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Chemotherapy is routinely used in cancer treatment to eliminate primary and metastatic
tumor cells. However, tumors often display or develop resistance to chemotherapy.
Mechanisms of chemoresistance can be either tumor cell autonomous or mediated by
the tumor surrounding non-malignant cells, also known as stromal cells, which include
fibroblasts, immune cells, and cells from the vasculature. Therapies targeting cancer
cells have shown limited effectiveness in tumors characterized by a rich tumor stroma.
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are
the most abundant non-cancerous cells in the tumor stroma and have emerged
as key players in cancer progression, metastasis and resistance to therapies. This
review describes the recent advances in our understanding of how CAFs and TAMs
confer chemoresistance to tumor cells and discusses the therapeutic opportunities
of combining anti-tumor with anti-stromal therapies. The continued elucidation of the
mechanisms by which TAMs and CAFs mediate resistance to therapies will allow the
development of improved combination treatments for cancer patients.

Keywords: macrophages, fibroblasts, tumor stroma, tumor microenvironment, chemoresistance, therapy
resistance

INTRODUCTION

The treatment of cancer with chemical substances, known as chemotherapy, is routinely used for
cancer treatment because as it circulates throughout the body it targets not only the primary tumor
site but also tumor cells that have spread to other organs which are usually missed with surgical
intervention or radiotherapy treatment (Eguchi et al., 2008).

The birth of chemotherapy came after the first world war, using nitrogen mustard as an anti-
cancer agent in non-Hodgkin’s lymphoma (Gilman, 1963). This agent was non-specific and showed
limited effectiveness as patients experienced relapse after a few weeks. However, this discovery
triggered investigation into the drug’s mechanism of action leading to the development of other
alkylating agents (Haddow et al., 1948). Targeted chemotherapy was developed in the late 1980s
after the elucidation of some of the signaling pathways aberrantly regulated in tumors. Targeted
chemotherapy included pharmacological targeting of the cell cycle regulating proteins, growth
factors and angiogenesis mediators (Hanahan and Weinberg, 2000; Chabner and Roberts, 2005).

Since its beginning, chemotherapy has provided a plethora of benefits for many cancer
patients (Klastersky and Paesmans, 2001; Benedetti-Panici et al., 2003; Gebski et al., 2007).
Chemotherapeutic agents given before surgery as ‘neoadjuvant’ therapy can be used to reduce the
tumor mass before surgical resection. This has many benefits as the reduction of the tumor size
decreases the level of invasiveness required for resection and often improves the distinction between
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healthy and neoplastic tissue during resection (Hayes and Schott,
2015). Adjuvant administration of chemotherapy occurs post-
surgery with the purpose of minimizing the chance of recurrence.
Adjuvant therapy is effective in two ways: firstly, against micro
or macro-metastasis which are already seeded but were not
detectable at the time of surgery, and secondly, against micro-
metastasis created as a by-product of surgery due to tissue
regeneration promoting cytokine storms released after invasive
surgery (Hayes and Schott, 2015).

Despite the development of targeted agents with improved
toxicity profiles, in some cancers chemotherapeutic agents only
provide a minimal improvement of overall survival (Burris et al.,
1997; Marquette and Nabell, 2012). The reduced effectiveness of
chemotherapy in patients is due to tumor resistance mechanisms,
which can be either tumor cell autonomous and/or mediated
by the tumor surrounding non-malignant cells present in the
tumor microenvironment (TME) (Joyce and Pollard, 2009; De
Palma and Lewis, 2013; Mielgo and Schmid, 2013; Zheng,
2017). Tumor cell autonomous mechanisms of drug resistance
have been extensively reviewed before (Zahreddine and Borden,
2013; Housman et al., 2014; Zheng, 2017) so the focus of
this review is on the emerging TME-mediated mechanisms
of tumor resistance to chemotherapy with a main focus on
chemoresistance mechanisms mediated by tumor-associated
macrophages (TAMs) and fibroblasts.

The TME describes the complete tumor milieu including
the malignant tumor cells and the surrounding tumor stroma.
The tumor stroma consists of non-malignant cells including
immune cells (macrophages, neutrophils, and T cells), fibroblasts,
cells from the vasculature (pericytes and endothelial cells) and
extracellular matrix (ECM) proteins (Hanahan and Weinberg,
2011). Accumulating evidence shows that the tumor stroma
develops and interacts with the tumor cells, participating in
bi-directional tumor-stroma signaling which supports tumor
progression, metastasis and resistance to therapy (Hanahan and
Coussens, 2012; Quail and Joyce, 2013). The most abundant
non-cancerous cell types present in the tumor stroma are TAMs
and cancer-associated fibroblasts (CAFs). This review will discuss
the various mechanisms, discovered to date, by which TAMs
and CAFs support tumor chemoresistance, the controversies
and current gaps in this research field and the potential future
perspectives.

ORIGIN OF MACROPHAGES AND
FIBROBLASTS

Macrophages
Tissue resident macrophages are a diverse population of cells
which perform tissue-specific functions in tissue homeostasis,
repair, immunity and angiogenesis (Davies et al., 2013a).
Macrophages can originate from three independent sources.
Embryonic macrophage populations have been mapped back
to two sources: fetal liver-derived monocytes or precursor cells
found in the yolk sac (Yona et al., 2013; Mass et al., 2016). In adult
tissue, macrophage populations differentiate from hematopoietic
stem cells in the bone marrow (Orkin and Zon, 2008).

Once established in adult tissue, macrophages maintain their
population via self-renewal in the steady state but increase their
rate of proliferation in response to stimuli such as interleukin
4 (IL-4) and colony stimulating factor 1 (CSF-1) (Jenkins et al.,
2011, 2013; Davies et al., 2013a). During inflammation, bone
marrow-derived monocytes are recruited into the tissue and
mature into macrophage populations which act alongside tissue
resident macrophages (Shi and Pamer, 2011). These converted
monocytes display cell surface markers associated with resident
macrophages increasing their responsiveness to IL-4 and IL-3
(Yona et al., 2013; Dal-Secco et al., 2015).

Bone-marrow derived macrophages (BM-DMs) and tissue
resident macrophages appear to intermingle and work together
to resolve inflammation and promote tissue repair. However,
it is currently undetermined if BM-DMs play the exact same
role as tissue resident macrophages (Davies et al., 2013b). Bone
marrow transplant studies have shown that BM-DMs and tissue
resident macrophages share similar characteristics (van de Laar
et al., 2016). These similarities have been further confirmed by
transcriptome analysis of lung alveolar resident macrophages
which revealed different genes expressed in BM-DMs compared
to tissue resident macrophages (Gibbings et al., 2015).

Fibroblasts
Fibroblasts are of mesenchymal origin and dependent on
their tissue of origin have a distinct transcriptional profile
(Chang et al., 2002). Fibroblasts have never been identified
in embryonic tissue but are hypothesized to arise during
the epithelial-to-mesenchymal transition (EMT) of the epiblast
during gastrulation with the generation of mesoderm tissue
(Kalluri, 2016). Virchow (1858) identified cells in adult tissue that,
produced collagen, were resistant to apoptosis, and reverted to
quiescence upon the completion of tissue development. These
cells were later called fibroblasts (Virchow, 1858). Due to the
inability to identify fibroblasts in embryonic tissue it remains
unknown whether the majority of activated fibroblasts originate
from fibrocytes or mesenchymal stem cells (MSCs) in adult tissue
(Kalluri, 2016).

Stellate cells are found in the pancreas, liver, lung, and kidney
and although stellate cells are similar to fibroblasts, they display
some distinctly different functions such as vitamin A storage
as retinol droplets in their cytoplasm which is required for
cellular homeostasis (Keane et al., 2005; Liu, 2006; Erkan et al.,
2010). Quiescent stellate cells usually constitute <10% of the
organ where they reside and are found in perivascular and peri-
parenchymal regions (Wake and Sato, 1993; Apte et al., 1998;
Bachem et al., 1998). Like fibroblasts, the origin of stellate cells is
still debated. Neuroectoderm is suggested as a potential origin of
pancreatic stellate cells (PaSCs) and hepatic stellate cells (hStCs)
(Friedman, 2000). Lineage tracing studies have shown that hStCs
can originate from mesoderm in mice, however, lineage tracing
studies are currently lacking for PaSCs (Asahina et al., 2009,
2011).

Activated fibroblasts (also known as myofibroblasts) can
originate from several different cell types that include quiescent
fibroblasts from normal parenchyma, endothelial cells, MSCs,
and stellate cells (LeBleu et al., 2013; Kalluri, 2016). For example,
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the origin of activated fibroblasts which support ductal outgrowth
has been disputed in breast tissue. Ucar et al. (2010), reported
that miR-212/132 expression in stromal fibroblasts is required to
support ductal outgrowth. However, in another study, targeted
deletion of miR-212 and miR-132 in embryonic stem cells did not
show an effect in ductal outgrowth, instead, this study claims that
Hic1 expression in stromal cells is required for mammary ductal
outgrowth (Kayo et al., 2014). These contradictory results suggest
that further studies aiming to understand the role of fibroblasts
in mammary gland development are required (Ucar et al., 2014).
The heterogeneous origins of myofibroblasts may play a role in
generating populations with different phenotypes and functions.
Recent studies have described heterogeneous populations of
activated fibroblasts present in pancreatic and breast tumors
(Ohlund et al., 2017; Costa et al., 2018) and understanding the
functions of these different fibroblast populations in cancer is
currently an intensive field of research.

PHYSIOLOGICAL FUNCTIONS OF
MACROPHAGES AND FIBROBLASTS

Macrophages represent a heterogeneous population of cells
that are highly plastic and adapt to their surroundings to
perform a variety of functions in tissue homeostasis, repair,
and immunity (Wynn et al., 2013). Macrophages respond to
tissue-derived or external stimuli adapting their phenotype and
function accordingly (Biswas and Mantovani, 2010). A spectrum
of different subsets of macrophages with diverse phenotypes
and functions co-exist in tissues and the macrophage subsets at
the extremes of this spectrum are known as M1 (or classically
activated) and M2 (or alternatively activated) macrophages
(Murray and Wynn, 2011; Mills, 2012). Macrophages can
be polarized into M1-like or M2-like macrophages and their
polarization depends on the stimulating cytokine and the
length of exposure (Gordon and Martinez, 2010). However, the
nomenclature and understanding of macrophage subtypes and
functions is still evolving.

M1-like macrophages are generated in response to interferon
gamma (INFγ) and lipopolysaccharide (LPS) stimulation,
factors produced by infiltrating bacteria and pathogens.
M1-like macrophages are pro-inflammatory and secrete
factors to promote inflammation, microbicidal activity and
immunostimulation, such as cytokines IL-12, IL-6, IL-1β,
tumor-necrosis factor alpha (TNFα) as well as reactive oxygen
species (ROS) and nitric oxide (NO) (Gordon and Martinez,
2010; Biswas et al., 2013) (Figure 1).

In contrast, M2-like macrophages are polarized by IL-4
and IL-13 produced by invading parasites and release anti-
inflammatory cytokines IL-10, arginase I and transforming
growth factor beta (TGF-β), as well as vascular endothelial
growth factor (VEGF), promoting the remodeling of their
surrounding tissue. Concurrently, macrophages upregulate
expression of scavenging receptors while downregulating
receptors and markers associated with antigen presentation
(Biswas and Mantovani, 2010; Mantovani and Sica, 2010)
(Figure 1).

Tissue resident macrophages play a variety of roles in a tissue
context-dependent manner. Largely, they participate in functions
usually associated with an M2 phenotype including mediating
resolution of inflammation, maintaining tissue homeostasis via
the removal of debris, supporting angiogenesis and partaking in
immune surveillance (Davies et al., 2013a).

Angiogenesis occurs as part of homeostasis throughout life
and is tightly regulated by macrophages (Fantin et al., 2010;
Outtz et al., 2011). In mouse embryos, microglia (central-nervous
system specific macrophages) migrate to the brain and assist in
developmental angiogenesis (Arnold and Betsholtz, 2013). In the
central nervous system, macrophages promote endothelial tip cell
fusion by acting as a chaperone for endothelial cells in vascular
development (Fantin et al., 2010). However, it appears that the
actions undertaken by macrophages are tissue-dependent as,
conversely, macrophages mediate the regression of blood vessels
in the developing retina (Lobov et al., 2005; Fantin et al., 2010).

Another homeostatic function of macrophages is the
removal of apoptotic and excess cell debris. This function is
extremely important in the regulation of hematopoiesis in which
macrophages phagocytose excess erythrocytes and neutrophils
(Gordy et al., 2011; Klei et al., 2017). When this process
was interrupted in mice they suffered severe neutrophilia,
splenomegaly, extramedullary hematopoiesis and decreased
body weight (Gordy et al., 2011). Macrophages also regulate
immune responses through the ingestion of apoptotic cells
preventing leakage of cell-death related factors which could
promote inflammation (Savill et al., 2002).

In the event of injury or infection, pro-inflammatory
macrophages are recruited to the afflicted area and secrete factors
including IL-1β, NO, and TNFα as a defense mechanism to kill
any invading pathogens (Murray and Wynn, 2011). The release
of these factors can also result in secondary damage to host
tissue. To limit the impact of this damage, macrophages either
undergo apoptosis or reprogram toward an anti-inflammatory
M2-like phenotype (Murray and Wynn, 2011). However, when
this process goes awry, and macrophages maintain their
pro-inflammatory functions, chronic inflammation occurs and
becomes the basis of some auto-immune diseases such as
Crohn’s disease, rheumatoid arthritis and autoimmune hepatitis
(Sindrilaru et al., 2011; Navegantes et al., 2017). Along with
mediating the immunity side of wound healing, macrophages
alter their secretory phenotype after inflammation subsides, to
promote tissue regeneration. To promote the closure of the
wound, macrophages attract and activate fibroblasts through the
secretion of TGF-β (Khalil et al., 1989; Murray and Wynn, 2011).

In healthy tissue, fibroblasts and stellate cells exist in a
quiescent state within the ECM making few cell-cell or cell-
basement membrane connections. They are usually found as
single cells, elongated and spindle-like in morphology situated
in the interstitial space between the functional tissues of adult
organs (Tarin and Croft, 1969). Quiescent fibroblasts and stellate
cells produce very little ECM components such as collagen 1
and fibronectin and secrete a few factors including pigment
epithelium-derived factor (PEDF) and thrombospondin-2,
although their actual role while quiescent is yet to be fully
elucidated (Tarin and Croft, 1969; Pollina et al., 2008). Specific
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markers for fully quiescent fibroblasts are not yet known,
however, fibroblasts specific protein-1 positive (FSP1+) cells are
often considered as quiescent (Strutz et al., 1995) (Figure 2).

The activation of fibroblasts and stellate cells is triggered
in response to stress factors produced during tissue stress and
damage, including TGF-β and ROS (Kalluri and Zeisberg, 2006).

Activated fibroblasts acquire smooth muscle-like properties with
increased contractility, motility, proliferation and a stellate
morphology, and are known as myofibroblasts (Sappino et al.,
1988; Ronnovjessen and Petersen, 1993). Upon activation,
stellate cells also acquire a myoblastic phenotype but lose their
cytoplasmic retinol lipid droplets (Blaner et al., 2009). Common

FIGURE 1 | Macrophage polarization. Bone marrow derived monocytes or tissue derived monocytes can be polarized toward either an M1 or M2 phenotype.
Classical activation toward M1 polarization occurs in response to interferon gamma (IFNγ) and lipopolysaccharide (LPS) leading to a Th1 response associated with
bacteria and viruses as well as possessing anti-tumorigenic properties. Alternative activation toward an M2 phenotype is triggered in response to toll-like receptors
(TLRs), immune complexes, IL-4, IL-13, IL-10, and glucocorticoids. M2 macrophages lead to a Th2 response and exhibit anti-parasitic behavior. In cancer, M2-like
macrophages promote tumor progression.

FIGURE 2 | Fibroblast activation. Quiescent fibroblasts produce few extracellular matrix (ECM) components such as fibronectin and collagen type 1 (Col1a1). They
express fibroblasts specific protein-1 (FSP-1), actin and vimentin and secrete pigment epithelium-derived factor (PEDF) and thrombospondin-2 (THBS2). When
stimulated with transforming growth factor beta (TGF-β), reactive oxygen species (ROS) or hypoxia, quiescent cells become activated increasing their contractility,
proliferation and secretion. Activated myofibroblasts produce larger volumes of fibronectin and collagen along with tenascin-c and secreted protein acidic and rich in
cysteine (SPARC). Increased secretion includes IL-6, tissue inhibitor of metalloproteinase (TIMPs), TGF-β, vascular endothelial growth factor (VEGF), epidermal
growth factor (EGF), and CXCL10. Upregulated receptors/markers include alpha smooth muscle actin (αSMA), platelet derived growth factor receptor alpha/beta
(PDGFRα/β), fibroblast activation protein (FAP), discoidin domain-containing receptor 2 (DDR2), desmin, and vimentin.
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markers of myofibroblasts include alpha-smooth muscle actin
(αSMA), platelet derived growth factor receptor beta (PDGFRβ),
PDGFRα, fibroblast activated protein (FAP), vimentin, desmin,
Fibronectin Extra-domain A (EDA-FN) and discoidin domain-
containing receptor 2 (DDR2) (Ronnovjessen and Petersen, 1993;
Sugimoto et al., 2006; Quail and Joyce, 2013; Kalluri, 2016; Jiang
et al., 2017) (Figure 2).

Myofibroblasts classically function in acute wound healing,
becoming ‘reversibly’ activated and depositing the ECM proteins,
collagens and fibronectin to close the wound (Dvorak et al.,
1986; Darby and Hewitson, 2007). Myofibroblasts also modulate
ECM consistency secreting matrix metalloproteases (MMPs)
and tissue inhibitor of metalloproteinase (TIMPs) (Tampe and
Zeisberg, 2014). Activated myofibroblasts also possess an altered
secretory phenotype producing factors such as TGF-β, VEGF,
C-X-C motif chemokine ligand 10 (CXCL10), CXCL12, IL-6,
and epidermal growth factor (EGF) to promote proliferation and
mediate recruitment of other cell types to the damaged tissue
(Dvorak et al., 1986) (Figure 2).

Chronic activation of fibroblasts and stellate cells occurs
in response to prolonged afflictions including toxins or auto-
immune disorders. This results in chronic tissue fibrosis with
myofibroblasts continuing to aberrantly perform their wound
healing functions without resolution. These myofibroblasts
become fibrosis-associated fibroblasts (FAFs), are irreversibly
activated and exhibit enhanced proliferation and survival (Rock
et al., 2011; Zeisberg and Zeisberg, 2013; Kalluri, 2016).

TUMOR-ASSOCIATED MACROPHAGES
(TAMs) AND CANCER-ASSOCIATED
FIBROBLASTS (CAFs)

Macrophages and fibroblasts are the two most abundant non-
cancerous cells in tumors. Tumors become infiltrated with
BM-DMs that are attracted to the tumor via the secretion of
damage associated molecular patterns (DAMPs) and specific
macrophage chemoattractants CSF-1 and chemokine C-C motif
ligand 2 (CCL2). M1-like macrophages derived from the
bone marrow and tissue resident macrophages are recruited
to and activated in the tumor site in response to antigen
presentation and inflammatory responses (Zhu et al., 2017).
Once the tumor is established, tumor cells secrete cytokines IL-
4, IL-10, IL-13 and lactic acid, and along with the presence
of CD4+ Th2 cells, cause the polarization of TAMs toward
an M2-like phenotype. The M2 TAMs no longer serve to
destroy the tumor but rather support cancer growth, metastasis
and resistance to therapies (Gocheva et al., 2010; Qian and
Pollard, 2010; Ruffell et al., 2012; Colegio et al., 2014). M2
TAMs support tumor progression by directly stimulating the
growth of cancer cells through the production of growth
factors, including EGF, TNFα, IL-6 (Grivennikov et al.,
2010).

Solid tumors can undergo periods of hypoxia as its growing
size limits the disposal of waste products and nutrient delivery
becomes limited, triggering the angiogenic switch (Bergers and
Benjamin, 2003; Hanahan and Weinberg, 2011). The activation

of the angiogenic switch in tumors triggers dysregulated
angiogenesis resulting in leaky vasculature with abnormal
branching and enlarged diameter (Bergers and Benjamin, 2003).
Macrophages are a source of VEGF and are known to support
angiogenesis under normal physiological conditions (Fantin
et al., 2010; Outtz et al., 2011). However, tumors depleted
of myeloid-derived VEGF have a normalized vasculature with
increased pericyte coverage and reduced vessel length and
this accelerates tumor progression (Stockmann et al., 2008).
Conversely, another study showed that hypoxia-related TAMs
possess reduced mTOR activation, and that stimulation of
mTOR activity in TAMs resulted in normalized vasculature
with decreased vessel leakiness, hypoxia and metastasis (Wenes
et al., 2016). TAMs are attracted to areas of tumor hypoxia
through the release of Semaphorin 3A by cancer cells and TAMs
promote angiogenesis via the phosphorylation of VEGF-receptor
on endothelial cells (Casazza et al., 2013). CSF-1 stimulation
has been shown to upregulate TIE2 expression on macrophages
(Forget et al., 2014). Once inside the tumor, TIE2+macrophages
bind to angiopoietin-2 (Ang-2) expressed by endothelial cells
and stimulate the growth of blood vessels promoting tumor
growth and metastasis (De Palma et al., 2005; Mazzieri et al.,
2011).

Metastatic spread of tumor cells to distant organs
involves a multi-step process that requires local tissue
invasion, intravasation, circulation through the blood stream,
extravasation and successful colonization of the distant organ
by the cancer cells (Hanahan and Coussens, 2012; Massague
and Obenauf, 2016). Macrophages play a role in each of these
stages of the metastatic cascade. Macrophages help tumor cell
invasion into the basement membrane (Condeelis and Pollard,
2006; Wyckoff et al., 2007). In the PyMT breast cancer mouse
model, CSF-1 produced by tumor cells and EGF secreted
by TAMs results in the migration of both macrophages and
cancer cells along collagen fibers and intravasation into the
blood vessels (Goswami et al., 2005; Wyckoff et al., 2007).
This phenomenon was also seen in glioblastoma, resulting in
enhanced cancer cell invasion (Coniglio et al., 2012). TAMs
can also promote tumor cell migration and invasion through
the secretion of MMPs, secreted protein acidic and rich in
cysteine (SPARC) and cathepsins which degrade and remodel
the ECM (Bergers et al., 2000; Gocheva et al., 2006) as well
as through the secretion of TGF-β which promotes EMT of
tumor cells and increased tumor cell migration (Bonde et al.,
2012).

As outlined earlier, fibroblasts are activated in response to
tissue damage. After resolution of the insult, fibroblasts will
reprogram back to quiescence or undergo apoptosis (Tomasek
et al., 2002). However, tumors are referred to as “wounds
that do not heal” (Dvorak et al., 1986). Persistent activation
signals, in the context of cancer, maintain fibroblasts in a
chronically activated state triggering a desmoplastic reaction
and generating a dense fibrotic stroma which envelopes the
tumor mass. Fibroblast activation signals are tumor-specific
and determine the phenotype and function of the resulting
myofibroblast. In the TME, a myofibroblast will exert a
pro- or anti-tumorigenic response depending upon which
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chemokines/cytokines it encounters (Tampe and Zeisberg, 2014).
TGF-β is a common activating factor released by tumors which
increases the expression of PDGF receptors on activated PaSCs
(Apte et al., 1999). Sonic hedgehog (Shh) signaling in PDAC
tumors has been reported to promote fibroblast activation and
fibrosis in the pancreas (Bailey et al., 2008; Yauch et al., 2008).
Other common factors involved in CAF activation include
fibroblast growth factor (FGF), platelet derived growth factor
(PDGF), and monocyte chemotactic protein (MCP1) (Kalluri and
Zeisberg, 2006; Marsh et al., 2013).

Concurrent with their activated state, CAFs express an
altered secretory phenotype, compared to quiescent fibroblasts,
including ECM proteins and ECM modulating factors such
as tenascin C, periostin, SPARC and EDA-FN; and tumor
promoting factors such as nuclear factor-kB (NF-kB), IL-
8, prostaglandin E2 (PGE2), connective tissue growth factor
(CTGF) and CXCL7 (Kalluri, 2003; Hanahan and Coussens,
2012).

Recent advances in the field of CAF research has shown that
different subsets of CAF populations with different functions
co-exist within tumors (Costea et al., 2013; Brechbuhl et al.,
2017; Ohlund et al., 2017; Costa et al., 2018). For example,
in PDAC a specific subset of CAFs expressing high levels of
αSMA but low levels of IL-6 was found in the fibrotic area
juxtaposed to cancer cells and was called the myofibroblast CAF
subset (myCAFs) (Ohlund et al., 2017). A different subset of
CAFs, expressing low levels of αSMA but high levels of IL-6
was found at the periphery of the tumor and was termed the
inflammatory CAF subset (iCAFs) (Ohlund et al., 2017). Ohlund
et al. (2017) showed that the proximity of the myofibroblasts
to the PDAC tumor cells, and the concentration of tumor-
secreted factors alters the phenotype of the CAFs and the proteins
they secrete. Another recent study performed with luminal A,
human epidermal growth factor receptor 2+ (HER2+) and triple
negative breast cancer (TNBC) patient samples revealed the co-
existence of four different CAF subsets in breast tumors (Costa
et al., 2018). TNBC samples predominantly had two types of
myofibroblast-like CAFs; CAF-S1 and CAF-S4 identified by their
high expression of αSMA. However, only CAF-S1 defined as
CD29Med, FAPHi, FSP1Low−Hi, aSMAHi, PDGFRbMed−Hi, and
CAV1Low; showed an immunosuppressive role by attracting T
lymphocytes and promoting their survival and differentiation
into immunosuppressive T regulatory cells (Costa et al., 2018).
Thus, CAFs, like TAMs, are a heterogeneous population of
cells and uncovering the different CAF populations and their
functions in cancer is currently an important area of research.

Tumor-associated macrophages and CAFs take part in a
complex interplay and can regulate each other’s functions. For
example, cancer cells and myofibroblasts are known sources
of VEGF which promotes the accumulation of immune cells
including macrophages at the site of fibrosis (Fukumura
et al., 1998). VEGF-dependent recruitment and activation of
macrophages promotes tumorigenesis, angiogenesis and invasion
in skin cancer (Linde et al., 2012). Reciprocally, in liver
metastasis of pancreatic cancer, macrophages recruited to the
metastatic liver secrete granulin and activate resident quiescent
hStCs which subsequently produce periostin supporting the

growth of metastatic cancer cells in the liver (Nielsen et al.,
2016).

MECHANISMS OF CHEMOTHERAPY
RESISTANCE DRIVEN BY TAMs AND
CAFs

Chemotherapy is used as a treatment in many different cancer
types and is used either alone or in combination with surgical
resection or radiation. Chemotherapy targets tumor cells at
both the primary tumor site and the metastatic site. However,
a common problem encountered with the treatment of many
tumors is an acquired resistance to chemotherapeutic agents.
Chemoresistance can be mediated by tumor cell-autonomous
mechanisms, including changes in tumor cell epigenetics,
drug inactivation, EMT, activation of alternative survival and
proliferative pathways, and/or selection of drug-resistant cancer
cell clones (Housman et al., 2014). However, many solid tumors
such as breast cancer and PDAC have a rich stroma which
contains, as described before, a plethora of non-malignant cell
types that influence cancer progression and response to therapy
in various ways. In fact, these non-malignant stromal cells are
not simple bystanders but engage in bi-directional tumor-stroma
signaling which can result in impaired therapeutic efficacy. For
instance, the attraction of TAMs in a MCF-7 breast cancer
xenograft model, via CSF-1 signaling, reduces the efficacy of
a combination treatment with cyclophosphamide, methotrexate
and 5-fluorouracil (CMF) (Paulus et al., 2006) (Figure 3A). The
presence of TAMs in the genetic MMTV-PyMT mouse model of
breast cancer makes tumors more resistant to paclitaxel therapy
(DeNardo et al., 2011). Another study revealed TAM-derived
cathepsins B and S as responsible for mediating chemoresistance
to taxol in the MMTV-PyMT mouse model (Shree et al., 2011)
(Figure 3B). In a subcutaneous mouse model of colorectal cancer,
IL-6 released by TAMs mediates chemoresistance to 5-FU via
activation of the IL-6R/STAT3 signaling axis (Yin et al., 2017).

Tumor-associated macrophages can also regulate the delivery
of chemotherapy to tumor cells. In the MMTV-PyMT transgenic
breast cancer mouse model, doxorubicin administration causes
necrosis of cancer cells with the release of CCL2, a chemokine
that attracts monocytes/macrophages. MMP-9 secretion by the
recruited myeloid cells was shown to decrease vasculature
leakiness and to impair doxorubicin delivery into the tumors
(Nakasone et al., 2012). In fact, MMP-9 null mice showed an
improved response to Doxorubicin that correlated with increased
vascular leakage (Nakasone et al., 2012) (Figure 3C). Conversely,
in a Lewis lung carcinoma subcutaneous isograft model,
myeloid derived VEGF promotes resistance to cyclophosphamide
treatment by promoting the formation of abnormal vessels
with reduced pericyte coverage, tortuosity, and vessel density
(Stockmann et al., 2008).

Cancer-associated fibroblasts also play a role in tumor
chemoresistance. In fact, a dense fibrotic stroma correlates with
a poor response to neoadjuvant treatment with 5-fluorouracil,
epirubicin and cyclophosphamide (FEC) in breast cancer and
with gemcitabine in PDAC (Farmer et al., 2009; Olive et al., 2009;
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FIGURE 3 | Mechanisms of chemoresistance mediated by TAMs and CAFs. (A) Cancer cells attract TAMs via CSF-1. TAMs confer resistance of MCF-7 breast
cancer cells toward cyclophosphamide, methotrexate and 5-fluorouracil (5-FU; Paulus et al., 2006). (B) Cathepsins B and S secreted by TAMS mediate resistance of
breast cancer cells to taxol in MMTV-PyMT mouse model (Shree et al., 2011). (C) In the MMTV-PyMT transgenic mouse model, cancer cell necrosis caused by
doxorubicin treatment causes cancer cells to release the monocyte chemoattractant CCL2. Recruited TAMs produce MMP-9 which causes leakiness of blood
vessels and reduction in doxorubicin delivery (Nakasone et al., 2012). (D) In PDAC, CAFs increase deposition of hyaluronan (HA) creating an increase in fluid
retention and subsequently interstitial pressure in the tumor rises causing the collapse of blood vessels and limiting the delivery of chemotherapeutic agents (DuFort
et al., 2016). (E) CAF secreted IL-6 stimulates the upregulation of CXCR7 through STAT3/NF-kB signaling promoting resistance of esophageal squamous cell
carcinoma cells against cisplatin and 5-FU (Qiao et al., 2018). (F) CAF-derived TGF-β upregulates FOXO1 expression in esophageal squamous cell carcinoma cells
triggering reciprocal TGF-β secretion which in turn increases the levels of αSMA expression in CAFs and resistance to cisplatin, taxol, irinotecan (CPT-11), 5-FU,
carboplatin, docetaxel, pharmorubicin, and vincristine (Zhang et al., 2017). (G) TAM and CAF derived IGF-1 and IGF-2 activate insulin and IGF-1 receptor signaling
on tumor cells conferring resistance of pancreatic and breast tumors to gemcitabine and paclitaxel (Ireland et al., 2016, 2018).

Pandol et al., 2009). One way fibrosis promotes chemoresistance
in PDAC is through CAF secretion of hyaluronan, generating
high interstitial pressure within the tumor, causing the collapse
of blood vessels supplying the tumor mass and impairing drug
delivery (DuFort et al., 2016) (Figure 3D).

In esophageal squamous cell carcinoma, CXCR7 expression is
upregulated in tumor cells through STAT3/NF-kB signaling
stimulated by CAF-derived IL-6, ultimately promoting
resistance against cisplatin and 5-fluorouracil (Qiao et al.,
2018) (Figure 3E). IL-6 has pleiotropic effects in the TME and
also mediates chemoresistance by promoting EMT of cancer cells
(Shintani et al., 2016). TGF-β secretion by CAFs was shown to
confer resistance of esophageal squamous cell carcinoma against
cisplatin, taxol, irinotecan (CPT-11), 5-fluorouracil (5-FU),
carboplatin, docetaxel, pharmorubicin, and vincristine (Zhang
et al., 2017) (Figure 3F).

We recently showed that TAMs and CAFs are the main
sources of Insulin-like growth factors 1 and 2 (IGF-1, IGF-
2) in pancreatic and breast tumors, and that IGF signaling

mediates resistance of murine pancreatic and breast tumors to
gemcitabine and paclitaxel (Figure 3G) (Ireland et al., 2016,
2018). Importantly, we found that 72% of PDAC patients and
87% of patients with invasive breast cancer have the IGF signaling
pathway activated in their tumors, and this correlates with an
increased number of TAMs and CAFs (Ireland et al., 2016, 2018).
Similarly, IGF1 was also shown to be secreted by TAMs in
glioblastoma multiforme and to mediate resistance to a CSF-1R
small molecule inhibitor through activation of PI3K signaling
(Quail et al., 2016).

TARGETING TAMs AND CAFs IN
CANCER

Currently, approaches are being undertaken to block macrophage
recruitment to the tumor site, to repolarize TAMs back into
an M1-like anti-tumorigenic phenotype, and to target specific
tumorigenic functions of TAMs. Preventing recruitment of
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macrophages to the tumor site has been achieved through
targeting macrophage chemoattractants such as CSF-1 and
CCL2 or their corresponding receptors: CSF-1 receptor (CSF-
1R) and C-C chemokine receptor type 2 (CCR2). Anti-CSF-
1R agents have been shown to be effective against recruitment
of M2-like macrophages in breast cancer models, and anti-
CSF1R inhibitors used in combination with paclitaxel decreased
tumor growth and pulmonary metastasis (DeNardo et al., 2011).
CSF-1R and CCR2 antagonists have been reported to prevent
infiltration of TAMs into the tumor mass increasing response
to gemcitabine treatment in mouse models of PDAC (Mitchem
et al., 2013). CCL2 inhibition in combination with docetaxel
has shown increased efficacy, compared to docetaxel treatment
alone, resulting in decreased tumor growth and metastatic spread
in prostate cancer (Loberg et al., 2007). This combination has
also shown promise in lung cancer, breast cancer metastasis, and
PDAC (Lu and Kang, 2009; Fridlender et al., 2011; Kalbasi et al.,
2017). Due to these successes CSF-1, CCL2, and CSF-1R targeting
agents are being investigated in clinical trials in combination with
chemotherapy in a range of solid tumors (Table 1). However,
the targeting of chemokines and cytokines has limitations due
to their redundant and promiscuous nature. In fact, chemokines
and cytokines can often bind to more than one receptor, and at
the same time different cytokines/chemokines can bind to the
same receptor and activate the same signaling pathway (O’Shea
and Murray, 2008; Turner et al., 2014). In addition, to add

more complexity, certain cytokine receptors are expressed by
several cell types and as a result, inhibiting the cytokine/receptor
affects all cell populations expressing the receptor. This is the
case with CSF-1R which is not exclusively expressed by M2-
like macrophages but is also expressed by M1-like macrophages,
neutrophils, myeloid-derived suppressor cells (MDSCs) and
dendritic cells (DCs; Cannarile et al., 2017).

Repolarizing macrophages back into an M1-like tumoricidal
phenotype appears an attractive approach as the M2 TAMs are
already present in the tumor and repolarization could therefore
provide an effective strategy to restore the tumoricidal function
of macrophages and prevent cancer progression. This has been
investigated using an anti-CD40 antibody in combination with
gemcitabine in a genetic KPC (Kras LSL.G12D/+; p53R172H/+;
PdxCretg/+) PDAC mouse model and in PDAC patients (Beatty
et al., 2011). The administration of an agonist CD40 antibody
repolarized TAMs back into an M1-like phenotype leading to an
increased response to gemcitabine and reduced tumor burden
(Beatty et al., 2011). A phase 1 clinical trial has recently been
completed for the use of Dacetuzumab (human anti-CD40
mAb) + Bortezomib chemotherapy in patients with relapsed
or refractory multiple myeloma, however, results have yet to be
published (Table 1).

Since TAMs can act as a double edge sword in cancer, with
M1-like TAMs exerting anti-tumorigenic functions and M2-
like TAMs exerting pro-tumorigenic functions, targeting TAMs

TABLE 1 | Summary of combination treatments of chemotherapy and stromal targeting agents.

Molecular target Treatment combination Cancer type Clinical trial Outcome Reference

CSF1R Pexidartinib (PLX3397)
(αCSF-lR) + eribulin

Metastatic breast cancer Phase 1/2
NCT01596751

Ongoing

Pexidartinib (PLX3397
αCSF-lR) + paclitaxel

Solid tumors Phase 1 NCT01525602 ORR: 4/23 (17%) CBR:
14/23 (61%)

Rugo et al., 2014

CSF1 MCS110 (αCSFl) + carboplatin
plus gemcitabine

Triple negative breast cancer Phase 2 NCT02435680 Ongoing

CCL2 CNTO888
(αCCL2) + DOXIL R©/Caelyx R©

doxorubicin HC1 liposome
injection
CNTO888 + gemcitabine
CNTO888 + paclitaxel and
carboplatin
CNTO888 + docetaxel

Solid tumors Phase 1 NCT01204996 Hematological
complications in >93%

CNTO888 + docetaxel Metastatic resistant prostate
cancer

Phase 2 NTC00992186 34% maintained stable
disease

CD40 Dacetuzumab + bortezomib Relapsed or refractory multiple
myeloma

Phase 1 NCT00664898 Completed results not
posted

Dacetuzumab + R-ICE
(rituximab, etoposide,
carboplatin, ifosfamide)

Diffuse large B cell lymphoma Phase IIb
NCT00529503

Terminated

Smo LDE225
(αSmo) + temozolomide

Medulloblastoma Phase 3 NCT01708174 ORR: 18.8% Kieran et al., 2013

IGF BI 836845 + enzalutamide Castration-resistant Prostatic
neoplasms

Phase 1 NCT02204072 Ongoing

BI 836845 + everolimus
+ exemestane

HR+/HER2− advanced breast
cancer

Phase 1 NCT02123823 Ongoing

MEDI-573 + aromatase
inhibitor

HER-2 negative metastatic
breast cancer

Phase 2 NCT01446159 Ongoing
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pro-tumorigenic functions seems a more promising approach
compared to ablation therapies targeting all TAMs. As previously
mentioned, TAMs are known to facilitate the intravasation of
tumor cells and promote angiogenesis (Wyckoff et al., 2007).
Therefore, targeting TAMs role in pathological angiogenesis is an
attractive therapeutic opportunity. In MMTV-PyMT mammary
carcinomas and RIP1-Tag2 pancreatic insulinomas, an Ang-
2 neutralizing antibody administration did not reduce the
recruitment of Tie-2+ TAMs but instead, prevented their binding
to Ang-2 on activated endothelial cells subsequently decreasing
angiogenesis and tumor progression (Mazzieri et al., 2011).
CSF-1R inhibition increased the efficacy of anti-VEGFR-2 anti-
angiogenic therapy in a mouse model of Lewis lung carcinoma
(Priceman et al., 2010). M2 TAMs produce IL-10 at the tumor
site leading to resistance of breast cancer to paclitaxel treatment
(Yang et al., 2015) and this resistance can be abrogated with the
administration of an IL-10 neutralizing antibody (Yang et al.,
2015) (Figure 4).

It is currently unclear whether CAFs play a supportive or
restrictive role in tumor progression. Based on the correlation
between a large desmoplastic reaction and poor patient outcome
it was hypothesized that ablation of the myofibroblasts would
improve therapy response and decrease tumor growth. Shh is
overexpressed by neoplastic PDAC cells (Thayer et al., 2003),
stimulating Gli activity in surrounding fibroblasts and triggering
their activation (Tian et al., 2009). Therefore, Shh became a target
to inhibit fibroblast activation and Shh inhibition initially showed

promising results in a pre-clinical PDAC mouse models. Shh
inhibition reduced fibrosis and increased tumor vascularization,
improving the delivery of gemcitabine to PDAC tumors (Olive
et al., 2009). However, a clinical trial of Saridegib, a Shh inhibitor,
with gemcitabine, in metastatic PDAC patients, failed at phase
II as patients had reduced survival (Madden, 2012). Further
investigation into fibroblast function in PDAC in longer-term
experiments with mouse PDAC models showed that fibroblast
ablation using smoothened inhibitor or genetic depletion of
Shh or αSMA+ myofibroblasts, in fact showed that the stroma
restrained tumor growth and metastasis (Oezdemir et al., 2014;
Rhim et al., 2014). These conflicting results, combined with
the emerging evidence that different CAF populations co-exist
in tumors, suggest that different CAF populations may have
different and possibly opposing effects in cancer progression
(Ohlund et al., 2017; Costa et al., 2018). Despite these results,
a phase 3 trial in medulloblastoma, using an oral sonidegib
(smoothened inhibitor) in combination with temozolomide
showed promising results with an objective response rate of
18.8% (Table 1).

One approach which warrants further investigation is the
reprogramming of the activated CAFs back into their quiescent
state. This approach has seen some success in PDAC mouse
models using Calcipotriol (vitamin D analog) which reverts
myofibroblasts to quiescence, reducing the desmoplastic reaction
which in turn improves gemcitabine delivery (Sherman et al.,
2014). In 3D models and genetic mouse models of PDAC the

FIGURE 4 | Therapeutic strategies to overcome chemoresistance mediated by TAMs and CAFs. CAFs: Reprogramming activated CAFs back toward a quiescent
phenotype by anti-Smoothened (Smo), anti-sonic hedgehog (Shh), all-trans retinoic acid and calcipotriol (vitamin D analog) while fibroblast growth factor 2 (FGF2)
targeting agents prevents resistance of tumor cells to anti-estrogens in breast cancer. TAMs: Repolarizing M2 macrophages back to an M1-like phenotype can be
mediated by a CD40 agonist. Prevention of macrophage recruitment to tumor sites is currently being achieved by targeting the colony-stimulating factor 1 (CSF-1)
and C-C motif chemokine 2 (CCL2) signaling axis. Anti-angiopoietin-2 (Ang-2) antibodies prevent TAM interaction with blood vessels. IL-10 produced by TAMs
promotes chemoresistance which can be abrogated by treatment with anti-IL-10 antibodies. TAMs and CAFs secrete insulin-like growth factor 1 and 2 (IGF1 and
IGF2) which makes pancreatic and breast tumors chemoresistant and more metastatic. Treatment of tumors with anti-IGF blocking antibodies increases the
response of pancreatic and breast tumors to chemotherapy and decreases tumor growth and metastasis.
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use of all-trans retinoic acid to restore the quiescence of stellate
cells increased vascularity, resulting in increased response to
gemcitabine and reduced tumor growth (Carapuca et al., 2016).
In estrogen receptor positive breast cancer, CAF-derived FGF-
2 promotes resistance to anti-estrogens which is abrogated with
administration of an FGF-2 neutralizing antibody (Shee et al.,
2018) (Figure 4).

As previously mentioned TAMs and CAFs act as stromal
sources of IGF 1 and 2 in PDAC, and invasive breast cancer
(Ireland et al., 2016, 2018) and this makes tumors resistant to
chemotherapy and more metastatic. Blockade of IGF1 receptor
signaling in PDAC, using IGF-1R inhibitors, has failed in the
clinic (Guha, 2013; King et al., 2014; Gradishar et al., 2016)
but appears to be more effective in certain tumor types such
as glioblastoma (Quail et al., 2016). In PDAC and invasive
breast cancer mouse models, we have shown that both Insulin
and IGF1 receptors are activated, and the use of IGF1/IGF2
ligand blocking antibodies, which inhibit IGF-1 and IGF-2
signaling through both IGF-1 and insulin receptors, increases
response to chemotherapy and reduces tumor growth and
metastasis (Ireland et al., 2016, 2018). These studies suggest
that inhibition of signaling through both Insulin and IGF1
receptors by blocking IGF 1 and 2 ligands may be more effective
compared to IGF1R inhibitors in certain cancer types which have
both receptors activated, such as pancreatic and breast cancer
(Figure 4). IGF1/IGF2 blocking antibodies are currently being
tested in phase I and II clinical trials in patients with castration
resistant prostate cancer and metastatic breast cancer patients in
combination with chemotherapy (Table 1).

FUTURE PERSPECTIVES

Macrophages and fibroblasts are key regulators of tissue
homeostasis, repair, angiogenesis and immunity. In tumors,
cancer cells, macrophages and fibroblasts co-exist, co-evolve
and continuously interact with each other. Tumor cells “hijack”
macrophages and fibroblasts to support their own growth and
expansion. Specifically, tumors exploit the natural plasticity
of macrophages polarizing them into M2-like pro-tumorigenic
TAMs that, support tumor growth in numerous ways, as
described in this review. The same phenomenon is observed
with respect to fibroblast function. Under normal physiological
conditions fibroblasts facilitate wound repair by promoting cell
growth, migration and ECM deposition. Tumor cells stimulate
fibroblast activation and, reciprocally, activated fibroblasts
support cancer cell survival, proliferation and resistance to
therapies. However, recent findings have shown that different

CAF populations with different and possibly even opposite
functions co-exist in tumors.

Ablation therapies that eliminate macrophage recruitment to
the tumor site have shown some promising results (DeNardo
et al., 2011; Mitchem et al., 2013). However, this approach has
some limitations, including the lack of specificity for different
macrophage subsets and the redundancy of macrophage chemo-
attractants. Inhibition of CAFs activation in PDAC patients
actually resulted in enhanced tumor progression (Madden, 2012)
and CAF ablation therapies in mouse tumor models resulted
in increased tumor growth and metastasis (Oezdemir et al.,
2014; Rhim et al., 2014). These findings suggest that further
investigation into the role of different CAF subtypes is required
to design therapies that specifically target defined CAF subtypes
and/or functions that support cancer progression. Therapies that
specifically target the pro-tumorigenic functions of TAMs and
CAFs could lead to a more specific and effective anti-tumor
response. To develop specific anti-stroma therapies that only
target the pro-tumorigenic functions of TAMs and CAFs, while
sparing their anti-tumorigenic functions, we first need to gain a
better understanding of the complex composition and function
of the tumor stroma.

While TAMs and CAFs are the most abundant stromal
cell types in tumors, and as described in this review affect
resistance to chemotherapy using a plethora of mechanisms,
other stromal/immune cells present in the TME, including
MDSCs, DCs, and T cells can also affect the response of tumors
to therapies (for reviews/articles on this topic see Castells et al.,
2012; Palucka et al., 2013; Son et al., 2017; Weber et al., 2018).

While some key stroma-derived signaling molecules have
already been identified, the complex tumor-stroma interactions
and the dynamic evolution of these interactions during tumor
progression and in response to treatment need to be fully
elucidated in order to develop effective anti-cancer therapies with
a durable effect.
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