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In the era of precision medicine, multi-omics approaches enable the integration of data

from diverse omics platforms, providing multi-faceted insight into the interrelation of

these omics layers on disease processes. Single cell sequencing technology can dissect

the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen

our understanding of the underlying mechanisms governing both health and disease.

Through modification and combination of single cell assays available for transcriptome,

genome, epigenome, and proteome profiling, single cell multi-omics approaches have

been developed to simultaneously and comprehensively study not only the unique

genotypic and phenotypic characteristics of single cells, but also the combined regulatory

mechanisms evident only at single cell resolution. In this review, we summarize the state-

of-the-art single cell multi-omics methods and discuss their applications, challenges, and

future directions.

Keywords: single cell transcriptome, single cell multi-omics profiling, single cell epigenome, single cell proteome,

gene regulation, epigenetics

INTRODUCTION

According to the central dogma, also known as the DNA-RNA-protein axis, DNA provides the
code for RNA, which is translated to produce proteins that fulfill biological functions (Crick, 1970).
To discover the regulatory mechanisms behind RNA transcription and protein translation, the
most straightforward approach is to analyze both DNA and RNA, or both RNA and protein, from
the same sample. Despite the complexity of tissues comprised of heterogeneous cell populations,
such as cancer, most experimental results to date have been based on analysis of bulk samples,
which theoretically read an averaged signal from the population and prevent resolution of cellular
variation (Navin et al., 2011; Huang et al., 2015; Gawad et al., 2016). To decipher the mechanism of
heterogeneous gene transcriptional regulation, integratedmeasurement and co-analysis of multiple
types of molecules, such as DNA, RNA, and protein, at single cell level is required.

The invention of PCR methods in 1983 made it possible to analyze the picogram amounts
of DNA in single cells, although these initial methods could only amplify small, targeted
regions of the genome. However, the development of whole genome amplification (WGA)
and whole transcriptome amplification (WTA) methods (Tang et al., 2009; Zong et al., 2012;
Huang et al., 2015; Wang and Navin, 2015; Gawad et al., 2016) soon allowed quantitative
measurement of DNA and RNA for multiple genes in single cells. At the same time, the
development of next generation sequencing technology has enabled genome-wide analysis of
DNA and RNA in single cells. Inspired by the very first report of single cell DNA sequencing
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and single cell RNA sequencing, scientists have developed
numerous methods to measure other omics at single cell level,
including single cell DNA methylation, single cell chromatin
sequencing and single cell proteome analysis [Figure 1, A
detailed introduction of single cell sequencing methods has been
reviewed elsewhere (Wang and Navin, 2015; Gawad et al., 2016)].

Single cell genome-wide approaches provide a valuable
opportunity to measure different molecules, such as DNA, RNA,
protein, and chromatin with ultimate resolution. By isolating
multiple types of molecules (DNA, RNA, or protein) from
a single cell simultaneously, it is feasible to profile different
types of molecules in parallel. For example, genomic DNA
can be used to assay the single cell genome, methylome
or chromatin accessibility, while RNA from the same cell
can be used to profile the transcriptome, and protein the
proteome. Utilizing these different single cell omics profiling
strategies as building blocks, we can construct a multi-
omics profile for the same cell. Here, we summarize current
single cell multi-omics approaches, such as scG&T-seq (single
cell Genome & Transcriptome sequencing), scMT-seq (single
cell Methylome and Transcriptome sequencing), scM&T-seq
(single cell Methylome & Transcriptome sequencing), scTrio-
seq (single-cell triple omics sequencing), and scCOOL-seq (single
cell Chromatin Overall Omic-scale Landscape Sequencing)
(MacAulay et al., 2015; Angermueller et al., 2016; Hou et al.,
2016; Hu et al., 2016), with each of them measuring a different
combination of omics data (Figure 2). We also review the
bioinformatics advances that have been necessary to understand
the large amounts of multi-dimensional data arising from single
cell multi-omics profiling, and we examine the potential for this
technology to elucidate numerous biological enigmas.

METHODS FOR ISOLATING MULTIPLE
TYPES OF MOLECULES FROM A SINGLE
CELL

Isolating multiple types of molecules from a single cell is the
starting point for single cell multi-omics measurement, and
generally can be divided into two steps.

The first step is to collect a single cell randomly from a
population with heterogeneity. The standard protocol is to get
viable, intact cells by mechanical or enzymatic dissociation and
then capture single cells from the dissociated cell suspension.
Several approaches can be used, including mouth pipetting,
serial dilution, robotic micromanipulation, flow-assisted cell
sorting (FACS), and microfluidic platforms (Wang and Navin,
2015). Although these collection approaches are borrowed from
methods developed for single cell mono-omics sequencing,
additional considerations must be taken for multi-omics to
ensure that multiple types of molecules can be viably measured
in the same cell. The success of this first collection step
is critical for preserving an accurate representation of the
DNA, RNA, and protein within the cell for downstream
measurements. The method used for the initial dissociation
of tissues into single cells—mechanical or enzymatic—needs
to be selected with consideration for both the nature of the

starting material and the types of sequencing to be performed.
Clinical samples such as solid tumors are often obtained flash
frozen or embedded in paraffin (FFPE), making multi-omics
measurements that include cytoplasmic RNA or protein more
challenging. However, because this type of freezing process
perturbs the cytoplasmic membrane while keeping the nuclear
membrane intact, multi-omics measurements that involve the
genome, epigenome, and chromatin-associated RNA are still
possible after creation of nuclear suspensions (Navin, 2015). For
fresh tissues, choice of mechanical or enzymatic dissociation
reflects the need for both cell integrity and dissociation quality.
Prolonged exposure to common dissociation enzymes such as
papain, collagenase, dispase, and neutral protease can result
in degradation of RNA and proteins, or generation of cell
debris that aberrantly activate cell signaling pathways and cell
surface proteins (Autengruber et al., 2012; Volovitz et al., 2016).
Mechanical mincing of the starting material through trituration
or nanofiltration may also disrupt accurate representation of the
proteome or transcriptome in cells that contain long projections
such as neurons. These pitfalls in turn can complicate the
subsequent computational analyses performed on the data, which
often involve identification of correlative relationships among the
different layers of multi-omics data obtained. Thus, both tissue-
specific and measurement-specific aspects of obtaining multi-
omics measurements need to be considered in order to achieve
optimized single cell suspensions.

Next, the technique used to select single cells after separation
of bulk tissues also has an impact on the feasibility of
combinatorial multi-omics measurements. The advantages of
techniques such as mouth pipetting and serial dilution include
the simplicity and rapidity of moving single cells from the cell
suspension to individual reaction chambers. This helps limit the
degradation of more volatile molecules such as RNA or protein
and may reduce the possibility of non-physiologic changes in
chromatin accessibility and chromatin conformation (Wang and
Navin, 2015; Svensson et al., 2017). Robotic manipulation, FACS,
and microfluidic capture platforms have the advantage of the
ability to sort through subpopulations by cell labeling, but require
more extensive manipulation of single cells using expensive
equipment (Ortega et al., 2017). Of the numerous options,
selection of a protocol for isolating single cells for multi-omics
data collection will ultimately depend on the molecules that need
to be preserved, the type of tissue obtained, and the cost.

The second step is to isolate multiple types of molecules
from the same cell, for which there are four main strategies:
To isolate DNA and RNA of a single cell, the first strategy is
physical separation, including separation of nucleus from cytosol,
as genomic DNA is contained in the nucleus and the majority
of mRNAs are located in the cytosol. Single cells are treated
with a membrane-selective lysis buffer, through which the cell
membrane is broken down while the nucleus is kept intact. Then,
single nuclei are separated from cytoplasm by micropipetting,
centrifugation, or antibody-conjugated magnetic microbeads
(Hou et al., 2016; Hu et al., 2016; Han et al., 2018; Table 1).
This method has been demonstrated to be highly efficient by
several research groups, including our lab. Our data indicates that
profiling of cytosolic RNA can resemble the transcriptome of the
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FIGURE 1 | Timeline of single cell sequencing methods milestones.

FIGURE 2 | Strategies for multi-omics profiling of single cells. Three major types of molecules relating to biological central dogma (Top). Single cell genomics methods

profiling the genome, epigenome, transcriptome, and proteome are shown by different shapes with variable colors (Middle). Single cell multi-omics methods are built

by combining different single cell sequencing methods to simultaneously profile multiple types of molecules of a single cell genome wide (Bottom). For example,

G&T-seq was built by combining genome (orange) and transcriptome (yellow) to simultaneously detect DNA and RNA of the same cell genome wide.

whole cell. However, this method is low throughput (Hu et al.,
2016), as the nucleus-picking procedure is manual and cannot be
automated easily. Methods based on centrifugation (Hou et al.,

2016) or antibody conjugated magnetic microbeads (Han et al.,
2018) can achieve relatively higher throughput in isolating DNA
and RNA from single cells.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 April 2018 | Volume 6 | Article 28

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Hu et al. Single Cell Multi-Omics Technology

T
A
B
L
E
1
|
C
u
rr
e
n
t
m
u
lti
-o
m
ic
s
m
e
th
o
d
s.

M
e
th
o
d
s
(t
im

e
)

C
e
ll
ty
p
e

M
e
a
s
u
re
m
e
n
t

A
p
p
ro
a
c
h

S
in
g
le

c
e
ll

is
o
la
ti
o
n

M
a
jo
r
d
is
c
o
v
e
ry

R
e
fe
re
n
c
e
s

D
R
-s
e
q
(s
in
g
le
c
e
ll

g
D
N
A
a
n
d
m
R
N
A

se
q
u
e
n
c
in
g
)

(2
0
1
5
)

M
o
u
se

e
m
b
ry
o
n
ic
st
e
m

c
e
ll
lin
e
(E
1
4
)
a
n
d

b
re
a
st

c
a
n
c
e
r
c
e
ll
lin
e

(S
K
-B

R
-3
).

G
e
n
o
m
e
,
m
R
N
A

tr
a
n
sc

rip
to
m
e

A
m
p
lif
y
g
D
N
A
a
n
d
sy
n
th
e
si
ze

c
D
N
A
w
ith

o
u
t

p
h
ys
ic
a
lly

se
p
a
ra
tin

g
th
e
n
u
c
le
ic
a
c
id
s.

P
ro
d
u
c
t
is
th
e
n
sp

lit
fo
r
sc

W
G
S
(s
in
g
le
c
e
ll

W
h
o
le
G
e
n
o
m
e
S
e
q
u
e
n
c
in
g
)
a
n
d

sc
R
N
A
-s
e
q
.

M
o
u
th

p
ip
e
t

G
e
n
o
m
e
c
o
p
y
n
u
m
b
e
r
va
ria

tio
n
c
o
u
ld

d
riv
e
tr
a
n
sc

rip
to
m
e
va
ria

b
ili
ty
.

D
e
y
e
t
a
l.,

2
0
1
5

G
&
T-
se

q
(s
in
g
le

c
e
ll
g
e
n
o
m
e
&

Tr
a
n
sc

rip
to
m
e

se
q
u
e
n
c
in
g
)

(2
0
1
6
)

H
C
C
3
8
,
H
C
C
3
8
-B

L

a
n
d
iP
S
C
s
c
a
rr
yi
n
g

tr
is
o
m
y
2
1
.

G
e
n
o
m
e
,
m
R
N
A

tr
a
n
sc

rip
to
m
e

C
e
ll
is
ly
se

d
,
g
e
n
o
m
ic
D
N
A
a
n
d
p
o
ly
(A
)+

m
R
N
A
is
se

p
a
ra
te
d
b
y
m
a
g
n
e
tic

b
e
a
d
s
fo
r

sc
W
G
S
a
n
d
sc

R
N
A
-s
e
q
.

F
lo
w

c
yt
o
m
e
tr
y

Id
e
n
tifi
e
d
tr
a
n
sc

rip
tio

n
a
l

c
o
n
se

q
u
e
n
c
e
s
o
f
c
h
ro
m
o
so

m
a
l

a
n
e
u
p
lo
id
ie
s
a
n
d
in
te
r-
c
h
ro
m
o
so

m
a
l

fu
si
o
n
s.

M
a
c
A
u
la
y
e
t
a
l.,

2
0
1
5

sc
M
T-
se

q
(s
in
g
le

c
e
ll
M
e
th
yl
o
m
e

a
n
d
Tr
a
n
sc

rip
to
m
e

se
q
u
e
n
c
in
g
)

(2
0
1
6
)

M
o
u
se

d
o
rs
a
lr
o
o
t

g
a
n
g
lio
n
n
e
u
ro
n
s.

D
N
A
m
e
th
yl
o
m
e
,

m
R
N
A

tr
a
n
sc

rip
to
m
e

C
e
ll
is
ly
se

d
,
c
e
ll
n
u
c
le
u
s
c
o
n
ta
in
in
g
g
e
n
o
m
ic

D
N
A
a
n
d
c
e
ll
ly
si
s
p
o
ly
(A
)+

m
R
N
A
is

se
p
a
ra
te
d
fo
r
sc

R
R
B
S
(s
in
g
le
c
e
ll
R
e
d
u
c
e
d

R
e
p
re
se

n
ta
tio

n
B
is
u
lfi
te

S
e
q
u
e
n
c
in
g
)
a
n
d

sc
R
N
A
-s
e
q
.

M
o
u
th

p
ip
e
t

M
e
th
yl
a
tio

n
o
f
n
o
n
-C

G
Ip

ro
m
o
te
rs

is

b
e
tt
e
r
a
n
ti-
c
o
rr
e
la
te
d
w
ith

g
e
n
e

tr
a
n
sc

rip
tio

n
,
g
e
n
e
b
o
d
y
m
e
th
yl
a
tio

n

o
f
C
G
Ip

ro
m
o
te
r
g
e
n
e
s
h
a
s
h
ig
h
e
r

c
o
rr
e
la
tio

n
w
ith

tr
a
n
sc

rip
tio

n
,

p
o
te
n
tia
lly

re
ve
a
la
lle
lic

sp
e
c
ifi
c

m
e
th
yl
a
tio

n
a
n
d
a
lle
lic

e
xp

re
ss
io
n
in

si
n
g
le
c
e
lls
.

H
u
e
t
a
l.,

2
0
1
6

sc
M
&
T-
se

q
(s
in
g
le

c
e
ll
M
e
th
yl
o
m
e
&

Tr
a
n
sc

rip
to
m
e

se
q
u
e
n
c
in
g
)

(2
0
1
6
)

M
o
u
se

e
m
b
ry
o
n
ic
st
e
m

c
e
ll
lin
e
(E
1
4
),
in

se
ru
m

a
n
d
2
ic
o
n
d
iti
o
n
s.

D
N
A
m
e
th
yl
o
m
e
,

m
R
N
A

tr
a
n
sc

rip
to
m
e

C
e
ll
is
ly
se

d
,
g
e
n
o
m
ic
D
N
A
a
n
d
p
o
ly
(A
)+

m
R
N
A
is
se

p
a
ra
te
d
b
y
m
a
g
n
e
tic

b
e
a
d
s
fo
r

sc
W
G
B
S
(s
in
g
le
c
e
ll
W
h
o
le
G
e
n
o
m
e
B
is
u
lfi
te

S
e
q
u
e
n
c
in
g
)
a
n
d
sc

R
N
A
-s
e
q
(s
in
g
le
c
e
ll
R
N
A

se
q
u
e
n
c
in
g
).

F
lo
w

c
yt
o
m
e
tr
y

N
o
n
-C

G
Ip

ro
m
o
te
r
m
e
th
yl
a
tio

n
a
n
d

tr
a
n
sc

rip
tio

n
in

si
n
g
le
c
e
ll
is
n
e
g
a
tiv
e
ly

c
o
rr
e
la
te
d
;
m
e
th
yl
a
tio

n
a
n
d

tr
a
n
sc

rip
tio

n
c
a
n
b
e
b
o
th

p
o
si
tiv
e
ly

a
n
d
n
e
g
a
tiv
e
ly
c
o
rr
e
la
te
d
in

d
is
ta
l

re
g
u
la
to
ry

re
g
io
n
s.

A
n
g
e
rm

u
e
lle
r

e
t
a
l.,

2
0
1
6

sc
-G

E
M

(g
e
n
o
ty
p
e

si
n
g
le
c
e
lls

g
e
n
o
ty
p
e
,
g
e
n
e

e
xp

re
ss
io
n
,
D
N
A

m
e
th
yl
a
tio

n
)(
2
0
1
6
)

H
u
m
a
n
fib

ro
b
la
st
,

h
IP
S
C
,
h
E
S
C
a
n
d

N
S
C
L
C
sa

m
p
le
.

G
e
n
o
ty
p
e
si
n
g
le

c
e
lls

w
h
ile

si
m
u
lta
n
e
o
u
sl
y

in
te
rr
o
g
a
tin

g
g
e
n
e

e
xp

re
ss
io
n
a
n
d

D
N
A
m
e
th
yl
a
tio

n

a
t
m
u
lti
p
le
lo
c
i

C
e
ll
is
c
a
p
tu
re
d
a
n
d
ly
se

d
o
n
C
1
F
lu
id
ig
m

c
h
ip
.
R
N
A
is
m
e
a
su

re
d
u
si
n
g
si
n
g
le
c
e
ll

R
T-
q
P
C
R
a
n
d
m
e
th
yl
a
tio

n
is
m
e
a
su

re
d
u
si
n
g

S
in
g
le
C
e
ll
R
e
st
ric

tio
n
A
n
a
ly
si
s
o
f
M
e
th
yl
a
tio

n
.

M
ic
ro
flu
id
ic

d
e
vi
c
e

T
ig
h
t
c
o
u
p
lin
g
b
e
tw

e
e
n
th
e
tim

in
g
o
f

D
N
A
m
e
th
yl
a
tio

n
c
h
a
n
g
e
s
a
n
d

tr
a
n
sc

rip
tio

n
in

in
d
iv
id
u
a
lc
e
lls
;
c
e
lls

h
a
ve

E
G
F
R
m
u
ta
tio

n
s
sh

o
w

a
d
is
tin

c
t

e
p
ig
e
n
e
tic

si
g
n
a
tu
re
.

C
h
e
o
w
e
t
a
l.,

2
0
1
6

sc
Tr
io
-s
e
q

(s
in
g
le
-c
e
ll
tr
ip
le

o
m
ic
s
se

q
u
e
n
c
in
g
)

(2
0
1
7
)

H
e
p
G
2
c
e
ll
lin
e
,

m
E
S
C
s
a
n
d

h
e
p
a
to
c
e
llu
la
r

c
a
rc
in
o
m
a
tis
su

e

sa
m
p
le
.

D
N
A
m
e
th
yl
o
m
e
,

C
N
V
(c
o
p
y

n
u
m
b
e
r
va
ria

tio
n
),

m
R
N
A

tr
a
n
sc

rip
to
m
e

C
e
ll
is
ly
se

d
.
D
N
A
a
n
d
R
N
A
a
re

se
p
a
ra
te
d

u
si
n
g
c
e
n
tr
ifu
g
e
.
m
R
N
A
is
m
e
a
su

re
d
u
si
n
g

sc
R
N
A
-s
e
q
,
m
e
th
yl
a
tio

n
is
m
e
a
su

re
d
u
si
n
g

sc
R
R
B
S
.
C
N
V
is
c
o
m
p
u
ta
tio

n
a
lly

in
fe
rr
e
d

fo
rm

sc
R
R
B
S
c
o
ve
ra
g
e
.

M
o
u
th

p
ip
e
t

D
e
te
c
te
d
su

b
p
o
p
u
la
tio

n
s
o
f
c
a
n
c
e
r

c
e
lls

a
c
c
o
rd
in
g
to

th
e
la
rg
e
-s
c
a
le

C
N
V,

a
n
d
d
e
te
c
te
d
re
la
tio

n
sh

ip
s

b
e
tw

e
e
n
C
N
V,

m
e
th
yl
a
tio

n
a
n
d

tr
a
n
sc

rip
tio

n
.

H
o
u
e
t
a
l.,

2
0
1
6

S
im

u
lta
n
e
o
u
s

m
u
lti
p
le
xe

d

m
e
a
su

re
m
e
n
t
o
f

R
N
A
a
n
d
p
ro
te
in
s

in
si
n
g
le
c
e
lls

(2
0
1
6
)

C
e
ll
c
u
ltu

re
fr
o
m

g
lio
b
la
st
o
m
a

m
u
lti
fo
rm

e
p
a
tie
n
t

sa
m
p
le
.

P
ro
te
in

a
n
d

m
u
lti
p
le
m
R
N
A

C
e
lls

a
re

so
rt
e
d
a
n
d
ly
se

d
.
P
ro
te
in

is

d
e
te
c
te
d
b
y
h
o
m
o
g
e
n
e
o
u
s
a
ffi
n
ity
-b
a
se

d

p
ro
xi
m
ity

e
xt
e
n
si
o
n
a
ss
a
y
(P
E
A
),
a
n
d
R
N
A
is

m
e
a
su

re
d
b
y
m
ic
ro
flu
id
ic
q
P
C
R
.

C
e
ll
so

rt
in
g

a
n
d

m
ic
ro
flu
id
ic

d
e
vi
c
e
s

R
N
A
a
n
d
p
ro
te
in

d
a
ta

p
ro
vi
d
e

c
o
m
p
le
m
e
n
ta
ry

in
fo
rm

a
tio

n
in

d
e
fin
in
g
c
e
ll
st
a
te
s,

a
n
d
si
g
n
ifi
c
a
n
t

h
e
te
ro
g
e
n
e
ity

in
c
e
ll
c
u
ltu

re
d
e
riv
e
d

fr
o
m

a
g
lio
b
la
st
o
m
a
m
u
lti
fo
rm

p
a
tie
n
t.

D
a
rm

a
n
is
e
t
a
l.,

2
0
1
6

(C
o
n
ti
n
u
e
d
)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2018 | Volume 6 | Article 28

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Hu et al. Single Cell Multi-Omics Technology

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

M
e
th
o
d
s
(t
im

e
)

C
e
ll
ty
p
e

M
e
a
s
u
re
m
e
n
t

A
p
p
ro
a
c
h

S
in
g
le

c
e
ll

is
o
la
ti
o
n

M
a
jo
r
d
is
c
o
v
e
ry

R
e
fe
re
n
c
e
s

sc
C
O
O
L
-s
e
q

(s
in
g
le
c
e
ll

C
h
ro
m
a
tin

O
ve
ra
ll

O
m
ic
-s
c
a
le

L
a
n
d
sc

a
p
e

S
e
q
u
e
n
c
in
g
)

(2
0
1
7
)

M
o
u
se

p
re
im

p
la
n
ta
tio

n

e
m
b
ry
o
s
a
t
d
iff
e
re
n
t

d
e
ve
lo
p
m
e
n
ta
ls
ta
g
e
s.

C
h
ro
m
a
tin

st
a
te
,

D
N
A
m
e
th
yl
a
tio

n
,

a
n
d
C
N
V

C
e
ll
is
ly
se

d
.
C
h
ro
m
a
tin

is
tr
e
a
te
d
b
y
G
p
C

m
e
th
yl
tr
a
n
sf
e
ra
se

,
a
n
d
tr
e
a
te
d
D
N
A
is

se
q
u
e
n
c
e
d
b
y
sc

W
G
B
S
.
In
vi
vo

m
e
th
yl
a
tio

n

is
d
e
te
c
te
d
a
s
C
p
G

m
e
th
yl
a
tio

n
,
a
n
d

c
h
ro
m
a
tin

a
c
c
e
ss
ib
ili
ty

is
c
o
m
p
u
ta
tio

n
a
lly

in
fe
rr
e
d
b
y
G
p
C
m
e
th
yl
a
tio

n
le
ve
l.

M
o
u
th

p
ip
e
t

D
N
A
m
e
th
yl
a
tio

n
is
d
iff
e
re
n
t
b
e
tw

e
e
n

p
a
te
rn
a
la
n
d
m
a
te
rn
a
la
lle
le
s,

b
u
t

th
e
ir
c
h
ro
m
a
tin

a
c
c
e
ss
ib
ili
ty

st
a
te
s
a
re

si
m
ila
r.

G
u
o
e
t
a
l.,

2
0
1
7

C
IT
E
-s
e
q
(c
e
llu
la
r

in
d
e
xi
n
g
o
f

tr
a
n
sc

rip
to
m
e
s

a
n
d
e
p
ito

p
e
s
b
y

se
q
u
e
n
c
in
g
)

(2
0
1
7
)

C
o
rd

b
lo
o
d

m
o
n
o
n
u
c
le
a
r
c
e
lls
.

P
ro
te
in

a
n
d
m
R
N
A

tr
a
n
sc

rip
to
m
e

m
R
N
A
is
se

q
u
e
n
c
e
d
u
si
n
g
1
0
X
g
e
n
o
m
ic
s

p
la
tf
o
rm

.
P
ro
te
in

is
d
e
te
c
te
d
b
y
o
lig
o
-l
a
b
e
le
d

a
n
tib

o
d
y,
w
h
ic
h
c
a
n
b
e
re
a
d
o
u
t
d
u
rin

g

se
q
u
e
n
c
in
g
.

C
o
m
p
a
tib

le

w
ith

1
0
X

g
e
n
o
m
ic
s,

a
d
a
p
ta
b
le
to

o
th
e
r

p
la
tf
o
rm

s

M
u
lti
m
o
d
a
ld

a
ta

e
n
a
b
le
to

re
ve
a
l

p
h
e
n
o
ty
p
e
s
th
a
t
c
o
u
ld

n
o
t
b
e

d
is
c
o
ve
re
d
b
y
u
si
n
g
sc

R
N
A
-s
e
q

a
lo
n
e
.

S
to
e
c
ki
u
s
e
t
a
l.,

2
0
1
7

R
E
A
P
-s
e
q
(R
N
A

e
xp

re
ss
io
n
a
n
d

p
ro
te
in

se
q
u
e
n
c
in
g
a
ss
a
y)

h
u
m
a
n
ly
m
p
h
o
c
yt
e
s

P
ro
te
in

a
n
d
m
R
N
A

tr
a
n
sc

rip
to
m
e

m
R
N
A
is
se

q
u
e
n
c
e
d
u
si
n
g
1
0
X
g
e
n
o
m
ic
s

p
la
tf
o
rm

.
P
ro
te
in

is
d
e
te
c
te
d
b
y
o
lig
o
-l
a
b
e
le
d

a
n
tib

o
d
y,
w
h
ic
h
c
a
n
b
e
re
a
d
o
u
t
d
u
rin

g

se
q
u
e
n
c
in
g
.

F
lo
w

c
yt
o
m
e
tr
y

a
ss
e
ss

th
e
c
o
st
im

u
la
to
ry

e
ff
e
c
ts

o
f
a

C
D
2
7
a
g
o
n
is
t
o
n
h
u
m
a
n
C
D
8
+

ly
m
p
h
o
c
yt
e
s
a
n
d
to

id
e
n
tif
y
a
n
d

c
h
a
ra
c
te
riz
e
a
n
u
n
kn

o
w
n
c
e
ll
ty
p
e

P
e
te
rs
o
n
e
t
a
l.,

2
0
1
7

sc
N
M
T-
se

q

(s
in
g
le
-c
e
ll

n
u
c
le
o
so

m
e
,

m
e
th
yl
a
tio

n
a
n
d

tr
a
n
sc

rip
tio

n

se
q
u
e
n
c
in
g
)

(2
0
1
8
)

M
o
u
se

e
m
b
ry
o
n
ic
st
e
m

c
e
lls

N
u
c
le
o
so

m
e

st
a
tu
s,

D
N
A

m
e
th
yl
a
tio

n
a
n
d

m
R
N
A

tr
a
n
sc

rip
tio

n

S
im

ila
r
w
ith

sc
M
&
T
m
e
th
o
d
s,

D
N
A
a
n
d

m
R
N
A
w
e
re

is
o
la
te
d
.
D
N
A
w
a
s
c
u
t
w
ith

G
p
C

m
e
th
yl
tr
a
n
sf
e
ra
se

M
.C
vi
P
I
b
e
fo
re

b
is
u
lfi
te

tr
e
a
tm

e
n
t.

FA
C
S

N
o
ve
ll
in
ks

b
e
tw

e
e
n
a
ll
th
re
e

m
o
le
c
u
la
r
la
ye
rs

a
n
d
re
ve
a
lin
g

d
yn

a
m
ic
c
o
u
p
lin
g
b
e
tw

e
e
n

e
p
ig
e
n
o
m
ic
la
ye
rs

d
u
rin

g

d
iff
e
re
n
tia
tio

n

C
la
rk

e
t
a
l.,

2
0
1
8

S
ID
R
-s
e
q

si
m
u
lta
n
e
o
u
s

is
o
la
tio

n
o
f

g
e
n
o
m
ic
D
N
A
a
n
d

to
ta
lR

N
A
(S
ID
R
)

a
n
d
se

q
u
e
n
c
in
g
.

(2
0
1
8
)

H
u
m
a
n
lu
n
g
c
a
n
c
e
r

a
n
d
b
re
a
st

c
a
n
c
e
r

c
e
lls
,
M
C
F
7
,
H
C
C
8
2
7
,

a
n
d
S
K
B
R
3
c
e
ll
lin
e
s.

G
e
n
o
m
e
,
m
R
N
A

tr
a
n
sc

rip
to
m
e

N
u
c
le
u
s
a
n
d
c
yt
o
so

lo
f
a
si
n
g
le
c
e
ll
w
e
re

se
p
a
ra
te
d
b
y
a
n
tib

o
d
y-
c
o
n
ju
g
a
te
d
m
a
g
n
e
tic

m
ic
ro
b
e
a
d
s.

m
R
N
A
is
m
e
a
su

re
d
u
si
n
g

sm
a
rt
-s
e
q
2
,
g
D
N
A
is
m
e
a
su

re
d
u
si
n
g

in
g
le
-c
e
ll
w
h
o
le
-g
e
n
o
m
e
a
m
p
lifi
c
a
tio

n

(R
e
p
li-
g
si
n
g
le
c
e
ll
ki
t)

M
a
n
u
a
lly

d
ilu
te
d
to

4
8
-w

e
ll

c
o
p
y-
n
u
m
b
e
r
va
ria

tio
n
s
p
o
si
tiv
e
ly

c
o
rr
e
la
te
d
w
ith

th
e
c
o
rr
e
sp

o
n
d
in
g

g
e
n
e
e
xp

re
ss
io
n
le
ve
ls

H
a
n
e
t
a
l.,

2
0
1
8

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 April 2018 | Volume 6 | Article 28

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Hu et al. Single Cell Multi-Omics Technology

The second strategy uses oligo-dT primer coated magnetic
beads to bind and separate polyadenylated mRNA from DNA
(MacAulay et al., 2015; Angermueller et al., 2016). Genome
wide sequencing of single cell DNA and RNA purified by
this method indicated that breadth of genome coverage and
number of genes were not affected by the process of separation,
indicating high efficiency in the recovery of DNA and RNA.
Since this strategy is adaptable to liquid-handling robots or
automated work stations, higher throughput can be achieved.
However, coverage of isolated DNA was less evenly distributed
across the genome compared to that of the whole single
cell sequencing, which may result in less accuracy for copy
number analysis of certain genomic regions at a suboptimized
sequencing depth.

Besides direct physical isolation of DNA and RNA at the
beginning, the third strategy is to preamplify DNA and RNA
simultaneously, followed by separation into two parts (Dey et al.,
2015). Whole transcriptome sequencing of preamplified RNA of
one part showed a similar number of genes covered compared
to that of whole single cells. However, as the amplified DNA
does not retain methylation states, this method is not suitable for
methylome analysis.

The fourth strategy is to split the material of a single cell
into two parts directly. For example, a recent report used
the splitting strategy to split a single cell into two parts and
simultaneously analyze the RNA and protein of the same cell
(Darmanis et al., 2016). This splitting strategy is not an ideal
method to isolate substrates such as DNA because some material
will inevitably be lost due to the uneven split. However, for RNA
and protein molecules with high copy number in the single cells,
this method is feasible as long as the split is even between the
two parts.

INTEGRATION OF GENOME AND
TRANSCRIPTOME

The first single cell transcriptome analysis was reported in
2009 (Tang et al., 2009), and many additional single cell
RNA sequencing methods have been developed since, such
as Quartz-seq (Sasagawa et al., 2013), smart-seq (Switching
mechanism at 5′ end of the RNA transcript) (Goetz and
Trimarchi, 2012; Picelli et al., 2014), Cel-seq (Cell expression
by linear amplification and sequencing) (Hashimshony et al.,
2012) etc., which were developed using different strategies for
different purposes. For example, Quartz-seq detects the 3′ end
of transcripts, while Smart-seq detects full length transcripts.
Cel-seq barcodes and pools samples before linearly amplifying
mRNA to multiplex single cell samples. In parallel, due to
the development of single-cell whole-genome amplification
(WGA) methods, single cell genome sequencing technologies
have also been established. At present, four major WGA
methods have been reported: DOP (degenerate oligonucleotide-
primed polymerase chain reaction) (Telenius et al., 1992),
MDA (Multiple Displacement Amplification) (Dean et al., 2001),
MALBAC (Multiple Annealing and Looping Based Amplification
Cycles) (Zong et al., 2012) and PicoPLEX (Rubicon Genomics

PicoPLEX Kit). In 2013, Han et al. first reported a co-detection of
DNA and RNA from the same single cell (Han et al., 2014), which
was achieved by physical isolation of cytoplasm (containing
cytoplasm RNAs) from nucleus (containing the intact genome)
from the same single cells, followed by separate amplification
of the transcriptome and genome, and further by respective
sequencing of both. Although the initial report showed only
the data of the whole transcriptome but not the whole genome,
instead of Sanger sequencing of a selected set of genomic
sequences, it paved a way to establish multi-omic profiling
methods. Later, experimental protocols that simultaneously
sequenced the genome and transcriptome were developed by
elegantly integrating existing single cell sequencing methods,
namely DR-seq (gDNA and mRNA sequencing) (Dey et al.,
2015) and G&T-seq (Genome & Transcriptome sequencing)
(MacAulay et al., 2015). In DR-seq, a cell is lysed completely,
releasing its DNA and RNA into the same reaction system.
Genomic DNA and cDNA initially being amplified at the same
time is split into two halves: one for RNA-seq using the CEL-
seq protocol, and the other half for genome sequencing using
MALBAC (Dey et al., 2015). Different from DR-seq, G&T-seq
separated poly-A tailed mRNAs from DNA by using oligo-
dT-coated magnetic beads. Separated mRNA and DNA were
then sequenced using SMART-seq2 and various WGA protocols
(MDA or PicoPLEX), respectively (MacAulay et al., 2015). Most
recently, Han et al. reported a novel method for simultaneous
isolation of genomic DNA and total RNA (SIDR) from single cells
by using hypotonic lysis to preserve nuclear lamina integrity and
subsequently capturing the cell lysate using antibody-conjugated
magnetic microbeads. They found that copy-number variations
positively correlated with the corresponding gene expression
levels (Han et al., 2018). In summary, using DR-seq, G&T-seq and
SIDR, researchers were able to directly determine the correlation
between large-scale copy number variation and transcription
levels in the CNV regions.

As discussed previously by MacAulay et al. (2017), a
substantial advantage of direct measurement of multiple
molecular types from the same single cell over separate
measurement of each type of molecule from different cells
is that genotype-phenotype correlation can be determined
unambiguously. First, the genomic variation can be directly
linked to the transcriptional variation without being confounded
by cell heterogeneity, enabling the dissection of potential
molecular mechanisms underlying variable phenotypes among
single cells. Second, coupled with lineage record technology,
simultaneous sequencing of the genome and transcriptome can
be used for reconstruction of lineage trees. Genomic profiling of
single cells can divulge the lineage relationship among single cells,
based on inherited mutations. The transcriptome profiling of the
same single cells can in parallel provide information about the
cell’s phenotype and function. One intriguing application of this
method is to dissect the mechanism of heterogeneity of tumor
cells to inform our knowledge of tumor formation and potential
therapeutic targets (Shapiro et al., 2013). Third, simultaneous
sequencing of DNA and RNA of the same cell can detect DNA
mutations with higher accuracy, as the mutations found in DNA
or RNA can be verified by each other. This strategy can be
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very helpful in situations where highly accurate mutation calling
from a single cell is required, such as genetic diagnosis screening
during in vitro fertilization, when only 1–2 single blastomeres are
available (Vermeesch et al., 2016). Of note, post-transcriptional
modification such as RNA editing (Tan et al., 2017) which may
affect the concordance of variations in both DNA and RNA,
should be taken into consideration to precisely call themutations.

INTEGRATION OF EPIGENOME WITH
TRANSCRIPTOME

Based on the development of technologies for single cell
epigenome and transcriptome profiling, the methods for the
integrated analysis of the epigenome and transcriptome were
developed (Angermueller et al., 2016; Hou et al., 2016; Hu
et al., 2016). DNA methylation has been demonstrated to have
key regulatory functions on gene expression in many biological
process, so the relationship between the DNA methylome and
transcriptome from the same single cell is of great interest. Two
major methods for single cell methylome analysis are single
cell reduced representative bisulfite sequencing (scRRBS) (Guo
et al., 2013) and single cell whole genome bisulfite sequencing
(scWGBS) (Smallwood et al., 2014). The first reported combined
DNAmethylome and transcriptome profiling method is scM&T-
seq (single cell methylome and transcriptome sequencing), which
is developed using the procedure of G&T-seq to isolate DNA
and RNA from the same single cell. The protocols for mRNA
capture, amplification and sequencing are the same as those in
G&T-seq. In parallel, the genomic DNA is subjected to bisulfite
treatment and sequencing, allowing the simultaneous profiling
of the DNA methylome and RNA transcriptome from the same
single cell (Angermueller et al., 2016). Subsequently, scMT-seq
(Hu et al., 2016) and scTrio-seq (Hou et al., 2016) were reported
using a different strategy to isolate DNA and RNA from a single
cell, in which cell membrane but not nucleus was selectively
lysed to release RNA, and then intact nucleus was physically
separated from the cell lysate (Hou et al., 2016; Hu et al., 2016;
Guo et al., 2017). In the scMT-seq method, the single cell nucleus
is collected by micropipette and subjected to scRRBS, and mRNA
in the lysate is amplified by a modified Smart-seq2 protocol.
In the scTrio-seq, the nucleus and cytosol are separated by
centrifugation, and genomic DNA contained in the nucleus is
sequenced by scRRBSwhilemRNA is amplified by the scRNA-seq
protocol reported by Tang et al. (2009).

The simultaneous profiling of methylome and transcriptome
of a single cell provides a unique opportunity to directly
measure DNA methylation and gene transcription within the
same single cell, and to study the correlation of DNAmethylation
differences with gene transcription variance across single cells.
For example, scM&T-seq investigated the relationship between
the transcriptome and DNA methylome, and found that low
methylated regions (LMR) showed high variance in methylation
level, which is consistent with their role as distal regulatory
elements that control gene expression (Angermueller et al., 2016).
Our results using scMT-seq found that variable CpG sites were
significantly enriched at non-CGI (non-CpG island) promoters

but depleted at CGI (CpG island) promoters, suggesting that
non-CGI promoters could be the major region contributing
to methylome heterogeneity among dorsal root ganglion single
cells. We also found that transcription level was positively
correlated with genebody methylation, but negatively correlated
with promoter methylation. In addition, by integrating the
genomic SNP information, we found a correlation between
allelic gene body methylation and allelic expression at single
cell level. Thus, scMT-seq allows us to profile genome, DNA
methylome and transcriptome in parallel within a single cell
(Hu et al., 2016). Similarly, scTrio-seq enables profiling of DNA
methylome, genome (CNV) and transcriptome at the same time,
in which the copy number variation is computationally inferred
from the scRRBS (Hou et al., 2016). Most recently, Guo et al.
from the same group reported another single cell multi-omics
sequencing method called single-cell COOL-seq that can profile
DNA methylation and chromatin state/nucleosome positioning,
copy number variation and ploidy simultaneously from the same
cell (Guo et al., 2017). Although they did not incorporate the
RNA sequencing in this protocol (which is theoretically possible),
this method provided new insights into the comprehensive
study of genome-wide gene regulation at single cell level.
Most recently, Clark et al. reported the scNMT-seq (single-
cell nucleosome, methylation, and transcription sequencing),
which can simultaneously profile single cell nucleosome, DNA
methylation and transcription. By profiling themouse embryonic
stem cell, they found novel links between all three molecular
layers and revealed dynamic coupling between epigenomic layers
during differentiation (Clark et al., 2018).

PARALLEL PROFILING OF RNA AND
PROTEIN

RNA and protein have distinctive biochemical properties.
Compared to genomic sequencing methods, the throughput
in terms of the number of proteins that can be detected by
the single cell proteome profiling is limited. Until now, a few
single cell proteomic methods have been developed based on
different strategies, including fluorescence-activated cell sorting
(FACS), western blot, metal-tagged antibodies followed by mass
cytometry, and oligonucleotide labeled antibodies. Although the
multiplexing of these approaches were still limited to tens of
proteins for a single cell, they still demonstrated the feasibility
of detection of protein and RNA expression, paving a way to
discover the dynamics of RNA and protein within the same cell.
Darmanis et al. developed a method based on homogeneous
affinity-based proximity extension assay that converts protein
abundance into tag-oligo levels (Darmanis et al., 2016), and both
transcript level and protein level were quantified by qPCR. This
method has succeeded in capturing parallel profiles of protein
and RNA for up to 96 genes (Darmanis et al., 2016). Another
approach to simultaneously detect the RNA and protein of the
same cell is PLAYR (proximity ligation assay for RNA). Briefly,
the RNA transcripts are bound by and ligated to isotope labeled
probes. Transcript levels are converted into isotope label levels
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that can be easily measured together with elemental isotope-
labeled protein using mass cytometry (Frei et al., 2016). With this
method, simultaneous quantification of more than 40 different
mRNAs and proteins can be achieved, although improvement
is required to achieve genome-wide measurement with higher
throughput. Most recently, two methods named REAP-seq and
CITE-seq with higher throughput have been reported, in which
oligonucleotide-labeled antibodies are used to integrate cellular
protein and transcriptomemeasurements into an efficient, single-
cell readout (Peterson et al., 2017; Stoeckius et al., 2017).
Quantified proteins with 82 barcoded antibodies and more than
20,000 genes can be detected in a single workflow.

STRATEGIES FOR BIOINFORMATICS
ANALYSIS OF SINGLE CELL SEQUENCING
DATA

Single cell sequencing technologies for genome wide profiling
of DNA and RNA, as well as the subsequent integrative
computational analysis methods, are central to the interpretation
of single cell multi-omics data. The prelude to this type of
analysis hinges first on the development of bioinformatics
approaches for single cell single-omics sequencing data for
various individual types of molecular measurements. Because
technical characteristics of various single cell sequencing
protocols are different, the bioinformatics methods involved
must also be customized to correctly analyze each data type.
The need to address the specific characteristics of different single
cell sequencing approaches has inspired many computational
methods that allow us to better analyze sequencing datasets
involving multiple layers.

Single Cell Genome Sequencing
Two major purposes of single-cell genome sequencing are
identifying copy number variation and identifying point
mutations/SNPs. Both these questions have been addressed in
bulk WGS, and the methods developed for bulk WGS data have
provided guidance for single cell WGS analysis.

Copy number variation can be robustly identified using
HiddenMarkov Model (HMM) or Circular Binary Segmentation
(CBS), and these methods have proved effective for scWGS data
(Knouse et al., 2016). Although these two methods perform
similarly in many situations, user-defined parameter adjustments
within the algorithms can affect the sensitivity and specificity
of copy number calls. For example, comparison of these two
methods on scWGS data with a range of parameters indicated
that CBS was more sensitive in calling copy number losses,
while HMM was more sensitive in calling gains (Knouse
et al., 2016). In the context of single cell CNV analysis, one
strategy to reconcile the two approaches has been to take the
overlap of CNVs identified by CBS and HMM to increase
confidence (Knouse et al., 2016). Considerations in choosing
between the methods involve the biological properties of the
samples, such as the expected sizes of the CNVs, which could
range from whole-arm changes seen in aneuploid tumors to
dinucleotide changes observed in inherited polymorphisms or in

microsatellite instability. CBS is more flexible than HMM in that
the algorithm recursively searches for segmentation points in an
unsupervised approach, while HMM depends on the assumption
that segmentation points follow a homogenous Poisson process,
which is not always the case and may therefore compromise
flexibility (Wineinger et al., 2008).

Many tools have been developed for detecting variations in
bulk WGS data (Depristo et al., 2011; Koboldt et al., 2012),
and these methods, in principle, should perform well in scWGS
data. However, scWGS data suffers from high allele coverage
bias and high PCR amplification error, which could impair
the performance of variant calling methods if not corrected.
Recently, with increased understanding of coverage bias in
scWGS data (Zhang et al., 2015), Dong et al. reported a
computational method that can correct amplification bias to
reduce false positive SNPs resulting from PCR or sequencing
errors (Dong et al., 2017). Although this new method still
partially relies on GATK to identify new variants, it achieved
better accuracy by removing false positive variants resulting from
PCR error.

Single Cell Transcriptome Sequencing
Single cell RNA-seq data enables the discovery of exciting and
new biological phenomena while presenting new challenges
for data analysis. For example, single-cell RNA-seq can help
us identify cell subtypes with unprecedented resolution, and
reconstruct continuous cell lineages. Some early studies showed
that identification of cell subtypes or reconstruction of cell
lineage could be done manually by experts with sufficient
biological prior knowledge using basic statistical methods (Xue
et al., 2013; Treutlein et al., 2014). However, recently, huge
datasets with extremely heterogeneous cell populations have
precluded the feasibility of manual annotation, and many
computational pipelines have been developed. For example, tools
based on different theoretical frameworks have been developed
to cluster cells based on their gene expression similarity, such
as SINCERA (Guo et al., 2015), pcaReduce (Žurauskiene and
Yau, 2016), SC3 (Kiselev et al., 2017), and SNN-Cliq (Xu and
Su, 2015). Additional tools have been developed to reconstruct
cell lineage by ordering cells according to computationally
inferred pseudo-time (Trapnell et al., 2014; Cannoodt et al., 2016;
Qiu et al., 2017). However, despite the availability of myriad
computational software packages for clustering and lineage
inference, few benchmarking studies have been done to compare
their performance.

In addition to those two classical biological questions, the
technical problem of imputation of missing values in single-
cell RNA-seq data has recently attracted increasing attention.
Single-cell RNA-seq, especially for cells captured by droplet-
based methods, is often plagued by missing values due to drop-
out events, leading to an exceedingly sparse depiction of the
single cell transcriptome. Simply removing genes containing
missing values restricts the analysis to only highly expressed
genes. To overcome this problem, much effort has been made
to impute missing values (Kiselev et al., 2017; Lin et al., 2017).
These imputation methods can not only enable us to investigate
lowly expressed genes but can also improve the performance of
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existing computational methods for other purposes by reducing
noise from drop-out events.

Single Cell Methylome Analysis
Compared to bulk WGBS (whole genome bisulfite sequencing)
data, the analysis of single cell WGBS requires distinct
bioinformatics techniques due to the sparse and uneven coverage
of scWGBS (single cell WGBS) libraries across the genome.
Although many tools have been developed for bulk WGBS
data analysis, these methods will fail if applied to scWGBS
data directly. To make scGWBS data analysis possible, the first
strategy is to merge data from single cells and analyze the merged
data as a sample (Farlik et al., 2016). By combining data from
many single cells (usually hundreds), the data coverage becomes
high, and the bias from allele dropout is averaged out. However,
this strategy cannot be used to address the heterogeneity of
methylation among different single cells, because methylation
data are merged and averaged among the cell population.

Aside from adapting scWGBS data to existing computational
pipelines by merging data, the second strategy is to develop
new methods specifically for scWGBS data, and many of these
methods aim to aggregate methylation levels from adjacent CpG
sites or regions with similar biological properties to overcome
the sparseness of scWGBS data. For example, Smallwood et al.
segment the genome into 5-kbp, non-overlapping bins and
use average methylation level among bins as the feature for
subsequent analysis (Smallwood et al., 2014). Similarly, by
aggregating methylation signal on regulatory elements, we can
reveal regulatory mechanisms behind the changes in the DNA
methylome (Farlik et al., 2015). In these methods, each single cell
is treated as a sample separately, thus enabling the discovery of
DNA methylome heterogeneity among single cells.

Interestingly, besides aggregating existing methylation
information to reduce noise, a method based on the deep
neuronal network was recently developed, which infers missing
methylation information from sequencing motifs (Angermueller
et al., 2017). Although this method achieved high prediction
accuracy for whole genome, its performance on low-methylated
regions, the regulatory regions where methylation level
influences gene expression greatly, were not satisfying. However,
we believe that the prediction accuracy on LMRs can be further
improved by incorporating more features into the same deep
learning framework.

Single Cell Sequencing for Chromatin
Status Analysis
Success in single cell genome and transcriptome sequencing
inspired the development of single cell epigenome sequencing.
So far, single cell ChIP-seq (Rotem et al., 2015) (Chromatin
Immunoprecipitation Sequencing), DNase-seq, and ATAC-seq
(Buenrostro et al., 2015) (Assay for Transposase-Accessible
Chromatin using sequencing) has been reported from different
groups. Since this type of single cell epigenome data has just
begun to emerge, the related computational analysis methods
are still in their infancy and only a few methods have been
developed specifically for single cell data. For example, scChIP-
seq and scATAC-seq have been developed to investigate histone

modification and chromatin accessibility landscapes at single cell
level (Buenrostro et al., 2015; Rotem et al., 2015; Corces et al.,
2016), and the reads from one single cell are extremely sparse due
to the low amount of DNA in a cell. To identify the regions that
have histone modification or regions with open chromatin, reads
from several dozen to hundred single cell libraries were pooled
together, and only this “pooled library” has enough reads for
conventional peak calling methods. In the subsequent analysis,
these putative peaks will be used as guidance to aggregate sparse
signal and remove background signal. Although this method
enables the meaningful analysis of scChIP-seq and scATAC-
seq without requirement of any new computational methods,
concerns have been raised about the sensitivity of this strategy
(Zamanighomi et al., 2017). Interestingly, methods designed for
scATAC-seq analysis are emerging, such as chromVAR (Schep
et al., 2017) and scABC (Zamanighomi et al., 2017). We believe
these pipelines will also inspire the development of effective
pipelines for scChIP-seq data.

APPLICATION OF SINGLE CELL
MULTI-OMICS METHODS

As described above, single cell multi-omics analysis integrates
multiple data sets from the genome, epigenome, transcriptome,
proteome, providing a unique chance to uncover novel biological
processes. By extending and integrating methods developed for
single-omics analysis, we can obtain a multi-channel molecular
readout and utilize these features from multiple omics types to
achieve a more comprehensive depiction of the state of a single
cell. In combination with continuously advancing bioinformatic
algorithms and computational resources, experimental collection
of multi-omics data has allowed us to uncover increasingly
important and complex insights.

The first application of single cell multi-omics methods is
to identify cell subtypes from a heterogeneous cell population.
Previously, for example, single cell RNA-seq approaches were
shown to be effective in identifying cell subtypes such as human
blood dendritic cells, monocytes, and neurons in human brain
cortex (MacOsko et al., 2015; Ofengeim et al., 2017; Villani
et al., 2017). Recently, single cell DNA methylation sequencing
was also applied to study human brain cortex. By examining
non-CpG methylation among single cells, they identified novel
cell subtypes that were masked in scRNA-seq analysis (Luo
et al., 2017). Epigenetic modifications such as DNA methylation
are developmentally regulated and cell type-specific, yet stable
over the life span, and therefore profiling the epigenome and
transcriptome simultaneously can compensate for the limitation
of single cell RNA-seq, which mainly yields information about
highly expressed transcripts. Thus, different omicsmeasurements
can provide non-redundant information about cell identity
and enable more detailed and more accurate dissection of
complicated tissues.

Second, single cell multi-omics can be used to reconstruct
cell lineage trajectories. Understanding cell lineage trajectories
during the complete time course of multicellular animal
development is the holy grail of developmental biology. DNA
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mutations, as well as epigenetic modifications gained during the
cell division and passed to the daughter cells, can be used for
lineage tracing, while the transcriptome of the matching single
cells can reveal the concomitant alteration of gene expression
and transcriptional cell fate change during cell proliferation
and differentiaion. For example, cancer cells have extremely
unstable genomes, and understanding cancer genome evolution
is crucial for revealing “driver” mutations or copy number
changes that cause carcinogenesis. Single cell multi-omics can
not only help us determine the occurrence order of different
mutations during cancer evolution, but can also reveal their
functional consequences, such as alteration in gene expression,
which will eventually help us identify the causal mutations that
induce the transition from normal cell to cancer cell.

Lastly but most importantly, single cell multi-omics data
provides the resolution to definitively reveal the relationship
between different omics readouts. Correlation analysis between
different omics is a prevailing approach to generate regulatory
hypotheses between two omics data types. For example, cytosine
methylation is among the best-studied epigenetic modifications
and has been shown to regulatemany critical biological processes.
With both DNA and RNA sequencing data, DR-seq and G&T-
seq have allowed us the ability to reveal correlation between
copy number variation and gene expression level at a single
cell scale. Further, scTrio-seq showed that large-scale CNVs
caused proportional changes in RNA expression of genes within
the gained or lost genomic regions, whereas these CNVs
generally do not affect DNA methylation in these regions. Our
work using scMT-seq not only showed allele-specific expression
patterns based on SNV information, but also showed correlation
of DNA methylation with allele-specific expression, providing
new insight into the study of imprinting and its underlying
mechanism. In the near future, multi-omics methods may
be helpful for understanding the correlation between DNA
mutations with epigenetic modifications and their effects on
gene expression to reveal the mechanisms underlying interesting
biological questions such as dosage compensation and X-
inactivation, among others (Livernois et al., 2012; Graves, 2016).
Inevitably, even with single cell multi-omics technology, we
are still limited to identifying correlation but not causality. We
therefore believe that single cell multi-omics, once combined
together with experimental perturbation, will be effective in
allowing us to understand causal relationships among omics data
types.

Essential to all these applications is the development of
computational approaches that help to integrate multiple data
layers and to recover information lost due to the sequencing
of minute amounts of biological material. Bioinformatic and
computational techniques have advanced single cell multi-omics
technology in several arenas, such as (1) imputation of “dropped-
out” single cell measurements, (2) indirect measurement of
another omics layer from a measured one (Farlik et al.,
2015; Bock et al., 2016), and (3) mathematical and statistical
quantification of multi-dimensional associations (Lane et al.,
2017). Imputation methods pull information from groups of
similar cells to help to restore measurements for molecules
originally in very low abundance, such as lowly expressed

RNA transcripts, filling in sparse data matrices for better
representations of the original relationships (VanDijk et al., 2017;
Li and Li, 2018). Furthermore, as our knowledge of biological
regulatory relationships increases, one data type may be able to
serve as proxy for inference of another omics layer. For example,
transcription factor binding or copy number alterations have
been indirectly inferred from single cell methylation data (Farlik
et al., 2015; Hou et al., 2016). Likewise, copy number information
can be inferred from the single cell transcriptome (Tirosh et al.,
2016), and chromatin state from the methylome (Guo et al.,
2017). In addition, as single cell multi-omics technology becomes
progressively high throughput, computational resources and
time needed for processing of the raw data will be an important
aspect in the flexibility of data analysis. Pipelines and new
algorithms that streamline and shorten the computational time
needed for data processing will be important for increasingly
complex, multi-dimensional experiments. Raw files for each omic
type must be separately processed, aligned, filtered, and quality-
controlled in a manner that accounts for complications inherent
in single cell measurements, such as low signal-to-noise ratio,
technical amplification artifacts, and technical variation (Bock
et al., 2016). Each omics layer of processed data is then assigned
back to the single cell and co-analyzed with both mathematical
and statistical models to reveal patterns of regulation. These new
computational methods, while still nascent, allow us the capacity
to bypass experimental limitations and expose excitingly novel
relationships.

CONCLUSIONS AND FUTURE
DIRECTIONS

Single cell multi-omics methods have provided countless
opportunities to systematically understand biological diversity,
and to identify rare cell types and their characteristics with
unprecedented accuracy through integration of information
from multiple omics levels, including DNA, RNA, and protein.
These single cell multi-omics methods will play an important
role in many diverse fields, and their applications are rapidly
expanding, including (1) delineating cellular diversity, (2) lineage
tracing, (3) identifying new cell types, and (4) deciphering
the regulatory mechanisms between omics. Although some of
the applications have been reported in initial studies, there
are still many avenues open for exploration, and the further
development of new multi-omics methods will also facilitate
their increasing utility. It is anticipated that better performance
of multi-omics methods will be generated based on the
optimization of current single cell sequencing methods. There
are currently several main challenges and thus opportunities for
further development of single cell multi-omics technology: (1)
Overcoming the limitations of current single cell sequencing
methods will facilitate the development of more types of
omics measurements on single cells. For example, outside of
single cell DNA methylome analysis, there are other single
cell epigenome sequencing methods such as scAba-seq (DNA
hydroxymethylation) (Mooijman et al., 2016), single cell ATAC-
seq (open chromatin) (Buenrostro et al., 2015), single cell Hi-C
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(chromatin conformation) (Nagano et al., 2013), and single
cell ChIP-seq (histone modifications) (Rotem et al., 2015).
However, due to limitations such as low genome coverage
and high noise signals derived from locus dropout and PCR
amplification, no reliable multi-omics approach based on these
methods has been reported yet. Optimization of the existing
single cell sequencing methods as well as newly developed
methods will provide more opportunities to integrate diverse
methods with transcriptomic analysis to reveal the relationship
between epigenetic states and RNA transcription variation. (2)
New approaches to isolate and label multiple types of molecules
of the same single cell will help to increase the number of
omics profiled in parallel, from dual-omics to triple-omics
or more. Even multiple functional parameters of single cells
could be included, such as with the development of patch-seq,
which combined whole-cell electrophysiological patch-clamp
recordings, single-cell RNA-sequencing, and morphological
characterization to identify new cell types in the nervous
system (Cadwell et al., 2016, 2017). (3) In contrast to the rich
resources of experimental protocols, computational methods

for single cell multi-omics data analysis have just started to
emerge. New computational approaches tailored to the analysis
of single cell multi-omics data will also substantially facilitate
the application of the methods (Yan et al., 2017). In summary,
with further development of multi-omics methods, the future
will witness an even wider application of single cell multi-omics
technology that will result in meaningful findings never before
achieved.
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