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Autophagy is a highly conserved intracellular degradation process that targets protein
aggregates and damaged organelles. Autophagy is also implicated in numerous viral
infections, including human immunodeficiency virus-1 (HIV-1), influenza A (IAV) and
herpes simplex virus-1 (HSV-1). Depending on the virus, autophagy can restrict or
promote viral replication, and play key roles in modulating inflammation and cell survival.
In this review, we consider examples of autophagy-virus interplay, highlighting the
protective role of autophagy in human infections. We summarize recent discoveries and
emerging themes illuminating autophagy’s role in immunity and inflammation upon viral
infection. Finally, we discuss future prospects and therapeutic implications, and potential
caveats associated with using autophagy to control viral infections in humans.
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INTRODUCTION

Autophagy captures cytoplasmic contents, such as excess or defective proteins and organelles, for
degradation by the lysosome. It is initiated in response to various stimuli, including nutritional
state of the cell and environmental stresses such as starvation and hypoxia. As such, autophagy
is an important process of regulating cellular homeostasis and survival. It is a well-studied
process that is orchestrated by over 35 autophagy-related (ATG) proteins and can be organized
into multiple steps: phagophore initiation, membrane elongation, autophagosome formation and
autophagosome fusion with hydrolytic lysosomes (Figure 1A; Mizushima et al., 2011). Autophagy
can be selective in terms of cargo capture via the recruitment of selective autophagy receptors.
Autophagy receptors can interact with ubiquitin tags that decorate the cargo [via its ubiquitin-
binding domain (UBD)], and with LC3 proteins of nascent autophagosomes [via its LC3-interacting
region (LIR) motif] (Stolz et al., 2014). Some autophagy receptors, particularly p62/SQSTM1 and
optineurin, are regulated by Tank-binding kinase 1 (TBK1)-mediated phosphorylation, and are key
players in the autophagic degradation of invasive pathogens (Wild et al., 2011; Pilli et al., 2012;
Sparrer et al., 2017).

Autophagy plays a key role in cellular immunity to human infections (Randow et al., 2013;
Paul and Münz, 2016). In the case of human viral infections, autophagy can be either proviral
or antiviral (Levine et al., 2011; Jackson, 2015). Some viruses highjack the autophagy machinery
for their intracellular survival, while others express specific proteins to evade autophagy and
propagate in host cells. Antiviral autophagy can (1) selectively target pathogens for degradation, (2)
promote pathogen recognition and inflammatory cytokine responses, (3) regulate inflammation,
(4) control cell survival, (5) promote antigen presentation and/or (6) be regulated in a paracrine-
mediated fashion, a departure from the classic cell autonomous route (Figure 1B; Levine, 2005;
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Levine et al., 2011; Jackson, 2015; Paul and Münz, 2016). By
focusing on these themes of antiviral autophagy, this review
will highlight the protective nature of autophagy. We will
draw from examples of human viral infections representing
significant disease burden, whose interplay with autophagy has
been supported by experimental and/or clinical evidence.

PATHOGEN OR VIRAL ANTIGEN
CLEARANCE BY AUTOPHAGY

Selective autophagy has been reported to control several human
viral infections in vitro, leading to the clearance of pathogens or
viral antigens and host cell survival. One of the first viruses shown
to engage the autophagy machinery was Sindbis virus (SV),
a positive-stranded RNA alphavirus that typically causes mild
disease in humans. Autophagy receptors p62 and SMURF1 were
found to target SV capsid, in a ubiquitin-independent manner,
to autophagosomes in human HeLa cells and mouse embryonic
fibroblasts (MEFs) (Orvedahl et al., 2010, 2011). Depletion of
p62 in HeLa cells or Atg5 in mouse neurons in vivo led to
an accumulation of toxic SV capsid and higher virus-induced
mortality, without altering SV replication (Orvedahl et al., 2010).
Whether SV can express proteins to counteract autophagy is not
yet known.

Similar to SV, p62 is involved in targeting toxic Chikungunya
virus (CHIKV) capsid to autophagosomes in HeLa cells, but in
a ubiquitin-dependent manner (Judith et al., 2013). CHIKV, also
a positive-stranded RNA alphavirus, is a mosquito-borne virus
causing severe pathologies in humans that range from febrile
arthralgia, rash to encephalopathy (Couderc and Lecuit, 2015).
siRNA-mediated depletion of p62 led to an increase in both
cell mortality and CHIKV replication, while p62 overexpression
promoted cell viability in CHIKV-infected cells (Judith et al.,
2013). In contrast, another autophagy receptor NDP52 was
shown to have a proviral role although overall autophagy played
a cytoprotective role in CHIKV infection (Judith et al., 2013).

Human immunodeficiency virus-1 (HIV-1), a lentivirus
that is transmitted sexually through infected body fluids, is
targeted by autophagy in human CD4+ T cells in vitro
(Sagnier et al., 2015). HIV-1 primarily infects CD4+ T cells,
consequently compromising the individual’s immune defense
and leading to acquired immunodeficiency syndrome (AIDS)
(Maartens et al., 2014). HIV-1 integrates its DNA into the
host’s genome, and recruits its transactivator protein Tat to
activate viral transcription. Tat protein is therefore essential
for HIV-1 replication. However, Tat protein is targeted by
p62 in HEK293T cells, which directs it to autophagosomes
in a ubiquitin-independent manner (Sagnier et al., 2015).
Consistent with this, depleting p62 in HEK293T cells resulted
in accumulation of Tat protein, and enhancing autophagy in a
chronically HIV-1-infected T cell line led to reduction of Tat
protein levels (Sagnier et al., 2015). Furthermore, peripheral
blood mononuclear cells (PBMCs) from HIV-1-infected non-
progressor individuals showed higher number of HIV-1 particle-
containing autophagic vesicles compared with HIV-1-infected
normal progressors, suggesting a role for autophagy in limiting

the pathogenesis of HIV-1 in vivo (Nardacci et al., 2014).
However, HIV-1 can modulate autophagy and expresses multiple
autophagy inhibitors, such as Vif, Nef, and Env, which operate in
a cell type-specific manner (Liu et al., 2017). Hence, autophagy
can be viewed to control HIV-1 replication by targeting viral
components to degradation in specific cell types.

Herpes simplex virus-1 (HSV-1) is a ubiquitous, neurotropic
α-herpesvirus with a global seroprevalence of 67% (Looker
et al., 2015). It typically manifests as benign, self-limiting
mucocutaneous ulcers, but in rare cases may cause life-
threatening herpes simplex encephalitis (HSE) (Whitley and
Roizman, 2001). Reports have identified HSV-1-encoded ICP34.5
and Us11 as autophagy inhibitors, which exert their effects
by targeting Beclin-1 and protein kinase R (PKR), respectively
(Orvedahl et al., 2007; Lussignol et al., 2013). Studies in
primary MEFs and mice described increased autophagy following
infection with ICP34.5-deficient HSV-1, as suggested by an
increased number of autophagosomes and virions in neuronal
autophagosomes, respectively (Tallóczy et al., 2006; Alexander
et al., 2007). During HSV-1 infection, autophagy appears to
be operating in a cell type-specific manner (Yordy et al.,
2012). For example, in contrast to mitotic cells such as MEFs
and mouse keratinocytes, post-mitotic mouse primary neuronal
cells predominantly use autophagy over interferon (IFN) as
a viral control mechanism (Yordy et al., 2012). In MEFs,
HSV-1 was shown to be selectively targeted by p62 and
SMURF1. HSV-1-infected smurf1−/− MEFs failed to target
HSV-1 virions to autolysosomes, resulting in more HSV-1
virions in autophagosomes (Orvedahl et al., 2011). In mouse
primary trigeminal neurons in vitro, HSV-1 infection triggered
the formation of p62-mediated autophagosomes (Katzenell and
Leib, 2016). Finally, infection of HEK293T cells with ICP34.5-
deficient HSV-1 led to the recruitment of TBK1- and p62-
mediated autophagy, and viral restriction (Sparrer et al., 2017).
However, the exact viral target of p62 and SMURF1, and the
role of ubiquitin in mediating receptor-virus interactions, is not
yet known. Reports using human HFFF2 fibroblasts and mouse
dendritic cells (DCs) have shown that autophagy is triggered by
HSV-1 double-stranded DNA (dsDNA), and is independent of
viral replication but dependent on STING (McFarlane et al., 2011;
Rasmussen et al., 2011).

AUTOPHAGY AND CELLULAR
IMMUNITY: PATHOGEN RECOGNITION
AND CYTOKINE RESPONSES

Cellular immunity requires the detection of viral pathogen-
associated molecular patterns (PAMPs) by their cognate receptors
to produce antiviral cytokines, such as type-I IFNs (Iwasaki,
2012). Autophagy can deliver viral PAMPs to their receptors,
and help amplify the production of inflammatory cytokines. The
capacity of autophagy to facilitate viral recognition and modulate
downstream cytokine production has been demonstrated in the
case of HIV-1 infections. During HIV-1 infection in human
primary plasmacytoid DCs, autophagy plays a key role in
presenting the HIV-1 RNA genome to its cognate immune
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FIGURE 1 | (A) Autophagy is a regulated multi-step process that leads to cargo degradation. Autophagy can eliminate cargo such as virus and viral-derived
antigens. It can be organized into 5 distinct steps beginning with (1) the initiation of phagophore formation which (2) nucleates around the intended cargo. The cargo
can be selectively recruited by autophagy receptors such as p62, which can be regulated by TBK1. (3) The phagophore elongates and completes to form a structure
termed autophagosome which then (4) fuses with nearby lysosomes carrying hydrolytic enzymes. This eventually leads to (5) the acidification and hence degradation
of the contained cargo. (B) Autophagy plays an antiviral role in various human infections by modulating different aspects of the immune response. Autophagy
facilitates viral clearance by recruiting selective autophagy receptors p62 and SMURF1 to target viral components to autophagosomes for lysosomal degradation.
Reported targets include HSV-1, HIV-1 Tat protein, and the capsids of CHIKV and SV. Disruption of the targeting of viral proteins, such as CHIKV and SV capsids,
may lead to their toxic accumulation and cause cell death. Autophagy also promotes pathogen recognition by aiding delivery of viral PAMPs, e.g., HIV-1 and IAV
RNA genomes to cognate TLRs in endosomes, which results in enhanced production of antiviral cytokines. On the other hand, autophagy can prevent excessive
inflammation by negatively regulating signaling pathways through Atg9a or Beclin-1, or by clearing mitochondria that are producing inflammatory-inducing signals
such as reactive oxygen species (ROS). Autophagy supports amplification of inflammatory responses by regulating adaptive immune responses, through the
processing and presentation of viral antigens, such as EBV EBNA1, IAV MP1, HIV-1/SIV gag and HSV-1 glycoprotein B, on MHC class I or II to T cells. Autophagy
can also be induced in distant cells, i.e., in paracrine manner, which may confer protection to these cells as seen with multiple viral infections including CVB, HCV,
and HSV-1.

receptor Toll-like receptor-7 (TLR7) in endosomes, leading to the
induction of IFNα (Lee et al., 2007; Zhou et al., 2012). Silencing
the expression of ATG7 in plasmacytoid DCs in vitro leads

to a significant decrease in IFNα production following HIV-1
infection, highlighting a crucial role for autophagy in mediating
TLR7-IFN signaling (Zhou et al., 2012).
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Autophagy also plays an important role in mediating cytokine
production during infection by influenza A virus (IAV). IAV,
an RNA virus, is a pandemic threat and global health concern.
It targets epithelial cells of the respiratory tract, and in severe
cases may cause pneumonia or pulmonary damage (Paules and
Subbarao, 2017). In the case of infection with highly virulent IAV
strains H1N1 and H5N1, high morbidity has been attributed to
excessive host-induced inflammatory cytokine production (Peiris
et al., 2010). IAV infection was shown to induce autophagy
in primary human blood macrophages, which regulates the
production of CXCL10 and IFNα. When these cells were
depleted of ATG5 or treated with the autophagy inhibitor 3-
methyladenine (3-MA), they produced lower CXCL10 and/or
IFNα levels (Law et al., 2010). The precise mechanism by which
autophagy facilitates this aspect of IAV infection in human blood
macrophages is unknown, but is thought to involve recognition
of viral RNA by endosomal TLR3 (Law et al., 2010). In contrast,
IAV-induced autophagy in MEFs can prevent IFNβ production,
and enhance viral replication (Perot et al., 2018). The induction
of autophagy during IAV infection is complex: it is initially
cytoprotective but is later counteracted by the IAV matrix
protein 2 (M2) which targets Beclin-1 to block lysosomal fusion
with autophagosomes (Gannagé et al., 2009). Taken together,
these data suggest an immunopathological role of autophagy in
controlling cytokine production and IAV infection, in potentially
a tissue-specific manner.

From the examples of HIV-1 and IAV, autophagy plays a
fundamental role in modulating the primary antiviral response,
by promoting viral recognition through TLR-dependent
signaling and inflammatory cytokine production.

ANTI-INFLAMMATORY ACTIONS OF
AUTOPHAGY

In addition to promoting inflammation, autophagy is crucial for
preventing prolonged and excessive inflammation detrimental
to the host. Components of the autophagy machinery, such
as Beclin-1 and Atg9a, interact with the cytoplasmic type-
I-IFN-inducing STING-TBK1 pathway. A study found that
Beclin-1 interacts with dsDNA sensor cGAS to dampen IFNβ

production in HEK293T cells stimulated with dsDNA or
infected with HSV-1 (Liang et al., 2014). This interaction also
leads to clearance of dsDNA through autophagy, limiting the
otherwise persistent IFNβ-mediated inflammation (Liang et al.,
2014). The depletion of Beclin-1 was shown to increase cGAS-
mediated IFNβ production while reducing HSV-1 replication
in RAW264.7 mouse macrophages (Liang et al., 2014). In
MEFs stimulated with dsDNA, Atg9a had a similar role
and negatively regulated the STING-TBK1-IFN pathway by
binding to STING and preventing its assembly with TBK1 in
LC3-positive structures (Saitoh et al., 2009). Atg9a-knockout
mice revealed an increase in IRF3 phosphorylation and IFNβ

production following dsDNA stimulation (Saitoh et al., 2009).
However, whether HSV-1 infection (or infection of other
dsDNA viruses) is subject to Atg9a-mediated regulation remains
unknown.

Autophagy may also negatively regulate inflammation
indirectly by clearing host DAMPs, such as reactive oxygen
species (ROS) released by mitochondria. This has been observed
in mice BMDCs where IAV genomic RNA is detected by
the NOD2-RIPK2 pathway, which activates ULK1 to induce
RIPK2-mediated autophagic clearance of damaged mitochondria
(Lupfer et al., 2013). In RIPK2-deficient mice BMDCs infected
with IAV, mitochondria accumulated in cells resulting in elevated
production of superoxide. This led to the hyperactivation
of the NLRP3 inflammasome and an increased secretion of
the inflammatory cytokine interleukin (IL)-18 (Lupfer et al.,
2013). A similar observation was made in Atg5-deficient
MEFs and mouse primary macrophages stimulated with
dsRNA analog poly(I:C), which led to excessive RIG-I-like-
receptor signaling (Tal et al., 2009). Furthermore, ectopic
P-granules autophagy protein 5 homolog (EPG5; a protein that
regulates autolysosomal formation) has been shown to control
pulmonary inflammation. Lung macrophages from Epg5−/−
mice showed excessive production of inflammatory IL-1β and
IL-13 cytokines, resulting in resistance to IAV infection (Lu et al.,
2016).

These reports highlight the important role of autophagy in
attenuating inflammation. The autophagy machinery can limit
inflammation by regulating cytosolic NLR- and STING-mediated
signaling pathways through disposal of their ligands, inactivation
of their cognate receptors or interaction with their downstream
effector molecules.

AUTOPHAGY AND CELL SURVIVAL

As shown from investigations of multiple human viral infections,
autophagy plays a role in promoting cell survival and limiting
pathogenesis. This has been demonstrated by the ability of
mouse L cell mutant gro29 cells which have high basal
autophagy to restrict HSV-1 replication (Le Sage and Banfield,
2012). In contrast, Atg16LHM mice, which have reduced
basal autophagy, showed high mortality following infection
with CHIKV in vivo (Joubert et al., 2012). One mechanism
by which autophagy may promote cell survival during viral
infection is by degrading and preventing accumulation of
toxic viral proteins, such as viral capsids, in the infected
cells. This has been demonstrated in the case of CHIKV and
SV infected cells, as discussed above (Orvedahl et al., 2010;
Judith et al., 2013). Furthermore, reports have documented
the cytoprotective effect of autophagy-enhancing drugs, such
as vitamin D, MG132 and rapamycin, in viral infections. For
example, primary human macrophages have shown benefit from
vitamin D treatment, which limits HIV-1 replication in vitro
(Campbell and Spector, 2012). Treating HSV-1-infected human
corneal epithelial (HCE) cells with MG132 can reduce viral
titres (Yakoub and Shukla, 2015). Moreover, pre-conditioning
human fibroblasts in vitro with rapamycin has been shown
to promote cell survival following HSV-1 infection (Ahmad
et al., 2018). This cytoprotective role for autophagy that occurs
early in HSV-1 infection appears to be a TBK1-dependent
process (Ahmad et al., 2018). In agreement with this, TBK1
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TABLE 1 | Opportunities for autophagy-modifying therapeutic intervention in
human viral diseases.

Virus Available treatment for
acute disease

Vaccine Post-infectious
inflammation/
autoimmunity

CHIKV None No Rheumatic inflammation

HIV-1 Antiretroviral therapy (ART) No HIV-associated
neuroinflammation

HSV-1 Nucleoside analog (e.g.,
acyclovir)

No Anti-N-methyl-D-aspartate
receptor (NMDAR) encephalitis

IAV Neuraminidase inhibitors
(e.g., oseltamivir)

Yes Acute infection-induced cytokine
storm

deficiencies render human fibroblasts susceptible to HSV-1
infection and leads to increased cell mortality (Herman et al.,
2012). These data support literature showing that TBK1 is a
key player in protective autophagy against bacterial infections
(Weidberg and Elazar, 2011), and extend its protective role to
viral infection.

AUTOPHAGY AND ADAPTIVE
IMMUNITY: ANTIGEN PRESENTATION

Through its degradative function, autophagy is particularly
useful for generating endogenous peptide antigens for major
histocompatibility complex (MHC)-II presentation (Dengjel
et al., 2005; Paul and Münz, 2016). In viral infections, autophagy
generates viral antigens loaded onto MHC-I and MHC-II
for presentation to T cells (Münz, 2017). Epstein-Barr virus
(EBV) is an oncogenic γ-herpesvirus causing a spectrum of
human diseases ranging from mononucleosis to lymphomas
and carcinomas (Taylor et al., 2015). Historically, EBV nuclear
antigen 1 (EBNA1) was one of the first viral antigens shown to
be processed by autophagy and loaded on MHC-II molecules of
EBV-transformed B cell lines (Paludan et al., 2005). Inhibition of
autophagy leads to accumulation of EBNA1 in autophagosomes
of EBV-transformed lymphoblastoid cell lines, and a decrease in
EBNA1-specific CD4+ T cell recognition via MHC-II (Paludan
et al., 2005).

As a result of reduced MHC-II antigen presentation, mice with
Atg5-deficient DCs intradermally injected with HSV-1 showed
significantly lower IFNγ production by CD4+ T cells (Lee et al.,
2010). In addition, autophagy can deliver viral antigens for MHC-
I cross-presentation. Using a mouse BMA3.1A7 macrophage
cell line for CD8+ cell stimulation, HSV-1 glycoprotein B (gB)
was presented on MHC-I in an autophagy-dependent manner
(English et al., 2009; Radtke et al., 2013).

Autophagy is also vital for efficient stimulation of antiviral
CD4+ T cells in HIV-1/Simian immunodeficiency virus (SIV)
and IAV infections. Knocking down LC3 protein or inhibiting
autophagy using 3-MA in human DCs led to reduced antigen
processing and MHC-II presentation, and a decrease in HIV-
1-specific CD4+ T cell response (Blanchet et al., 2010). On
the other hand, enhancing autophagy in human DCs with
rapamycin resulted in a more pronounced HIV-1-specific CD4+

T cell response (Blanchet et al., 2010). Fusing SIV gag protein
to LC3 in mice BMDCs was also shown to improve antigen-
specific CD4+ T cell responses in vitro (Jin et al., 2014).
Similar results were obtained in vivo where immunizing mice
with SIV gag-LC3 resulted in a stronger humoral immune
response, with CD4+ T cells producing higher levels of IFNγ,
TNFα and IL-2 (Jin et al., 2014). Conjugating IAV matrix
protein 1 (M1) to LC3 in HaCat human epithelial cells, B
cells and DCs led to enhanced antigen-specific human CD4+
T cell responses in vitro, as measured by IFNγ (Schmid et al.,
2007).

Taken together, autophagy can perpetuate the initial response
to viral infection by priming and mediating T cell responses of
the adaptive immune system to ensure effective viral clearance.

BEYOND CELL AUTONOMOUS
IMMUNITY: PARACRINE REGULATION
OF AUTOPHAGY

Since its discovery, the primary focus of autophagy research
has been to investigate its role on a cell autonomous level.
Interestingly, two recent reports have demonstrated that
autophagy can also be triggered at a cell population level (i.e., in a
paracrine manner) to affect distant cells. A first report showed
that autophagy could be triggered in distant and distinct cell
types that can protect them from a variety of viral infections
(Delorme-Axford et al., 2013). In this case, primary human
placental trophoblasts can protect other cells from coxsackievirus
B3 (CVB), hepatitis C virus (HCV), vesicular stomatitis virus
(VSV) and vaccinia virus (VACV), by secreting signals that
induce autophagy to resist infections. This concept is particularly
relevant in the womb, allowing maternal trophoblasts to confer
resistance to viral infections to the growing fetus.

A second report described the paracrine regulation of
autophagy early in HSV-1 infection (Ahmad et al., 2018). In
this case, HSV-1 infection of human fibroblasts was shown
to induce autophagy in cells neighboring an infection site.
Despite having functional basal autophagy, HSE patient-derived
fibroblasts deficient in TBK1 specifically failed to mount
paracrine-mediated autophagy during HSV-1 infection. The
study further showed that autophagy induction early during
infection may protect cells from death. The autophagic role
of TBK1 has previously been associated with inflammation
control in neurodegenerative amyotrophic lateral sclerosis (ALS)
(Freischmidt et al., 2015). These observations highlight a
potential involvement of TBK1 in controlling neuroinflammation
through autophagy in HSE.

CONCLUSION

Many open questions remain concerning the precise role of
autophagy in human viral infections. Studies looking at human
responses in vivo are rare, due to difficulty of conducting
these studies. However, a wealth of studies using animal
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in vitro/ex vivo/in vivo and human in vitro/ex vivo models have
given remarkable insights into the role of autophagy in disease
manifestation.

In this review, we discuss human viruses modulated by
autophagy that represent a significant clinical burden. We
highlight how autophagy is protective and may be used to
enhance current treatment options (Table 1; Whitley and
Roizman, 2001; Moscona, 2005; Maartens et al., 2014; Couderc
and Lecuit, 2015). Several reports have shown the protective
role of p62-mediated selective autophagy in various human
pathogens (e.g., CHIKV, HIV-1, and HSV-1), making p62
an attractive therapeutic target. Enhancement of autophagy
through p62 may provide an important therapeutic avenue
for treatment of human viral diseases (Table 1). However,
p62 also participates in other biological processes, such as
cell proliferation and ubiquitin-proteasomal degradation (Liu
et al., 2016b), and research focusing on employing p62 for
therapeutic benefit should be aware of potential pleiotropic
effects. The ability of p62 to interact with viruses independent
of its conventional ubiquitin-binding domain also warrants
further investigation. As shown in the case of HSV-1 and
HIV-1 infections, augmenting autophagy using stimulants (such
as rapamycin and vitamin D) can be beneficial to restrict
viral replication and/or promote cell survival. Enhancing
autophagy in vaccine therapies has also been beneficial, taking
advantage of the role of autophagy in antigen priming.
Promising results were observed in the case of IAV and
HIV-1/SIV-1 infections, whereby increasing the autophagic
targeting of viral protein gave rise to a heightened adaptive
immune response (Schmid et al., 2007; Jin et al., 2014).
Moreover, autophagy is important for both MHC-I and/or -
II antigen presentation in HSV-1 and HIV-1 infections, as
well as for regulating inflammation by facilitating antiviral
inflammatory cytokine production. Autophagy’s role in fine-
tuning inflammation is also important during IAV infection,
where it promotes inflammatory cytokine production and
prevents excessive inflammatory responses. In addition to the
effects on acute disease outcome, modulating autophagy may
have a promising role in the prevention or treatment of various
viral post-infectious inflammation/autoimmune disorders for
which there are limited treatment options (Table 1; Kovalevich
and Langford, 2012; Armangue et al., 2014; Couderc and
Lecuit, 2015; Liu et al., 2016a). Harnessing autophagy’s
inflammation-reducing capacity can potentially prevent the
development of these states, or help to resolve the inflammatory
symptoms.

Current research on autophagy is mostly focused on its role
in cell autonomous immunity (Randow et al., 2013). However,
recent studies have revealed a novel type of autophagy triggered
in a paracrine manner in response to viral infections. Elucidating
the role of paracrine-regulated autophagy may prove to be highly
relevant in disease pathogenesis in vivo, and may be useful as a
method of clinical intervention. It is tempting to speculate that
similar mechanisms could also be extended to viral pathogenesis
that disseminates to sensitive tissues, such as the central nervous
system (CNS).

In conclusion, we have discussed here the protective nature
of autophagy in light of important human viral infections,
and highlighted potential therapeutic strategies that can be
pursued through autophagy modulation. Most viral infections
result in complex host-pathogen interplay, and therefore routes
of intervention require careful consideration in terms of
application. For example, certain studies of autophagy in HSV-
1 infections have shown viral restriction whilst others have only
demonstrated cytoprotective effects despite the presence of viral
autophagy inhibitors, which may be partly due to cell type
specificity. These studies reveal the intimate interactions of the
virus and the host cell which will require further dissection if we
wish to target the appropriate molecular pathways for antiviral
therapies.
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