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Pluripotent stem cells are characterized by their high proliferative rates, their ability to

self-renew and their potential to differentiate to all the three germ layers. This rapid

proliferation is brought about by a highly modified cell cycle that allows the cells to quickly

shuttle from DNA synthesis to cell division, by reducing the time spent in the intervening

gap phases. Many key regulators that define the somatic cell cycle are either absent

or exhibit altered behavior, allowing the pluripotent cell to bypass cell cycle checkpoints

typical of somatic cells. Experimental analysis of this modified stem cell cycle has been

challenging due to the strong link between rapid proliferation and pluripotency, since

perturbations to the cell cycle or pluripotency factors result in differentiation. Despite

these hurdles, our understanding of this unique cell cycle has greatly improved over

the past decade, in part because of the availability of new technologies that permit

the analysis of single cells in heterogeneous populations. This review aims to highlight

some of the recent discoveries in this area with a special emphasis on different states of

pluripotency. We also discuss the highly interlinked network that connects pluripotency

factors and key cell cycle genes and review evidence for how this interdependency may

promote the rapid cell cycle. This issue gains translational importance since disruptions

in stem cell proliferation and differentiation can impact disorders at opposite ends of a

spectrum, from cancer to degenerative disease.
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INTRODUCTION

Embryonic stem cells (ES) are derived from the inner cell mass of the blastocyst and can be cultured
indefinitely in vitro while still remaining pluripotent (Evans and Kaufman, 1981; Thomson et al.,
1998). They can give rise to the three germ layers Endoderm, Mesoderm and Ectoderm in vivo
when transplanted into mice or in vitro under appropriate culture conditions. The ability to give
rise to a range of different cell types has made ES cells highly attractive for their potential use in
regenerative medicine both as a potential source of differentiated cells for replacement therapies,
but more immediately as an excellent model for understanding developmental programming as a
means to eventually targeting endogenous adult stem cells in vivo.

ES cells express a set of genes characteristic of the pluripotent state including transcription
factors such as Oct-3/4, Sox2, and Nanog (Nichols et al., 1998; Niwa et al., 2000; Avilion et al., 2003;
Mitsui et al., 2003; Chambers et al., 2007). These transcription factors are essential in maintaining
the pluripotent state and when expressed in other cell types, can also confer enhanced stemness
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as seen in cancer stem cells (Liu A. et al., 2013; Jeter et al., 2015;
Wang and Herlyn, 2015). By expressing a combination of four
transcription factors that are also expressed in ES cells namely,
Oct-3/4, Klf4, Sox2 and c-Myc (Yamanaka factors), it is possible
to “reprogram” somatic cells to a pluripotent state (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007).

ES cells can divide rapidly, with doubling times ranging
from 8 to 10 h (Solter et al., 1971; Power and Tam, 1993) as
compared to somatic cells such as embryonic fibroblasts with
doubling times of ∼20 h or more (Savatier et al., 1994; Stead
et al., 2002; Becker et al., 2006). The rapid proliferation in ES
cells is brought about by a massive rearrangement in regulators
of the cell cycle, including modifications to checkpoints, altered
expression patterns of key cell cycle genes and altered metabolic
regulation (Shyh-Chang et al., 2013). Coupled with the limitless
propensity to self-renew and repress genes that control lineage
commitment and differentiation, the unique ES cell cycle is at the
heart of stem cell function.

Due to this highly interlinked network, dissecting the
mechanisms regulating the ES cell cycle is challenging.
By using a combination of cell synchronization, directed
differentiation, reprogramming to a pluripotent state, newer
imaging techniques, improved resolution of a variety of methods
targeted at single cells and better automation algorithms, we
now have a more detailed understanding of the many unique
regulatory aspects controlling the ES cell cycle. Several recent
reviews have highlighted the connections between developmental
programming and proliferative control (Kareta et al., 2015b;
Soufi and Dalton, 2016). In this review, we discuss the recent
discoveries which highlight how deviation of the ES cell cycle
from the somatic cell cycle allows both rapid proliferation and
retention of stemness. We also discuss how the cell cycle changes
along with the pluripotent state, during the course of embryonic
development. Finally, we examine the various links between
transcription factors that maintain pluripotency in ES cells and
those that regulate the rapid cell cycle.

THE TRUNCATED mES CELL CYCLE

The cell cycle is characterized by a complex interplay of
Cyclins, Cyclin-dependent kinases (Cdk), Cyclin-dependent
kinase inhibitors (Cdkn), pocket proteins of the retinoblastoma
family and many accessory factors. This intricate network
provides an organized system by which a cell can grow and
divide into two daughter cells (Morgan, 1995; Hindley and
Philpott, 2013). Depending on the cell type, the time taken by a
proliferating cell to divide varies, and is primarily brought about
by modulating these regulators of the cell cycle (Harashima et al.,
2013).

A canonical somatic cell cycle defined by studies in cultured
fibroblasts such as NIH 3T3 consists of a DNA synthesis stage
(S phase) and the cell division phase (M phase) interspersed by
two gap phases called G1 (between M phase and S phase) and
G2 (between S phase and M phase) (Hindley and Philpott, 2013).
The cell cycle is primarily regulated by the action of Cyclin-Cdk
complexes, which exhibit an oscillatory activity that activates and

represses crucial regulators of the cell cycle to promote transitions
from one phase to the next. Cyclin D along with its Cdk partners
Cdk4/6 exhibits high activity in the G1 phase, while Cyclin E
with its partner Cdk2 is active during the late G1 phase and
S phase. Cyclin A with Cdk2 is predominantly active in the
S phase and G2, while Cyclin B with Cdk1 regulates G2 and
M phase. The ordered appearance and disappearance of these
regulatory proteins is required to ensure that DNA synthesis
precedes cell division, enforcing the mechanisms that control
precise genome size and integrity. Thus, the oscillatory activity
of the related but distinct Cyclin-Cdk complexes is thought to
drive the cell cycle unidirectionally, by a ratcheting mechanism
involving the activation and destruction of distinct targets that
regulate characteristic aspects of each cell cycle phase (Hindley
and Philpott, 2013) (Figure 1B).

By contrast, mouse embryonic stem cells (mES) cells exhibit
a cell cycle in which the G1 phase is highly reduced allowing
the cell to rapidly shuttle between cell division (M phase) and
DNA synthesis (S phase) (Mac Auley et al., 1993; Stead et al.,
2002; Fujii-Yamamoto et al., 2005; Lange and Calegari, 2010)
(Figure 1C). Further, the typical oscillatory activity of Cyclin-
Cdk complexes seen in a somatic cell cycle is absent, yet mES cells
still cycle (Soufi and Dalton, 2016). During the reduced G1 phase
seen in mES, Cyclin D1, and D3 are expressed at low levels with
Cdk6 being the predominant Cdk partner, but whether cause
or consequence of the reduced G1 phase has been difficult to
determine (Faast et al., 2004; Ter Huurne et al., 2017). In contrast,
Cyclin E/Cdk2, and Cyclin A/Cdk2 activity is high throughout
the ES cell cycle to the point that their activity is considered cell
cycle independent (Stead et al., 2002; Fujii-Yamamoto et al., 2005;
Ter Huurne et al., 2017). The mitotic cyclin, Cyclin B activity
is the only exception, its activity along with Cdk1 peaks during
G2/M phase and is low during the other phases of the mES cell
cycle (Stead et al., 2002; Fujii-Yamamoto et al., 2005; Ter Huurne
et al., 2017).

A key regulator of the G1 phase is the retinoblastoma protein
(RB) which controls the Restriction point thereby preventing
entry into S phase (Pardee, 1989; Weinberg, 1995). This control
is brought about by modifying the phosphorylation status of RB.
When a cell enters G1, RB is in an active (unphosphorylated) state
and blocks transcription of key G1/S phase genes, preventing
passage across the Restriction point (Weinberg, 1995; Lundberg
andWeinberg, 1998). Phosphorylation of RB across the G1 phase
reduces its inhibitory activity, allowing cells to start a series
of reactions which allows it to overcome the Restriction point
and finally enter the S phase (Weinberg, 1995; Lundberg and
Weinberg, 1998).

RB binds with E2F to control the expression of G1/S phase
cell cycle regulators such as Cyclin E, Cyclin A, and Cdk2 (Chen
et al., 2009). The E2F family of transcription factors which
consists of eight members has been classically divided into two
sub categories of “activators” and “repressors” (Chen et al., 2009).
During the early phase of G1, active RB (unphosphorylated)
forms a repressive complex with repressor E2Fs and binds to
the promoters of target genes, recruiting histone deacetylases
to repress their transcription (Brehm et al., 1998; Luo et al.,
1998). RB also directly suppresses the activity of activator E2Fs
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FIGURE 1 | Cell cycles vary between somatic and pluripotent stem cells.

Embryonic stem cells exhibit faster proliferation rates, which is reflected in their

modified cell cycles. In comparison to the somatic cell cycle in embryonic

fibroblasts with a cell cycle duration of ∼20 h (B) hESC display a cell cycle

duration of 15 h (A) while in mES, it is shortened to ∼10 h (C). The main

difference between the three cell cycles is the length of the G1 phase which is

highly reduced in mES, with hESC exhibiting a shortened G1 and somatic cells

exhibiting a relatively longer G1. The weighted arrows indicate Cyclin-Cdk

complex activity, which in somatic cells and hESC exhibit a canonical

oscillatory behavior across the cell cycle. In mES, Cyclin B/Cdk1 is the only

complex that displays this oscillatory behavior, while Cyclin E/Cdk2, Cyclin

A/Cdk2 are active throughout the mES cell cycle and Cyclin D/Cdk4/Cdk6

exhibits very low activity during the reduced G1. RB, the pivotal regulator of

the Restriction point in G1 is active (RB) at the start of G1 and gets

progressively phosphorylated across G1 leading to its inactivation (RBppp),

and allows the cell to cross the G1/S checkpoint. mES have a perpetually

inactive RBppp, thereby allowing unfettered transit through G1.

by binding and preventing the formation of an activator complex
(Helin et al., 1993).

In mES, RB is in a perpetually hyperphosphorylated (inactive)
form due to the high activity of Cyclin-Cdk which phosphorylate
RB, coupled with a reduction in phosphatases such as protein
phosphatase (PP-1) (Stead et al., 2002; Kolupaeva and Janssens,
2013). As RB is inactive, there is no repression of activator E2F
and repressor E2Fs do not form a repressive complex with RB
(Stead et al., 2002). This leads to high expression levels of Cyclin
E/Cyclin A & Cdk2 which in turn further inhibits RB activity
(Stead et al., 2002). Loss of RB repressive activity leads to the
inactivation of the G1-S checkpoint, allowingmES cells to rapidly
enter S phase almost immediately after cell division.

Another layer of regulation of Cyclin-Cdk activity is through
the action of Cyclin dependent kinase inhibitors (Cdkns). There
are two main classes of Cdkn, the CIP/KIP family, which consists
of p21 (Cip1), p27 (Kip1), and p57 (Kip2) and the INK4/Arf
(Inhibitors of Cdk4) which consists of p16 (Ink4a), p15 (Ink4b),
p18 (Ink4c), and p19 (Ink4d/Arf) (Sherr and Roberts, 1999).
The CIP/KIP family has a broader inhibitory activity and can
bind to both Cyclins and Cdk. They can regulate the activity of
Cyclin D, Cyclin E, and Cyclin A (Sherr and Roberts, 1999). On
the other hand, the INK4 family specifically inhibits Cdk4 and
Cdk6 activity by interfering with their binding with Cyclin D
(Sherr and Roberts, 1999). Importantly, mES cells do not express
any Cdkns which contributes to the high activity of Cyclin-Cdk
(Stead et al., 2002; Fujii-Yamamoto et al., 2005). Indeed, Cyclin
D3/Cdk6 in mES cells are immune to the effects of p16, though
the mechanism is still not clearly understood (Faast et al., 2004).
The combined effect of high activity of Cyclin E/A/Cdk2, inactive
RB and absence of Cdkns establishes the rapid cell cycle typical of
mES cells (Savatier et al., 1994; Stead et al., 2002).

As mES cells start to differentiate, the Cyclin-Cdks begin to
exhibit oscillatory behavior, the RB checkpoint is enabled and the
Cdkns are expressed. These changes combine to confer gradual
increase in the length of the G1 and subsequent increase in cell
cycle duration (Lange and Calegari, 2010). The order in which the
cell cycle regulators begin to show altered expression during this
process is still not clear. To increase the length of G1, activation
of either the Cdkns or RB is required, as both these inhibitory
regulators function to dampen the effect of Cyclin–Cdk activity.
Whether expression of RB or Cdkn is activated first, or both
are activated together is not known. The recent development of
improved methods to sort cells into discrete phases of the cell
cycle (Pauklin and Vallier, 2013; Singh et al., 2016), will aid in
resolving this issue.

DISSECTING THE ES CELL CYCLE: A
CHANGING PARADIGM REQUIRING NEW
TECHNOLOGIES

In culture systems, the cell populations under analysis are
generally asynchronous which makes it difficult to study any
cell cycle related phenomena as they may be masked by out
of phase cells. In order to study cyclical processes, cells are
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generally synchronized using a variety of methods to enrich
for populations at a particular stage of the cell cycle and then
“released” to normal conditions to permit transition to the
next phase. Synchronisation generates cell populations that are
homogeneous with respect to their cell cycle phase, permitting an
analysis of phase specific events and their regulation. Common
methods for generating synchrony include the use of drugs such
as Nocodazole (causes cell cycle arrest at G2/M by preventing
formation of the mitotic spindle), serum starvation (causes
cell cycle arrest at G0/G1 due to removal of mitogens that
prevent activity of the Restriction point) or feedback control
through disruption of DNA synthesis such as thymidine block
(causes cell cycle arrest at early S phase, where addition of
excess thymidine causes a negative feedback loop that interrupts
nucleotide biosynthesis). While these methods have led to a
greater understanding of many cell cycle related processes,
and indeed defined much of the somatic cell cycle, different
methods of synchronization resulted in contradictory findings
(Ballabeni et al., 2011). Also, as most of these methods are
disruptive in nature, a common argument against their use
is that they do not truly represent the natural state of the
cells, and that off-target effects of drugs may have complicating
phenotypes.

An example of contradictory results is seen in the early studies
performed relating to the oscillatory behavior of Cyclin-Cdk
activity in mES. Studies by Stead et al. and Fujii-Yamamoto
et al. suggested that Cyclin A-Cdk2 and Cyclin E-Cdk2 do
not show any oscillatory activity and their activity is sustained
across the cell cycle (Stead et al., 2002; Fujii-Yamamoto et al.,
2005). A later study by Ballabeni et al suggested the opposite,
Cyclin-Cdk do show an oscillatory behavior across the cell
cycle and suggested that the reason the earlier studies failed to
detect it was due to “suboptimal synchrony” (Ballabeni et al.,
2011). These differences could be attributed to the different
methods used to synchronize cells: where the latter study used a
double synchronization method to enrich for pure populations,
the former used a single synchronization method. While both
sets of studies were accurate based on their methods, the
differences highlight one of the limitations of these techniques.
An ideal system would be one in which it would be possible
to monitor the behavior of individual cells in unperturbed
populations.

Using Single Cell Imaging to Study the ES
Cell Cycle
The improvements in imaging techniques and associated
analytical software have led to a host of newer methods
which allows tracking and analysis of individual cells in an
asynchronous population over long periods in a near native state.
Overall, these advances have enhanced our understanding of cell
cycle related process and sometimes led to revision of classical
concepts. A study by Spencer et al shows that in somatic cells,
the decision of whether or not to exit the cell cycle and enter
quiescence is not taken in G1 as was previously thought but
at a newly defined restriction point (Restriction Point 1) in the
G2 phase of the preceding cell cycle which then modulates the

levels of Cdk2 immediately after mitosis (Spencer et al., 2013).
These observations challenge the long held belief that cell fate is
decided at the RB regulated-“Restriction Point” in G1 (Pardee,
1974).

Using imaging techniques based on a Cdk2 sensor, this
study showed that the levels of p21 at the Restriction Point
1 in the preceding cell cycle determined whether the cell
will proliferate or enter quiescence in the subsequent cycle
(Spencer et al., 2013). The use of the Cdk2 sensor permitted
automated tracking of large numbers of individual cells through
two or more cell cycles and permitted the establishment of
a Cdk2-p21 threshold: subthreshold levels of p21 at the pre-
M phase Restriction Point 1 led to a rapid increase in Cdk2
activity after mitosis, which permitted the cell to progress
to the G1 phase (Spencer et al., 2013). High levels of p21
resulting in low Cdk2 activity post mitosis, resulted in cells
that become transiently quiescent and, sensitive to mitogen
withdrawal and are tunable to commit to the cell cycle until
they pass the second (classical) Restriction point (Spencer
et al., 2013). Thus, rather than a single point of integration of
growth factor and nutirent availability in the RB-regualted G1/S
checkpoint, the threshold of Cdk1 activity in the previous mitosis
distinguishes two populations, which interpret the mitogenic
environment in the subsequent G1 and determine cycling
behavior.

In mES cells, due to the absence of p21, the Cdk2 sensor
showed that mES cells are always predisposed to continue
another round of replication (Spencer et al., 2013). This study
could also explain why mES cells fail to enter quiescence during
mitogen deprivation (serum starvation) (Schratt et al., 2001).
The mechanism of cell cycle lengthening during differentiation
of mES cells into distinct proliferative precursor lineages is not
known, but it is possible that with gradual upregulation of p21
and subsequent increase in G1 length, the two Restriction points
may begin to influence proliferation decisions.

Using FUCCI to the Study the ES Cell Cycle
By far the most useful recent technology developed to study
the cell cycle is the Fluorescent Ubiquitination-based Cell-Cycle
Indicator (FUCCI) system (Sakaue-Sawano et al., 2008). This
sensor allows for live tracking and clear demarcation of cells in
the G1and S/G2/M phase of the cell cycle and when combined
with FACS, these subsets of cells can be further subdivided into
Early G1, Late G1, S, and G2/M (Pauklin and Vallier, 2013;
Singh et al., 2016). FUCCI has revolutionized how we study the
cell cycle by creating a non-disruptive, near native system to
study any cell cycle related phenomena. Further, the dual sensor-
based system has expanded our repertoire to analyse changes in
the cell cycle and cell cycle-related processes in vivo with the
creation of model systems such as the FUCCI-Mouse, FUCCI-
Zebrafish and FUCCI-Fly (Sakaue-Sawano et al., 2008; Sugiyama
et al., 2009; Abe et al., 2013; Mort et al., 2014; Zielke et al.,
2014).

The FUCCI system takes advantage of the periodic
degradation of Geminin and Cdt1 that occurs during the
cell cycle. Geminin is an inhibitor of replication origin firing
that is expressed from S phase onward and degraded in M
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phase, while Cdt1 is required for replication origin licensing
and accumulates from M to G1 phases, and is degraded at
the onset of S phase. These two proteins are regulated by
proteolysis to provide tight control of DNA replication. By fusing
the degradation domains of Geminin and Cdt1 to different
fluorescent reporters, it is possible to visually track cell cycle
stages of the individual cells in an asynchronous population.
Earlier, it was believed that Geminin, which is also important in
maintaining pluripotency, was cell cycle independent in mES,
unlike in somatic cells where it displays an oscillatory behavior
(Fujii-Yamamoto et al., 2005; Gonzalez et al., 2006; Yang et al.,
2011; Tabrizi et al., 2013). The FUCCI system permitted a
re-evaluation of this notion, with the simple observation that
Geminin/Cdt1-based oscillation was observable in mES cells
transfected with FUCCI sensors indicates that Geminin activity
is indeed cell cycle dependent and not independent as was shown
earlier (Coronado et al., 2013). Use of the FUCCI system has
also permitted increased reprogramming efficiency of somatic
cells by selecting for cells with a shorter G1 (Roccio et al., 2013).
These cells have a higher propensity to reprogram compared
to cells with a longer G1, highlighting the link between a rapid
cell cycle and the ability to attain pluripotency (Ruiz et al., 2011;
Roccio et al., 2013; Guo et al., 2014).

By far the most divisive finding using the FUCCI system in
mES is the study that found mES cells grown in “2i culture
conditions” (presence of aMEK inhibitor PD0325901 andGSK3β
inhibitor CHIR99021) actually have a lengthy G1 phase (Ter
Huurne et al., 2017). This observation has upturned almost 30
years of thought that linked pluripotency with the shortened
G1. The study showed that the reduced G1 seen in mES cells
may be an adaptation to serum conditions due to increased ERK
signaling. While this does raise the question of whether naïve
ES cells actually have a longer G1 or not, in vivo analysis of
embryo development post fertilization show a rapid expansion
in the number of cells in the ICM before gastrulation with cell
division times of∼10 h (Solter et al., 1971; Power and Tam, 1993).
These contradictory results lead to a conundrum on whether the
elongated cell cycle seen in 2i-grown mES cells truly represent
what happens in vivo or represents another artifact of the culture
system. Further work will be needed in this area to clearly mark
out the differences seen between the in vivo and in vitro systems.
Regardless, it is evident that unperturbed cell cycle studies can
have a major impact on our interpretation of the regulatory
system at the heart of cell division, and will probably cause re-
evaluation or refinement of many control pathways in the near
future.

Using Single Cell RNA-Seq to Study the ES
Cell Cycle
ES cell populations in culture exhibit substantial heterogeneity,
with many key pluripotency factors such as Nanog displaying
varying levels of expression, some of which can be attributed
to cell cycle dependant control of protein abundance (Hatano
et al., 2005; Singh et al., 2007; Gonzales et al., 2015; Liu Y. et al.,
2017). While single cell imaging allows for greater resolution
of heterogeneous populations, it is limited by the number of

proteins that can be evaluated simultaneously. Using single cell
qRT-PCR, it is possible to study a larger subset of genes but still
limiting, especially while trying to address global alterations, or
connections between networks of genes (Guo et al., 2010; Tang
et al., 2010; White et al., 2011; Lecault et al., 2012).

Single cell RNA-Seq (scRNA-seq) is poised to make a major
impact on analysis of global changes in gene expression as a
read-out of cellular heterogeneity, but some technical challenges
are yet to be overcome before it can be widely employed. These
include the efficiency in parallel processing of a large number of
cells, differentiating between technical noise and detectable low
signal, sequencing depth for limiting material, and importantly,
cost (Wu et al., 2014; Prakadan et al., 2017). Improvements
in cell handling and better algorithms have increased the
applicability of scRNA-seq to cell cycle studies (Trapnell et al.,
2014; Macosko et al., 2015; Prakadan et al., 2017). For example,
a recent algorithm uses scRNA-seq derived from single cells
in asynchronous populations and is able to separate them into
different cell cycle phases based on transcriptional signatures for
each cell cycle phase (Santos et al., 2015; Scialdone et al., 2015).

Using scRNA-seq, genes encoding pluripotency factors,
differentiation and cell cycle regulators have been found to
be amongst the most variable in mES (Klein et al., 2015;
Kolodziejczyk et al., 2015). Interestingly, cell cycle genes in
mES showed a very weak transcriptional oscillation compared
to somatic cells, suggesting that their cell cycle independent
activity was also regulated at the transcriptional level (Klein
et al., 2015). mES grown in serum could be divided into
three subpopulations based on gene expression and cell cycle
characteristics (Kolodziejczyk et al., 2015). While one subset
expressed low or undetectable levels of Oct-3/4, Sox2, and
Nanog, exhibited a slower cycling state and may be irreversibly
committed to differentiation, a second subset expressing low
levels of Nanog and high levels of Oct-3/4 and Sox2 was classified
as an intermediate stage (Kolodziejczyk et al., 2015). The third
and largest subset, classified as the self-renewing group expressed
all the pluripotency factors at high levels accompanied by a
relatively faster cell cycle (Kolodziejczyk et al., 2015). During
differentiation triggered by Leukaemia Inhibitory Factor (LIF)
withdrawal, most cells exhibited a rapid drop in Rex1 and Esrrb
levels with the levels of Oct-3/4 and Sox2 dropping gradually,
consistent with insights from bulk assays (Klein et al., 2015).

DIFFERENT STATES OF PLURIPOTENCY
HAVE DIFFERENT CELL CYCLE PATTERNS

During mouse embryonic development until gastrulation, cells
range from a totipotent state to a multipotent state. Each of these
progenitor cell types display distinctive epigenetic characteristics
that regulate lineage determination and lead to unique functional
properties (Soufi and Dalton, 2016). While pluripotent cells
have been defined pre and post implantation, the remaining
intermediate states have yet to be clearly mapped. This task is
challenging due to the limited number of cells available in vivo
and the difficulty in faithfully replicating these states in vitro.
Preimplantation pluripotent cells are best represented by “Naïve”

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 June 2018 | Volume 6 | Article 57

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zaveri and Dhawan Integrating Cell Cycle With Pluripotency

ES cells e.g., mES (Ying et al., 2008) while “Primed” ES cells such
as mouse epiblast and human ES cells (hESC) are functionally
equivalent to cells from the later epiblast stage of the post
implantation blastocyst (Thomson et al., 1998; Brons et al., 2007;
Tesar et al., 2007).

Naïve ES Cells
In mouse development, mES are derived from and
phenotypically resemble cells from the ICM of pre implantation
embryos of 3.5–4.5 days post coitum (dpc). Pluripotent cells
from later stages of development such as 6.5 dpc can also
be cultured in vitro and these can be converted to cells from
earlier stages of development by either changing the culture
medium, using small molecules that modulate key embryonic
signaling pathways, or overexpression of transcription factors
such as Klf4, highlighting the plasticity of these cell types at
this stage (Bao et al., 2009; Guo et al., 2009; Zhou et al., 2010;
Han et al., 2011). In vitro, mES cells are generally maintained in
media containing serum + LIF and exhibit heterogeneous gene
expression patterns. Subpopulations exhibit bimodal expression
(High/Low) of many key pluripotency genes such as Nanog
and Rex1 which are dynamic in nature, with many of these
cells interchanging between High and Low states (Hatano et al.,
2005; Singh et al., 2007; Han et al., 2010). Reports also indicate
that these cells may exhibit gene profiles similar to endoderm
as well as primed ES cells (Hayashi et al., 2008; Toyooka et al.,
2008; Canham et al., 2010). While this fluidity of cell states
poses challenges for studying the cell cycle, it is possible to
isolate these modal populations for analysis. A good example is
the isolation of mES cells expressing different levels of Nanog.
NanogHigh cells express higher levels of many positive regulators
of the cell cycle such as Cyclin B and E2F1 and show more rapid
proliferation (Singh et al., 2007). By contrast, NanogLow cells
express higher levels of Cdkns such as p21, p27 & p57 and cycle
at a correspondingly slower rate (Singh et al., 2007; MacArthur
et al., 2012). Thus, expression levels of the pluripotency factor
Nanog preconfigures cell cycle rate in a population of mES.

The heterogeneity displayed by mES reflects a balancing act
performed by the cells in maintenance of pluripotency in the
presence of a combination of that trigger stemness (LIF) and
differentiation (FGF) (Kunath et al., 2007). By culturingmES cells
in serum-free media along with MEK inhibitor PD0325901 and
a GSK3β inhibitor CHIR99021 (“2i” conditions), it is possible
to minimize this heterogeneity leading to mES that are as close
to naïve “ground state” as is currently possible in vitro (Ying
et al., 2008). 2i conditions lead to higher expression of Nanog
and a relatively faster proliferation rate (Marks et al., 2012)
(Table 1). Though earlier reports did indicate that mES cultured
in 2i expressed p21 yet showed a rapid proliferation rate (Marks
et al., 2012) more recent results suggest that when compared to
mES cultured in serum, 2i cells may actually proliferate relatively
slower (Ter Huurne et al., 2017). The difference in the cell cycle
lengths of mES cultured in serum vs. 2i conditions vary by a few
hours, and even though there is a slowing of the cell cycle, the
change is subtle, which may explain why earlier studies did not
emphasize the issue.

TABLE 1 | Comparing the activity and expression of key cell cycle genes in

“naïve” mES cultured in serum free 2i conditions and “primed” mES cultured in

serum containing media.

Gene Naïve mES Primed mES

Cyclin A Expressed at high levels,

not known if it is cell cycle

independent or dependent

Expressed across the cell

cycle

Cyclin B Expressed only during G2/M Expressed only during G2/M

Cyclin D Expressed during G1 Low expression during

highly reduced G1

Cyclin E Expressed across the cell

cycle

Expressed across the cell

cycle

Cdk1 Expressed at high levels,

not known if it is cell cycle

independent or dependent

Expressed only during G2/M

Cdk2 Active across the cell cycle Active across the cell cycle

Cdk4 Active during G1 Low expression

Cdk6 Active during G1 Low levels of activity during

highly reduced G1

p16 Expressed during G1 No expression

p21 Expressed during G1 No expression

p27 Expressed during G1 No expression

RB Active during G1 Inactive

Primed ES Cells
In contrast to mES, primed cells (cells derived from the epiblast
of post implantation blastocyst) such as hESC show the presence
of a functional G1 phase (Neganova et al., 2009; Pauklin and
Vallier, 2013) (Figure 1A, Tables 2, 3). Primed ES cells express
all the three D type cyclins, Cyclin D1, Cyclin D2, and Cyclin
D3 and Cdk4 expression is higher than Cdk6 (in mES, Cdk6 is
predominant) (Becker et al., 2006; Neganova et al., 2009). Unlike
in mES, Cyclin E/Cdk2, and Cyclin A/Cdk2 activity is cell cycle
dependent, and the RB checkpoint in G1 is functional (Becker
et al., 2006; Ghule et al., 2007; Neganova et al., 2009). hESC also
express low levels of p21 and p27, one of the key differences from
mES and a major contributor toward the different cell cycle states
(Neganova et al., 2009).

The cell cycle of mouse epiblast derived stem cells (EpiSC)
is not as well characterized as mES or hESC but as they are
developmentally equivalent to hESC, one can speculate that they
exhibit a similar cell cycle profile to hESC (Brons et al., 2007;
Tesar et al., 2007). When compared to mES, EpiSC express
similar levels of Oct-3/4 but lower levels of Nanog (Guo et al.,
2009; Han et al., 2010) which may suggest a cell cycle profile
similar to NanogLow mES (Singh et al., 2007; MacArthur et al.,
2012). EpiSC also express many differentiation markers such
as Brachyury, Eomes, Sox17 & Gata6, characteristic of later
development stages closer to gastrulation (Kojima et al., 2014). A
detailed analysis of the EpiSC cell cycle could be very informative
about how fate determination influences cell cycle changes and
the role of lineage determinants in these pathways.

A recent development by Yang et al. showed it was possible
to culture pluripotent cells of human and mouse origin
which can contribute to both the embryonic and as well as
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TABLE 2 | A comparison of the expression and activity of some of the important positive cell cycle genes in mES and hESC.

Gene Function Mouse embryonic stem

cells

Human embryonic stem

cells

References

Cyclin A Regulates S-phase with Cdk2 Expressed throughout the

cell cycle

Expressed during late G1, S

and G2

Stead et al., 2002; Ghule et al., 2007;

Neganova et al., 2009

Cyclin B Regulates M-phase with Cdk1 Expressed only during G2/M Expressed only during G2/M Stead et al., 2002; Ghule et al., 2007;

Neganova et al., 2009

Cyclin D1 Regulates G1-phase with Cdk4 or

Cdk6

Low expression during the

highly reduced G1

Expressed during G1 Faast et al., 2004; Neganova et al.,

2009

Cyclin D2 Regulates G1-phase with Cdk4 or

Cdk6

No expression Low expression Faast et al., 2004; Pauklin and Vallier,

2013

Cyclin D3 Regulates G1-phase with Cdk4 or

Cdk6

Low expression during the

highly reduced G1

Expressed during G1 Faast et al., 2004; Neganova et al.,

2009

Cyclin E Regulates G1/S-phase with Cdk2 Expressed throughout the

cell cycle

Expressed during late G1

and S

Stead et al., 2002; Ghule et al., 2007;

Neganova et al., 2009

Cdk1 Regulates M-phase with Cyclin B Maximal activity during

G2/M

Maximal activity during

G2/M

Stead et al., 2002; Ghule et al., 2007;

Neganova et al., 2009

Cdk2 Regulates G1/S-phase with Cyclin E

and S/G2 phase with Cyclin A

High activity throughout the

cell cycle

High activity throughout the

cell cycle

Cdk4 Regulates G1-phase with Cyclin D1

or D2 or D3

Low expression Maximal activity during G1 Faast et al., 2004; Neganova et al.,

2009

Cdk6 Regulates G1-phase with Cyclin D1

or D2 or D3

Low levels of activity during

the highly reduced G1

Maximal activity during G1 Faast et al., 2004; Neganova et al.,

2009

TABLE 3 | A comparison of the expression and activity of some of the important negative cell cycle genes in mES and hESC.

Gene Function Mouse embryonic stem

cells

Human embryonic stem cells References

p16 Inhibitor of Cyclin/Cdk activity No expression No expression Faast et al., 2004; Zhang et al., 2009

p19 Inhibitor of Cyclin/Cdk activity No expression Low expression Li et al., 2009; Zhang et al., 2009

p21 Inhibitor of Cyclin/Cdk activity No expression No/very low expression Stead et al., 2002; Neganova et al.,

2009

p27 Inhibitor of Cyclin/Cdk activity No expression No/very low expression Stead et al., 2002; Egozi et al., 2007;

Neganova et al., 2009

p57 Inhibitor of Cyclin/Cdk activity No expression No expression Becker et al., 2006; Sorrentino et al.,

2007

Rb Maintains the Restriction point in G1 Inactive Active during G1 Savatier et al., 1994; Conklin and

Sage, 2009

extraembryonic tissue (Yang et al., 2017). The study used a
serum free culture system which consists of a chemical cocktail
containing human LIF (hLIF), Gsk3β inhibitor CHIR 99021,
(S)-(+)-dimethindene maleate (DiM) which targets G protein
coupled receptors and minocycline hydrochloride (MiH) which
inhibits Parp1. The resultant cells were termed as Extended
Pluripotent Stem cells (EPS), and appear to be developmentally
equivalent to the zygote or early blastomeres as they can
rise to both embryonic as well as extra embryonic tissue
(Tarkowski, 1959). This discovery when combined with the other
pluripotent stages captured in vitro and, technologies such as
FUCCI and single cell RNA-Seq that can yield information
about individual cells with a population, opens up exciting new
possibilities in studying embryonic development with respect to
the cell cycle and how cell fate may alter the cell cycle during
embryogenesis.

SETTING THE RIGHT TIME FOR
DIFFERENTIATION

The classical view with regards to differentiation suggests that
embryonic stem cells are receptive to differentiation cues during
the G1 phase when lineage determination is decided. This
concept is similar to the “Restriction point” in G1 phase, which
is marked as the point during G1 in which a cells decides on
whether to continue to proliferate or enter quiescence (Pardee,
1974). Yet, with mES cells exhibiting a highly reduced, almost
non-existent G1 phase, the timing of differentiation decisions is
more difficult to establish.

Differentiation During G1 Phase
Studies using the FUCCI system have been able to isolate mES
cells specifically during the shortened G1 phase and show that
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they are more susceptible to differentiation cues (Retinoic acid)
than cells in S phase or G2-phase (Coronado et al., 2013). Also
as cells move from a naïve state to a primed state as defined
by the expression levels of the transcription Rex1, there is a
measurable increase in the length of G1 phase (Coronado et al.,
2013). This increased G1 length leads to activation of RB along
with increased susceptibility to differentiation cues (Coronado
et al., 2013). Rex1, like Nanog, exhibits a bimodal expression in
cultured mES, where Rex1High mES cells are thought to represent
cells from the ICM (naïve) and Rex1Low cells are considered
developmentally equivalent to Epiblast or Primitive Ectoderm
(primed) (Toyooka et al., 2008).

By contrast, hESC exhibit a clear G1 phase accompanied by
Cyclin D expression as well as an active RB (Becker et al., 2006;
Ghule et al., 2007; Neganova et al., 2009; Pauklin and Vallier,
2013). Sorting hESC into their corresponding cell cycle phases
using centrifugal elutriation has also shown that similar to mES,
hESC have a greater propensity to differentiate or are more
receptive to differentiation cues during G1 phase compared to
S phase or G2 (Sela et al., 2012). By blocking the activity of
SRC non-receptor tyrosine kinase in hESC, it was possible to
keep RB in an unphosphorylated/hypo-phosphorylated active
state, thereby extending G1 and leading to increased efficiency
of differentiation potential (Chetty et al., 2015). Utilising the
FUCCI system, it was shown that based on the period of time
spent in G1, hESC were biased toward a particular lineage
(Pauklin and Vallier, 2013). Sorted sub-sets of G1 cells that were
plated into defined culture conditions had a higher propensity to
differentiate into endoderm or mesoderm when shifted in early
G1 phase, but into neuro-ectoderm during the late G1 phase
(Pauklin and Vallier, 2013).

One mechanism by which hESC cells might be receptive to
differentiation signals during G1 phase is through the expression
of the three D type cyclins, namely D1, D2, and D3 (Neganova
et al., 2009; Pauklin and Vallier, 2013). During early G1 when
Cyclin D levels are low, Smad2/3 is free to bind to and activate
endodermal genes, facilitating differentiation toward endodermal
lineage (Pauklin and Vallier, 2013; Pauklin et al., 2016). As
G1 progresses, Cyclin D expression is induced and represses
endodermal genes, preventing differentiation toward that fate
(Pauklin et al., 2016). The levels of Cyclin D during mid and
late G1 determine the propensity to differentiate toward either
mesoderm or neuro-ectoderm (Pauklin andVallier, 2013; Pauklin
et al., 2016). Upregulation of Cyclin D2 and mild increase in
Cyclin D1 and Cyclin D3 expression correlated with mesodermal
differentiation, while upregulation of all three D type cyclins led
a neuro-ectoderm fate (Pauklin and Vallier, 2013; Pauklin et al.,
2016).

While knockdown of any of the D type Cyclins individually
did not affect hESC differentiation toward any particular lineage,
double knockdowns showed a propensity to differentiate into
endoderm/mesoderm and a reduced capacity to differentiate into
neuro-ectoderm (Pauklin and Vallier, 2013; Pauklin et al., 2016).
Triple knockdown hESC could not be propagated, suggesting a
crucial function in hESC survival and/or self-renewal, which is
in contrast to triple Cyclin D knockout mES cells which show no
noticeable phenotype (Pauklin and Vallier, 2013; Huskey et al.,

2015; Liu L. et al., 2017). These differences in requirement for
Cyclin D might reflect the different developmental stages hESC
and mES are thought to represent. Also, as mES cells have a
reduced G1, the mES cell cycle may have adapted to the low
levels of Cyclin D. This would tie in well with the fact that two
well-known functions of Cyclin D are, to act as a sensor for
mitogenic signals and phosphorylation of RB, which are both
probably suppressed to prevent differentiation in mES (Sherr and
Roberts, 1995).

A second potential mechanism explaining the responsiveness
of ES cells to differentiation cues during G1 might reflect
the transient epigenetic change in “bivalent domains” of many
developmental genes (Bernstein et al., 2006; Singh et al., 2013).
In ES cells, many lineage specifying genes are dually marked
(“bivalent”) by large regions of the repressive H3K27me3 mark,
overlapping shorter regions of the activating H3K4me3 mark.
This bivalent status correlates with a poised state that is resolved
toward a single predominant mark during commitment and
lineage transition (Bernstein et al., 2006) As ES cells exit
pluripotency and enter differentiation, there is a rapid loss of the
repressive H3K27me3mark at these sites. Interestingly in hESC, a
few developmental genes such as Sox17 and Gata6 express at low
levels during the G1 phase (Singh et al., 2013). While this “leaky”
expression does not lead to overt differentiation, it could create a
“window of opportunity” during the G1 phase, rendering ES cells
more susceptible to differentiation.

Is the Shortened G1 Phase Crucial to
Prevent Differentiation?
The reduced G1 phase is considered to be an intrinsic
characteristic of pluripotent stem cells, and has been proposed
to reduce their susceptibility to differentiation. First described
more than 30 years ago this idea has been the prevalent viewpoint
in the field (Mummery et al., 1987). However, several studies
have since challenged this notion. By overexpressing either p21
or p27, two potent Cdk inhibitors, it is possible to elongate
the length of G1 phase in mES cells (Li V. C. et al., 2012).
Using this perturbation, it was shown that an elongated G1
phase in mES did not lead to a reduction in the levels of Oct-
3/4, Nanog or SSEA-1 in the basal state, nor did it lead to
increased differentiation potential during LIF withdrawal (Li V.
C. et al., 2012). However, overexpression of Cyclin E or Cyclin
A in mES did lead to delayed differentiation as based on Nanog
expression as a readout for pluripotency (Li V. C. et al., 2012). A
similar result was obtained in hESC where overexpression of p21
did not lead to increased differentiation during LIF withdrawal
(Gonzales et al., 2015). In contrast, overexpressing p27 in hESC
had the opposite effect, where it led to a G1 arrest but no
significant changes in pluripotency markers (Menchón et al.,
2011). Interestingly, loss of p27 in hESC led to upregulation of
Brachyury and Twist, demonstrating a novel function for p27
in maintaining pluripotency (Menchón et al., 2011). The notion
of a shortened cell cycle leading to conditions unfavorable for
differentiation is further challenged by the recent finding that
naïve mES (grown in 2i conditions) exhibit a longer G1 than
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mES grown in normal serum conditions (Ter Huurne et al.,
2017).

Thus, while the evidence in favor of G1 duration as a key
determinant of differentiation is not definitive, it is possible that
more targeted experimental perturbations may be informative.
For example, extending the G1 phase of ES cells using an
inducible p21 or p27 system might reveal that ES cells can
tolerate a certain level of p21/p27 expression and that subsequent
extension of G1 phase could tilt the balance to differentiation.
Also, by gradually increasing the G1 phase, this system might
mimic the gradual increase seen in the G1 phase length as
pluripotent cells differentiate during embryogenesis (Mac Auley
et al., 1993; Lange and Calegari, 2010).

Differentiation in Other Phases of the Cell
Cycle
Are ES cells refractory to differentiation cues in the other phases
of the cell cycle? Earlier studies have concluded that hESC in S or
G2 phase are less susceptible to differentiation cues compared to
those in G1 (Pauklin and Vallier, 2013). Indeed, elongating either
S phase or G2 phase actually enhances pluripotency (Gonzales
et al., 2015). Using genetic and chemical perturbations, this study
shows that by prolonging the duration of S phase or delaying
mitotic transition (increased G2 phase), hESC take longer to
differentiate on withdrawal of LIF (Gonzales et al., 2015). There
was no accompanying change in the length of G1 during this
process, thereby indicating that elongating S or G2 did not reduce
the accessibility for differentiation cues by reducing the length of
G1 (Gonzales et al., 2015).

ES CELLS HAVE MODIFIED CELL CYCLE
CHECKPOINTS

A cycling cell has checkpoints interspersed throughout the
cell cycle that monitor a variety of cell signals and function
as a brake, preventing progression to the next phase until
certain criteria are met. These checkpoints are crucial in
ensuring that key conditions such as optimal external mitogenic
conditions (Restriction point), faithful DNA replication (S
phase checkpoint), preservation of genomic integrity (DNA
damage checkpoint), and proper chromosome segregation
(spindle assembly checkpoint) are satisfactorily completed before
transitioning to the next phase. A disabled or faulty checkpoint
results in aberrant or precocious transitions and can eventually
lead to cell death or malignant transformation. In ES cells, these
checkpoints are either absent or are modified to cater to the rapid
cell cycle.

RB’s Duality
RB has traditionally been considered as the chief gatekeeper of the
G1 Restriction point which prevents cells from entering S phase
(Pardee, 1989;Weinberg, 1995). This control is primarily brought
about by modifying the phosphorylation status of RB. When a
cell enters G1, RB exists in an active (unphosphorylated) state
and blocks transcription of key G1/S phase genes, preventing
passage across the Restriction point (Weinberg, 1995; Lundberg

and Weinberg, 1998). Phosphorylation of RB across G1 reduces
its inhibitory activity, and induces a series of reactions which
inactivate the Restriction Point and permit S phase entry
(Weinberg, 1995; Lundberg and Weinberg, 1998). Once the
Restriction Point has been crossed, cells become independent of
extrinsic mitogenic signals. In mES cells grown in serum, RB is in
a perpetually hyperphosphorylated form which allows for a rapid
transition from M to S phase, essentially bypassing G1 (Savatier
et al., 1994; Ter Huurne et al., 2017). As the G1 phase in hESC
is relatively longer, they show the presence of both an active and
inactive form of RB (Filipczyk et al., 2007; Conklin et al., 2012),
mES grown in 2i conditions also display a similar profile (Ter
Huurne et al., 2017).

While RB’s role as a cell cycle checkpoint is clear, this
tumor suppressor plays different roles in mES and hESC.
Compromising RB expression in eithermES or hESC respectively
resulted in increased genomic instability, yet mES continue to
proliferate while hESC do not (Dannenberg, 2000; Sage, 2000;
Zheng et al., 2002; Conklin et al., 2012). In contrast, triple
knockout (TKO)mutants of the pocket proteins (RB, p107, p130)
resulted in different phenotypes for mES and hESC. While mES
cells did not show any noticeable phenotype and proliferated
normally, hESC showed an increase in the levels of p21, arrested
at G2/M and displayed increased cell death (Conklin et al., 2012).
It is not clear why mES and hESC display different phenotypes,
though one possibility is that since mES and hESC represent
different stages of development, the RB family may play different
roles in self-renewal and proliferation at different stages of
development. Further analysis is required to establish and define
the mechanisms by which developmental stage may influence
restriction point control.

p53–Guardian of Pluripotency
The tumor suppressor p53 is a pivotal regulator of genome
stability. In case of DNA damage, two major signaling cascades
prevent cells from proceeding to the next cell cycle phase. These
are the ATM-Chk1 and the ATR-Chk2 signaling cascades (Sancar
et al., 2004; Smith et al., 2010) which are activated in response
to DNA double-strand breaks (DSB) and single stranded DNA
(SSD) respectively. Both ATR and ATM directly activate p53 by
phosphorylation and indirectly via Chk1 andChk2 kinase activity
(Banin et al., 1998; Canman et al., 1998; Chehab et al., 1999). The
change in phosphorylation status inhibits nuclear export of p53,
leading to its accumulation in the nucleus (Zhang and Xiong,
2001). There, p53 activates p21 expression which binds to and
inhibits Cyclin E/Cdk2 and Cyclin A/Cdk2 activity, creating a
G1/S phase block (El-Deiry et al., 1993; Harper et al., 1993).

In ES cells, the low levels of p21 and high levels of Cdk2,
negate the DNA damage -induced slowing of the cell cycle seen
in somatic cells (Aladjem et al., 1998; Chao et al., 2000; Hong
and Stambrook, 2004). Instead, there is a greater propensity for
apoptosis during genomic stress in ES cells. p53’s role as an
inducer of apoptosis in response to DNA damage in somatic cells
is well-known, yet its functioning in mES is contested. Earlier
studies show that while DNA damage causes apoptosis in mES,
the dependence on p53 is a matter of Aladjem et al. (1998), de
Vries et al. (2002), Solozobova et al. (2009), and van der Laan et al.
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(2013). New studies suggest a p53-dependent role in apoptosis at
least for doxorubicin-induced DNA damage (Li et al., 2015; He
et al., 2016).

In hESC, the link between UV-induced DNA damage and
p53-induced apoptosis is well characterized, though apoptosis is
induced through the mitochondrial pathway rather than a direct
activation of apoptotic genes (Qin et al., 2007). Also, hESC cells
have been shown to express more pro-apoptotic genes compared
to anti-apoptotic genes after DNA damage (Dumitru et al., 2012;
Li M. et al., 2012; Liu J. C. et al., 2013) tilting the balance toward
cell death.

p53 plays a unique role in ES cells where it functions as a
guardian of pluripotency in response to DNA damage, a unique
adaptation to preserve genome integrity in these cells which
will give rise to all cells including the germline. When p53 is
activated during DNA damage, it suppresses expression of Oct-
3/4 and Nanog in hESC and Nanog in mES by directly binding
and repressing their promoters, leading to differentiation (Lin
et al., 2005; Qin et al., 2007). As ES cells are the precursors for all
tissues (except extra-embryonic) formed during embryogenesis,
it is imperative that any DNA damage not be propagated to the
daughter cells. By causing differentiation, p53 in effect prevents
the propagation of DNA damage. This process can be mimicked
in hESC by using Nutlin, which activates the p53 DNA damage
response cascade in the absence of DNA damage (Maimets et al.,
2008). Interestingly, there is p53-dependent upregulation of RB
during DNA damage response in mES, suggesting that p53 might
be induce differentiation via RB (He et al., 2016).

Modified DNA Damage Response
ES cells are known to be hypersensitive to DNA damage: as
progenitors to all tissues including the germline, it is imperative
to minimize mutations passed onto the next generation.
However, important G1/S, S phase and G2/M phase checkpoints
are missing in ES cells, yet they still preserve genomic integrity.
How do ES cells achieve this?

A major source of mutations in genomic DNA is due
to reactive oxygen species (ROS) produced as by-products
of oxidative phosphorylation. ES have evolved many unique
mechanisms to protect their genome from ROS-mediated
mutations. Firstly, ES cells primarily use glycolysis for energy
production which while less energy efficient, produces lower ROS
than oxidative phosphorylation (Kondoh et al., 2007; Folmes
et al., 2011; Xu et al., 2013). This helps them maintain lower
levels of ROS compared to differentiated cells (Saretzki et al.,
2004, 2008; Cho et al., 2006). mES also express higher levels of
antioxidant genes such as Sod2 which is downregulated during
differentiation (Saretzki et al., 2004). Further, ES cells have fewer
mitochondria that are less active and contain poorly developed
cristae (St. John et al., 2006; Facucho-Oliveira and St. John, 2009;
Prigione et al., 2010). All of these mechanisms combine to create
an environment that reduces ROS generation and the possibility
of ROS induced mutations.

During double strand breaks, ES cells exhibit higher levels
of ATM and ATR dependent phosphorylation of γH2AX, which
amplifies the DNA double strand break damage response (Shiloh,

2003). In hESC, ATM and ATR both phosphorylate γH2AX,
thereby increasing the efficiency of repair (Shiloh, 2003; Adams
et al., 2010). ES cells also express higher levels of DNA repair
genes (Momcilovic et al., 2010; Tichy et al., 2010), leading
to a more efficient and rapid DNA damage response than
their somatic counterparts. Further, ES cells preferentially use
homologs recombination to repair double strand breaks leading
to better fidelity compared to somatic cells, where the error prone
non-homologs end joining pathway is dominant (Momcilovic
et al., 2010; Tichy et al., 2010).

Overall, in order to maintain the rapid proliferation, the
cell cycle checkpoints in pluripotent stem cells have been
modified to perform additional tasks along with their general
cell cycle regulatory functions. RB and p53 can initiate the
differentiation process, a role unique to ES cells, highlighting the
interdependence of pluripotent state and the cell cycle.

MITOTIC BOOKMARKING BY
PLURIPOTENCY FACTORS

During mitosis, along with chromosome compaction, there is
a general decrease in gene expression associated with depletion
of many transcription factors (TFs) from their target binding
sites (Taylor, 1960; Prescott and Bender, 1962; Johnson, 1965;
Martínez-Balbás et al., 1995). Chromatin re-association of TFs
and subsequent gene activation resumes after entry into G1
(Taylor, 1960; Prescott and Bender, 1962; Johnson, 1965). Since
ES cells shuttle rapidly between M phase and S phase, the rapid
chromatin association of pluripotency factors would be necessary
to maintain their ability to self-renew.

To faithfully re-establish stem cell expression states following
M phase, several mechanisms have been proposed to occur
that are heritable through the condensation-decondensation
dynamics of mitotic chromosomes, including DNA methylation
patterns, stable histone modifications and bookmarking by
transcription factors (Kadauke and Blobel, 2013). TFs that
remain bound to chromatin during mitosis are considered
to “bookmark” the chromatin such that re-association occurs
rapidly to quickly re-establish expression of genes post mitosis
(Michelotti et al., 1997). Many of the TFs identified that
bookmark chromatin are either master regulators of cell lineage
such as GATA1 in the case of erythroid development or
“pioneer” factors such as FoxA1 which can access inaccessible
nucleosome positions during liver development (Kadauke et al.,
2012; Caravaca et al., 2013).

In ES cells, Esrrb, Sox2, Oct-3/4, and Klf4 have been
shown to bookmark chromatin during mitosis (Deluz et al.,
2016; Festuccia et al., 2016; Teves et al., 2016; Liu Y.
et al., 2017). Interestingly, the role of many major TFs in
mitotic bookmarking may have been overlooked due to a
fixation artifact that occurs during immunostaining (Teves
et al., 2016). The use of paraformaldehyde as a fixative
causes a depletion of transcription factors along the chromatin
during mitosis, which probably delayed the discovery that
pluripotency factors act to bookmark mitotic chromatin
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(Teves et al., 2016). Earlier studies indicated that Oct-3/4
does not bookmark chromatin (Galonska et al., 2014) which
was later disproved using live cell imaging (Liu Y. et al.,
2017).

In mES, using a fusion construct that is degraded at the
M-G1 transition, persistent chromatin association of Oct-3/4
and Sox2 was found to be important for maintaining the
pluripotent state, as the loss of these factors specifically during
M phase led to increased differentiation (Deluz et al., 2016; Liu
Y. et al., 2017). Interestingly, when the same constructs were
used for reprogramming, it was found that degradable Oct-
3/4 in combination with the other Yamanaka factors could not
reprogram MEFs, while degradable Sox2 could. The biological
significance of this difference is not clear, but it is conceivable
that there is a greater susceptibility to reprogram the genome
in M phase, as many lineage specific transcription factors are
expelled from chromatin and the global transcription rate is low
(Egli et al., 2007; Ganier et al., 2011; Halley-Stott et al., 2014).

Oct-3/4 IS A MASTER CELL CYCLE
REGULATOR IN ES

Oct-3/4 was one of the earliest pluripotency factors discovered
and arguably one of the most important (Schöler et al., 1989;
Okamoto et al., 1990; Rosner et al., 1990). Knockout studies of
Oct-3/4 show that the embryo develops to the blastocyst stage,
but the ICM does not contain pluripotent cells, instead ICM cells
are primed to differentiate to the extraembryonic trophoblast
lineage (Nichols et al., 1998). The levels of Oct-3/4expression
is extremely tightly regulated, as any deviation results in
differentiation of ES cells (Niwa et al., 2000).While this highlights
the importance of Oct-3/4 in maintaining pluripotency, this TF

also plays a crucial role in maintaining many key aspects of the
modified ES cell cycle (Figure 2).

In hESC, Oct-3/4 along with Sox-2 regulates the transcription
of the miR-302 cluster which reduces expression of Cyclin D1
and shortens G1 phase (Card et al., 2008). Knockdown of the
miR-302 cluster in hESC leads to an increase in the frequency
of cells with extended G1, highlighting the role of these miRNAs
in maintaining the pluripotent cell cycle. The miR-302 cluster is
expressed 6.5 dpc to 8.5 dpc but not at 3.5 dpc (Card et al., 2008)
which is consistent with the embryonic developmental stages that
hESC represent.

High levels of Cyclin E have been associated with high levels
of Oct-3/4 in head and neck squamous carcinoma cells (HNSC),
leading to the use of Oct-3/4 as prognostic marker for this cancer
(Koo et al., 2015). HNSC that expressed high levels of Oct-
3/4 exhibited enhanced stem cells traits, better self-renewal and
greater proliferation. Knocking down Oct-3/4 in HNSC led to a
suppression of HNSC stem cell like properties (Koo et al., 2015).
These findings are consistent with overexpression of Cyclin E in
ES which show highOct-3/4 expression, greater pluripotency and
reduced differentiation potential (Coronado et al., 2013; Krivega
et al., 2015). Although not explicitly demonstrated, it is quite
likely that Oct-3/4 could directly regulate Cyclin E in ES cells,
thus influencing the rapid G1-S transition.

Oct-3/4 represses the activity of p53 by regulating the
expression of Sirt1, a protein deacetylase that inactivates
p53 in hESC (Zhang et al., 2014). During retinoic acid-
induced differentiation or knock down of Oct-3/4, Sirt1 is
also repressed, leading to increased p53 activity, increased
expression of differentiation genes and down-regulation of
pluripotency genes (Zhang et al., 2014). Absence of deacetylation
by Sirt1 leads to stabilization of p53 protein and subsequent
increased p53 activity (Zhang et al., 2014). Overexpressing

FIGURE 2 | Pluripotency factor Oct-3/4 integrates stemness with cell cycle in cell cycle speed. Oct-3/4 plays an important role in maintaining the different phases of

the cell cycle in ES cells. Oct-3/4 in collaboration with Sox-2, regulates Cyclin D/Cdk activity via miR-302, ensuring a shorter G1. Oct-3/4 represses p21 activity by

directly inhibiting its expression and indirectly, by inhibiting p53, a potent activator of p21 expression. Oct-3/4 positively regulates expression of E2F3a which is the

main E2F activator for Cyclin A and Cdk1 expression. Oct-3/4 positively regulates Cyclin F which aids in the migration of Cyclin B into the cell nucleus, thereby

promoting G2/M. The arrows indicate positive regulation, the T-line represents inhibition.
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Sirt1 in an Oct-3/4 knockdown background leads to a reversal
of the phenotype (Zhang et al., 2014). Oct-3/4 also directly
represses the expression of p21, the downstream effector of
p53 in mES (Lee et al., 2010). Since expression of p21 leads
to an increase in the length of the G1, Oct-3/4 is ensuring
the short G1 seen in mES by repressing p21. Whether Oct-
3/4 regulates the low p21 expression seen in hESC is not
known.

In mES, Oct-3/4 has been shown to positively regulate
E2F3a expression and overexpression of E2F3a leads to faster
proliferation in mES with low levels of Oct-3/4 (Kanai et al.,
2015). It has been suggested that E2F3 is the main E2F regulating
the transcription of B-Myb, Cyclin A, Cdk1 and Cdc6 (Humbert
et al., 2000). E2F3 has also been shown to represses p19 by directly
binding to the promoter and repressing transcription (Aslanian
et al., 2004; Danielian et al., 2008). This is clearly manifested in
E2F3 null MEFs that show a reduced proliferation rate (Humbert
et al., 2000). A potential mechanism for the higher proliferation
rate could be due to E2F3’s ability to repress p19.

Oct-3/4 also plays a role in regulating mitosis. Cyclin B is
mainly found in the cytoplasm during interphase and migrates
to the nucleus during G2/M by forming a complex with
Cyclin F (a non-canonical Cyclin that functions without a Cdk
partner and ubiquitinylates rather than phosphorylates target
substrates) (Kong et al., 2000; D’angiolella et al., 2013). Oct-
3/4 has been shown to positively regulate Cyclin F (Campbell
et al., 2007) in mES which could indirectly control the amount
of Cyclin B thereby promoting G2/M phase entry. Oct-3/4 also
plays an unusual role by indirectly inhibiting the activity of
Cdk1. Oct-3/4 binds to Cdc25c, counteracting its function in
removing the inhibitory phosphate marks on Cdk1, thereby
preventing Cyclin B-Cdk1 complex formation (Zhao et al., 2014).
The inhibitory effect of Oct-3/4 is mild and might represent
one of the many thresholds present in mES that prevent
premature entry into mitosis. In a contrasting role, Oct-3/4 also
prevents differentiation of mES cells with the help of Cdk1.
Cdk1 binds with Oct-3/4 to represses transcription of Cdx2
(Li L. et al., 2012) a master regulator of the trophectoderm
lineage (Niwa et al., 2005). This repression is cell cycle-
independent and may underlie the failure of Cdk1 null embryos
to develop to the morula and blastocyst stage (Santamaria et al.,
2007).

Finally, Oct-3/4 regulates the activity of protein phosphatase
1 (PP-1) in mES by positively regulating the expression of Nipp1
(PPP1R8) and Cyclin F (Campbell et al., 2007). Nipp1 and Cyclin
F both repress the activity of PP1 and by ensuring that RB is
not dephosphorylated, Oct-3/4 ensures that RB is inactivated
throughout the cell cycle. Thus, the pluripotency factor Oct-3/4
impacts the cell cycle at multiple points, contributing to the rapid
proliferative rate.

THE ROLE OF NANOG IN REGULATING ES
CELL CYCLE

Compared to Oct3/4, less is known about other pluripotency
factors in regulating the ES cell cycle. Overexpression of Nanog

in hESCs leads to faster proliferation rates with a reduced G1
(Zhang et al., 2009). There is also an increase in the levels
of CDC25A and CDK6 during Nanog overexpression (Zhang
et al., 2009). Interestingly, unlike Oct-3/4, the amount of Nanog
protein fluctuates during the cell cycle, with the highest amounts
being found during G1 (Gonzales et al., 2015; Liu Y. et al.,
2017). As CDC25A regulates the entry of the cells in to S
phase by activating CDK2, this suggests that Nanog might play
a role in regulating the G1-S transition in ES cells (Hoffmann
et al., 1994; Blomberg and Hoffmann, 1999; Zhang et al., 2009).
These observations gain further biological significance as Nanog
is expressed in many cancer cells, and knockdown leads to
G1 arrest (Han et al., 2012; Cao et al., 2013; Jeter et al.,
2015).

CELL CYCLE GENES DIRECTLY CONTROL
PLURIPOTENCY

The key genes regulating the cell cycle also directly regulate
pluripotency. Many studies have shown the influence of these
genes in maintaining pluripotency and how it is possible to
create a pluripotent like state by manipulating these genes. This
is probably best exemplified in the complete reprogramming of
somatic cells to an induced pluripotent state. Using the concept
that a faster cell cycle is a key component of pluripotency, it is
possible to drastically increase the efficiency of reprogramming.

Positive Cell Cycle Regulators That Control
Pluripotency
Overexpression of Cyclin D1 along with its Cdk partner,
Cdk4 results in a 10 fold increase in reprogramming efficiency
in BJ fibroblasts which normally exhibit low reprogramming
efficiencies (Ruiz et al., 2011). Knockdown of either Cdk1 or
Cdk2 causes mES cells to spontaneously differentiate (Stead
et al., 2002; Zhang et al., 2011; Huskey et al., 2015) highlighting
a potential role in maintaining pluripotency. Cdk2 has been
shown to phosphorylate Sox2 at S39 and S253, which while
not important to maintain pluripotency in mES, is essential for
reprogramming MEFs (Ouyang et al., 2015). The function of this
phosphorylation is not known, but it might play a role in altered
Sox2 degradation during the reprogramming process.

Knockouts of both Cyclin E1/E2 in mES show no significant
changes in proliferation rates (Geng et al., 2003; Parisi et al.,
2003; Huskey et al., 2015; Liu L. et al., 2017). Further, mES cells
bearing quintuple knock out of the G1 Cyclins (all isoforms of
Cyclin D and Cyclin E) cells can proliferate; albeit at a slightly
reduced rate suggesting a non-essential role of Cyclin E for mES
proliferation (Liu L. et al., 2017). On the other hand, knockdown
of Cyclin E in human fibroblasts (hFib) completely abrogated
iPS formation (Ruiz et al., 2011) and quintuple knock out of
Cyclin D and Cyclin E isoforms in mES cells show reduced levels
of Oct-3/4, Sox2 and Nanog protein but unchanged transcript
levels (Liu L. et al., 2017). Targeted removal of either of the G1
Cyclins in mES led to increased expression of the alternative
G1 Cyclin while maintaining the protein levels of Oct-3/4, Sox2
and Nanog, suggesting a compensatory mechanism (Liu L. et al.,
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2017). With mES cells expressing low levels of Cyclin D (Faast
et al., 2004) and high levels of Cyclin E (Stead et al., 2002)
these features all point to a role for Cyclin E in maintaining
the pluripotency factor expression. Thus, while Cyclin E does
not play a crucial a role in maintaining the high proliferation
rates seen in mES, it is important for maintaining the pluripotent
state.

Cyclin A is crucial for proliferation in mES cells, as targeted
inactivation leads to cell cycle arrest even in the presence of
Cyclin E (Kalaszczynska et al., 2009). One possible explanations is
that mES cells are more dependent on Cyclin A than Cyclin E, as
the levels of Cyclin A are higher than Cyclin E (Kalaszczynska
et al., 2009). This notion is corroborated by phenotype of
quintuple knockout of all G1 cyclins in mES, which showed little
effect on cell proliferation and little change in the levels of Cyclin
A (Liu L. et al., 2017). A second possibility concerns B-Mybwhich
is transactivated by the kinase activity of Cyclin A/Cdk2 but not
Cyclin E/Cdk2 (Robinson et al., 1996; Saville and Watson, 1998).
B-Myb is crucial for G1/S phase transition, and knockdown of
B-Myb in mES cells also leads to aneuploidy, along with stalling
at G2/M (Zhan et al., 2012). Further, B-Myb has been shown
to bind to and positively regulate Sox2 and Nanog promoters,
while its own promoter has binding sites for Oct-3/4, Sox2, and
Nanog (Zhan et al., 2012), suggesting a positive feedback loop.
The importance of B-Myb in maintaining the pluripotent state
is evident, but whether it is Cyclin A/Cdk2 dependent is not
known.

Negative Cell Cycle Regulators That
Control Pluripotency
RB’s role as the gatekeeper of the Restriction Point is well-known,
but in ES cells, RB also maintains the pluripotent state. During
mES differentiation, there is an enrichment of RB/E2F at the
promoters of Oct-3/4 and Sox2, along with a subsequent decrease
in their expression levels (Kareta et al., 2015a). This repression
is partially removed in RB null MEFs which express low but
significant levels of Oct-3/4 and Sox2 without affecting their
proliferation rates (Kareta et al., 2015a; Vilas et al., 2015). RB null
MEFs can be reprogrammed more rapidly and efficiently to iPS
with all four of the Yamanaka factors (Kareta et al., 2015a), as
well as with just two factors (Oct-3/4 and Klf4) albeit with lower
efficiency and a longer reprogramming duration (Vilas et al.,
2015).

The tumor suppressor Ink4/Arf also has an important role
in reprogramming. In MEFs, it is the p19 product of that locus
which is the major barrier to reprogramming while in human
fibroblasts, p16 is the major hurdle (Li et al., 2009). Knocking
out p19 in MEFs leads to faster reprogramming while knocking
out p16 has no noticeable effect, with the opposite being the
case in human cells (Li et al., 2009). These findings suggest
differences in the path taken by human and mouse fibroblasts
toward reprogramming, which might reflect species differences
in regulatory programs between mES and hESC. Low levels of
the Cdkn p57 appear to confer an “elite” status to cells, allowing
them to reprogram faster but the mechanism is not known (Guo
et al., 2014).

During mES differentiation, p21 and p27 both repress
expression of Sox2 by binding to the Sox2 Regulatory Region
2 (SRR2) enhancer (Li H. et al., 2012; Yamamizu et al., 2014).
p27 binds along with the p130-Ef24-Sin3a repressor complex to
the SRR2 to repress Sox2 during differentiation (Li H. et al.,
2012). Whether p21 also binds along with the p130-Ef24-
Sin3a repressor complex or acts independently to repress Sox2
expression is not known. In neural stem cells, p21 is not part of
the p130-Ef24-Sin3a repressor complex, which implies that p21
may also act independently inmES cells (Marqués-Torrejón et al.,
2013).

CONCLUSIONS AND OPEN QUESTIONS

Pluripotent stem cells exhibit a highly modified cell cycle
which allows for rapid proliferation, keeping pace with the
requirement for new cells during embryonic development. This
rapid proliferation is tightly interlinked to the pluripotent state.
As the embryo progresses through development and develops
form, the pluripotent cells differentiate to multipotent cells
accompanied by lengthening of the cell cycle resulting in reduced
proliferation rates. The lengthening of cell cycle is primarily
due to the increase in the length of G1 by the activation of RB
and Cdkns. Eventually the multipotent progenitors generated
during sequential developmental stages differentiate to specific
cell types that do not divide i.e., undergo irreversibly exit from
the cell cycle. A small sub-population undertakes an alternative
program to preserve proliferative capacity, forming committed
progenitor cells (adult stem cells) that reversibly exit the cell cycle
while retaining their lineage memory or potency, but holding
it in reserve until called upon for homeostatic tissue repair
and regeneration at later stages. The molecular mechanisms
that regulate these transitions seen in the cell cycle during
development are still not clearly understood.

Embryonic stem cells are a useful model system to dissect
these mechanisms, given their ability to differentiate to most cell
types coupled with their limitless ability to self-renew. However,
while directed differentiation protocols currently available readily
generate fully differentiated cell types such as cardiomyocytes
or neurons, the ability to capture cycling committed progenitor
states in culture is limited. Therefore, the cell cycle changes
that accompany transitions from multipotent to monopotent
progenitors are still poorly understood.

By using a combination of population and single-cell
techniques, our understanding of the unique regulatory systems
controlling the ES cell cycle has improved, but there are still
several aspects that require illumination. Key amongst these is the
role of the pluripotency factors and lineage determination factors
in regulating the cell cycle. While we have highlighted current
facets in this review, there aremany unexplored aspects which are
likely to emerge in the context of reprogramming somatic cells to
a pluripotent state.

Further, the therapeutic potential of ES/iPS cells for
regenerative medicine makes it imperative to understand the
detailed molecular mechanisms at work in regulating the rapid
cell cycle. Given that several cell cycle modifications seen in ES
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cells such as modified cell cycle checkpoints are also seen in
cancer cells, it would be important to completely understand
these mechanisms before ESC-derived cell types are utilized for
cell/tissue replacement in regenerative medicine. Dissecting these
pathways may also increase our understanding of tumorigenesis
and could lead to potential anti-cancer therapies. At the other
end of the disease spectrum, the ability to reactivate non-
functioning adult stem cells may ameliorate aspects of aging or
degenerative disease. In summary, while a great deal has been
learned about both the unique stem cell cycle and pluripotency,
the field is poised to achieve an integrated understanding of their
developmental context, with wider application of conceptual and
technical advances already in play.
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