi, but not trans-Golgi, frequently approaches toward
ERES in living cells (Kurokawa et al., 2014). It is considerably
safer for the COPII vesicles to be captured by the Golgi rather
being released into the cytoplasm. The dynamic approachmotion
of cis-Golgi, called “hug-and-kiss” action, was shown to be
disturbed when efficient transport was compromised by glucose
depletion or incubation at restrictive temperatures in uso1-1 cells
(Kurokawa et al., 2014). Faithful transportation from the ER to
the Golgi in budding yeast is governed by dynamic and temporal
formation of an ER-cis-Golgi unit, in which Sar1-driven, COPII
carrier formation at ERES is captured by the cisternae of cis-
Golgi. Thus, the ER-cis-Golgi unit in budding yeast is essentially
equal to the ER-ERGIC found in mammals.

THE GOLGI APPARATUS

As the Golgi is regarded as a transient organelle, its integrity
is ensured by the turnover of membrane source within the
intracellular trafficking pathway and secretory cargo proteins are
modified, delivered and sorted at the level of the Golgi. Out of the
numerous analyses that attempt to explain intra-Golgi transport,
the widely accepted model is cisternal maturation (Nakano and
Luini, 2010; Glick and Luini, 2011). Cisternal maturation was first
observed directly in live cells of the budding yeast S. cerevisiae
(Losev et al., 2006; Matsuura-Tokita et al., 2006). This process
is accomplished by the COPI-dependent retrograde transport of
Golgi-resident proteins, thus the GTPases that regulate COPI-
carrier formation and fusion are important in this regard. Since
GTPases act as the switch for membrane traffic within the
cells, morphology and integrity of the Golgi are regulated by

the activity of GTPases specifically localizing at the Golgi. Arf
GTPases and some Rab GTPases are specifically targeted to the
Golgi apparatus in budding yeast. Arf GTPases function mainly
in the generation of transport carriers, such as COPI and clathrin,
whereas Rab GTPases function in the fusion process of these
transport carriers. Glick and colleagues have proposed that Golgi
functions can be sorted into several functional categories as they
transit from carbohydrate synthesis to carrier formation stages
(Papanikou and Glick, 2014). Intra-Golgi transport mediated by
COPI is thought to act in the carbohydrate and carrier formation
stages while transport machinery such as clathrin directs the
traffic toward post-Golgi organelles and the plasma membrane.
Thus, the functional switch from carbohydrate synthesis to
carrier formation within the Golgi might determine the identity
of the cisternae. In fact, COPI co-localizes with cis-Golgi-resident
protein and clathrin heavy chain (Chc1) co-localizes with a trans-
Golgi/TGN marker, suggesting that the temporal distributions
of COPI and clathrin within the Golgi segregate in the course
of Golgi maturation (Daboussi et al., 2012; Papanikou et al.,
2015). In line with this idea, upstream regulatory mechanisms to
facilitate these distinct carriers’ formation within the Golgi could
determine the definitions of these stages and presumably mediate
cisternal maturation of the Golgi.

TRANSITION OF RAB GTPASES IN THE
GOLGI

Rab GTPases punctually and spatially regulate specific and
distinct membrane traffic within the Golgi that is coordinated by
GEF and GAP (Segev, 2011). These Rab GTPases appear and act
consecutively during the maturation of the Golgi: Ypt1 appears
firstly at the cis-Golgi, Ypt6 is then recruited and lastly Ypt31/32
accumulates at the trans-Golgi/TGN wherein Ypt1 and Ypt6 no
longer exist. Mutually exclusive localization of these Rab proteins
are facilitated by the GEF and GAP cascade in which early-
acting Ypt1 recruits the GEF for Ypt32 as an effector then Ypt32
recruits the GAPs for Ypt1 and Ypt6 as effectors (Figure 2A;
Rivera-Molina and Novick, 2009; Suda et al., 2013). Note that
the favorable model that has been most recently mentioned
includes only two TRAPP complexes act as GEFs for Golgi
Rab GTPases in yeast; TRAPPIII for Ypt1 and TRAPPII for
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FIGURE 2 | Spatio-temporal regulation of GTPases in the Golgi. The Golgi compartments are shown in a cis-to-trans orientation going from left to right.

(A) Consecutive recruitment of Rab GTPases created by GEF and GAP cascade. (B) A series of Arf1 activation by local GEFs. (C) Positive feedback loop between

Arf1 and Ypt32 through their GEFs in trans-Golgi/TGN.

Ypt31/32 (Thomas et al., 2017). Rab GTPases recruit tethering
proteins as effectors and mainly function in the fusion process of
transport carriers as Ypt1 recruits the conserved oligomeric Golgi
(COG) complex for the fusion of COPI vesicles and Ypt6 recruits
the Golgi associated retrograde protein (GARP) complex for
the endosome-derived vesicles (Siniossoglou and Pelham, 2001;
Suvorova et al., 2002). We therefore reasoned that the transition
of Rab GTPases could drive Golgi maturation but results showed
that the speed of Golgi maturation was affected but not disturbed
in Rab transition failure mutants (Suda et al., 2013). This suggests
that Rab GTPase-mediated membrane trafficking is most likely a
secondary regulatory mechanism for Golgi maturation. Another
study of Rab GTPase function in Golgi morphology showed
that the activation of Ypt1 or Ypt31 resulted in increased
rates of cisternal progression on the compartments they reside,
suggesting the importance of Rab GTPases for Golgi maturation
(Kim et al., 2016). This all leads to the critical question: how does
the maturation of the Golgi proceed? Recent evidence suggests
that maturation could rely on the connection of Rab GTPases
with the regulation of other GTPases (such as Arf1) through their
GEFs in the Golgi (see below).

REGULATION OF ARF1 GTPASE ACTIVITY
IN THE GOLGI

Golgi-associated Arf GTPase recruits effectors, including COPI
coat proteins and clathrin adapters. The Glick group showed
that the Golgi enlargement and defects in both the speed and
efficiency of the cis-Golgi maturation in Arf1-depleted cells is
presumably caused by Arf1-mediated recruitment of COPI-coat
proteins (Bhave et al., 2014). Indeed, COPI loss-of-function
status compromises the integrity of the Golgi maturation,
corroborating the key role of Arf1 in the Golgi trafficking
(Papanikou et al., 2015; Ishii et al., 2016).

In general, the Golgi functions are composed of two
discrete stages: “carbohydrate synthesis” in which Golgi-resident
glycosylation enzymes are recycled by COPI and “carrier
formation” is mediated by clathrin-coated vesicles. COPI vesicles
are generated mainly from cis-Golgi cisternae while clathrin

vesicles are generated only from TGN and not earlier cisternae.
Coat proteins for these transport carriers are recruited to the
Golgi by a single Arf1 GTPase. This raises the question of how the
singular activity of Arf1 mediates multiple effector recruitment
within the Golgi. One possible underlying mechanism to answer
this question is the existence of multiple GEFs for Arf1 in
the Golgi. Three Arf-GEF proteins have been shown in yeast
to catalyze the GTP binding of Arf1-containing GBF family
proteins: Gea1/2, BIG family protein Sec7 (Wright et al., 2014).
These Arf-GEFs could facilitate the coordination of specific
Arf1 GTPase activity toward multiple downstream effectors.
Gea1/2 and Sec7 are thought to have different preferences
for their localization within the Golgi as Gea1/2 specifically
resides at cis-cisternae and Sec7 localizes mainly at the trans-
Golgi/TGN. Recruitment of Sec7 to the later-compartment of
the Golgi is governed by autoinhibition, the positive feedback-
loop between Arf1 and Sec7, and by one of the Rab GTPases
Ypt1 and Arf-like GTPase (Arl1) (Richardson et al., 2012;
McDonold and Fromme, 2014). Gea1/2 was shown to interact
with several proteins such as Sec21, a COPI coat protein, and
Drs2, a trans-Golgi/TGN-localized aminophospholipid flippase,
thus their specific localization within the Golgi was enigmatic
(Chantalat et al., 2004; Deng et al., 2009; Tsai et al., 2013).
However, recent findings have shown a preference of Gea1/2
for the cis-Golgi (Figure 2B; Gustafson and Fromme, 2017). The
preference of these Arf-GEFs to localize at distinct compartments
within the Golgi mirrors the surface environment of the Golgi
membrane. Anionic lipids such as phospatidylserine (PS) and
phosphatidylinositol-4 phosphate (PI4P) are enriched from cis-
to-trans on the Golgi surface and governed by the activities
of Drs2 and Pik1, respectively (Walch-Solimena and Novick,
1999; Natarajan et al., 2004; Strahl et al., 2005). It should be
noted that Arl1-mediated membrane remodeling through Drs2
is also important in this step (Yu and Lee, 2017). Sec7 prefers
the anionic surface of the membranes to facilitate maximum
catalytic activity toward Arf1, conversely, Gea1/2 prefers more a
neutral environment of the membranes (Gustafson and Fromme,
2017). In addition, the interactive feedback loop between Arf1
and Rab GTPase has been also shown at the level of trans-
Golgi/TGN. Recruitment of TRAPPII components that function
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as a GEF complex for Rab GTPases at the trans-Golgi/TGN,
such as Ypt31/32, is facilitated by the anionic surface of trans-
Golgi/TGN and Arf1-GTP (Thomas and Fromme, 2016). Initial
recruitment of Sec7 is governed by Ypt1, Arf1, and Arl1,
followed by Ypt31/32, stimulates the activity of Sec7 toward
Arf1 (McDonold and Fromme, 2014). These studies therefore
establish the model for the regulatory circuitry of Arf1 GTPase
and Rab GTPases within the Golgi (Figure 2C). In this scenario,
specific regulation of Arf1 (for the generation of COPI and
clathrin vesicles) and Rab GTPase activity (for the fusion of
these transport carriers), together with the lipid composition of
surface membranes within the Golgi, may drive the functional
shift from the COPI-generated, carbohydrate synthesis stage to
the clathrin-mediated, carrier formation stage.

In summary, the GTPase cycling of Sar1, Arf1, and Rab
GTPases are tightly regulated by their specific mediators to
not only facilitate the formation/fusion of their own transport

carriers but also to regulate the integrity of the specific
compartment within their resident organelles, thereby facilitating

fundamental membrane trafficking in the early secretory
pathway.
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