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Alzheimer’s disease (AD) is the most common neurodegenerative disease and is the
leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity
and reduced neurogenesis. The clinical and molecular onsets of the disease do not
temporally overlap and the initiation phase of the cellular changes might start with
a complex causativeness between chronic inflammation, reduced neural stem cell
plasticity and neurogenesis. Although the immune and neuronal aspects in AD are
well studied, the neural stem cell-related features are far less investigated. An intriguing
question is, therefore, whether a stem cell can ever be made proliferative and neurogenic
during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a
plausible way to circumvent the AD phenotypes could be to mobilize the endogenous
stem cells by enhancing their proliferative and neurogenic capacity as well as to provide
the newborn neurons the potential to survive and integrate into the existing circuitry. To
address these questions, zebrafish offers unprecedented information and tools, which
can be effectively translated into mammalian experimental systems.
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THE RE-RISE OF STEM CELL ASPECT FOR
NEURODEGENERATIVE DISEASES

Stem cells are the main reservoir for production of new cells. Understanding the basic biology
of how stem cells are specified, maintained and regulated has been an exciting focus of research
for many decades. Yet, there are still missing pieces especially on how stem cells could be utilized
for neurodegenerative diseases (Jebelli et al., 2015; Tincer et al., 2016; Wyss-Coray, 2016). Stem
cells offer great promises for medicine, as they can be the golden way to a “regenerative therapy”
(Doetsch and Scharff, 2001; Lopez-Toledano and Shelanski, 2004; Rodriguez and Verkhratsky,
2011; Kizil et al., 2012b; Gage and Temple, 2013; Hong et al., 2014; Lilja et al., 2015). By
using the endogenous stem cells, tissue loss could be reverted or the integrity of the existing
tissues could be enhanced. Such outcomes would have ramifications in several human diseases
but possibly among the most interesting is neurodegeneration (Tincer et al., 2016; Wyss-Coray,
2016). Indeed, since the generic term of “neurodegeneration” denotes the state of losing cells of
the nervous system and in particular the neurons, transplantation of stem cells into the brain
to get more neurons produced from these stem cells were one of the first treatment options
(Dantuma et al., 2010; Mu and Gage, 2011; Rodriguez and Verkhratsky, 2011; van Tijn et al., 2011;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 November 2018 | Volume 6 | Article 159

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2018.00159
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2018.00159
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2018.00159&domain=pdf&date_stamp=2018-11-23
https://www.frontiersin.org/articles/10.3389/fcell.2018.00159/full
http://loop.frontiersin.org/people/346581/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00159 November 22, 2018 Time: 10:37 # 2

Kizil and Bhattarai Stem Cells and Regeneration in Alzheimer’s

Ager et al., 2015; Lee et al., 2015; Tincer et al., 2016; Wyss-Coray,
2016; Espuny-Camacho et al., 2017), for instance, injection of
fetal NSCs for treating Parkinsonism (Baetge, 1993; Dunnett
et al., 1997; Svendsen et al., 1997; Brundin and Bjorklund, 1998;
Studer et al., 1998). These efforts could not gain spotlight as
the transplanted stem cells or progenitors could not survive or
could not form the desired cell types. For a couple of decades,
the main focus in neurodegenerative diseases has been to prevent
the neuronal death and synaptic failure (Carter and Lippa, 2001;
Selkoe, 2003; Iqbal et al., 2016; Wyss-Coray, 2016). In Alzheimer’s
disease (AD) – where the main culprit of the pathology is
accumulation of Amyloid plaques and neurofibrillary tangles
that lead to the loss of mostly cholinergic innervations in
the brain – preventing the loss of synaptic degeneration and
reduction in the neurotransmitter acetylcholine was prioritized
as a therapy option (Fischer et al., 1987; Tuszynski et al.,
1990; Nagele et al., 2002; Park et al., 2012; Gu et al., 2015).
Several current drugs on the market for AD are blockers of the
enzyme choline acetyltransferase, which degrades the cholinergic
neurotransmitters in the brain. These drugs also failed to cure
the disease despite causing meager slowdown in the cognitive
decline in Alzheimer’s patients (Schneider et al., 2014). Similarly,
physically destroying the plaques causes a cognitive advantage
while does not fully restore the disease-associated symptoms
(Takeda and Morishita, 2015). All these hypotheses and failures
tell us a lesson: Alzheimer’s is not only a neuronal disease but
also a complex mixture of malfunctioning in various cell types.
An array of different cell types was implicated in the onset
and progression of AD (De Strooper and Karran, 2016). These
include changes in immune components (Amor et al., 2010;
Heneka et al., 2015; Heppner et al., 2015), neurovascular niche
(Kirkitadze et al., 2002; De Strooper and Karran, 2016), NSCs
(Tong et al., 2015; Tincer et al., 2016), astrocytes (Attems and
Jellinger, 2014; Lian and Zheng, 2016), and oligodendrocytes
(Bartzokis, 2011; Ettle et al., 2016), suggesting a multifactorial
influence on the initiation of AD. It can even be hypothesized
that the loss of neurons – which is relatively a late symptom of
the disease – might be the consequence of the yet-elusive real
cause. When we generate a temporal onset of various symptoms
of AD – mostly in animal models – we see that the first
changes in the brain are the deterioration of the immune system
balance, gliotic response from astrocytes and reduction in neural
stem cell proliferation (Aguzzi and Haass, 2003; Selkoe, 2003;
Blennow et al., 2006; Harman, 2006; Chai, 2007; Arendt, 2009;
Hardy, 2009; Huang and Mucke, 2012; De Strooper and Karran,
2016; Dzamba et al., 2016; Tincer et al., 2016). As Amyloid
deposition and neurofibrillary tangles occur, an inflammatory
reaction manifests and becomes chronic in time. Concomitant
to this reaction, NSCs also reduce their proliferation rate and
produce less neurons long before the myelin breakdown, synaptic
degeneration and neuronal cell death manifest (Demars et al.,
2010; Tincer et al., 2016). Therefore, it is a plausible hypothesis to
think that the inflammatory environment is negatively affecting
the brain homeostasis in Alzheimer’s conditions not only by
eliciting a chronic inflammation that is detrimental for synapses
on its own but also by reducing the capacity of the brain to
produce more neurons – an ability that could have been utilized

to replace the lost neurons. These questions seem to have opened
a wide research realm focusing on the role of immune system
in AD (Akiyama et al., 2000; Heneka et al., 2005, 2015; Wyss-
Coray, 2006; Amor et al., 2010; Aguzzi et al., 2013; Heppner
et al., 2015; Kizil et al., 2015). Many reports documenting the
effects of inflammation on AD pathology and the role of immune
cells on the progression of the disease emerged. It is quite likely
that coming years will bring important paradigm shifts in the
relationship of immune system and the AD. However, a largely
overlooked phenomenon in this context is the NSCs. Can NSCs
and neurogenesis be the key to the cure for neurodegeneration?
(Ziabreva et al., 2006; Waldau and Shetty, 2008; Taupin, 2009;
Dantuma et al., 2010; Rodriguez and Verkhratsky, 2011; Tincer
et al., 2016). This is where zebrafish could contribute to the
answer of this provocative question.

ZEBRAFISH AND THE HOPE FOR STEM
CELL-BASED REGENERATIVE
THERAPIES

No existing model for AD recapitulates the full spectrum of
the disease, and existing mouse models are not exceptions
(LaFerla and Green, 2012). These models can be considered
at best the tools to study the early onset stages of Alzheimer’s
(De Strooper and Karran, 2016). Although mouse models
provided invaluable information on the pathology of AD, these
mammalian models are not ideal to study “regeneration” as
they do not have regenerative ability at first place (Goss, 1991).
Zebrafish, an animal model that can regenerate its neurons offers
unprecedented hope for restoring lost neurons in AD (Kizil et al.,
2012b; Cosacak et al., 2015; Tincer et al., 2016; Kizil, 2018).

Mammals fail to regenerate amputated limbs, cardiac tissue,
brain or spinal cord due to their restricted and limited
regenerative potential (Tanaka and Ferretti, 2009; Poss, 2010).
Current studies focus to improve methods or develop novel
approach that can induce regenerative programs into the
mammalian systems (Antos and Tanaka, 2010; Gemberling
et al., 2013; Cosacak et al., 2015). One approach is to induce
regeneration by activating endogenous regeneration programs.
Zebrafish could serve as a model to understand those molecular
cues as many “regeneration” programs were identified in
zebrafish and they serve as interesting candidates toward this
aim (Raya et al., 2003; Zupanc, 2008; Kizil et al., 2009, 2012a,b,c;
Millimaki et al., 2010; Kyritsis et al., 2012; Diotel et al., 2013;
Berberoglu et al., 2014; Cosacak et al., 2015; Alunni and Bally-
Cuif, 2016; Bhattarai et al., 2016; Katz et al., 2016; Mokalled et al.,
2016; Kizil, 2018; Than-Trong et al., 2018). Hence, the remarkable
feature of regeneration in zebrafish deserves a closer attention for
translational ramifications.

The exciting yet provocative argument of “zebrafish can teach
us” could be challenged from another perspective: it could
also be argued that the reduced capability of regeneration in
rodents makes them better models as they are closer to the
human situation. It is surely true that a model, which is as
close as possible to human condition, would be ideal to work
out reductionist aspects of a disease and indeed the mouse
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models offered invaluable knowledge on AD pathology. However,
regenerating organisms endow a novel perspective of stem cell
plasticity and regenerative ability that might be harnessed for
therapeutic ramifications in humans but may not be investigated
in mammalian systems. If nature has evolved a set of molecular
programs that enable regenerative output of NSCs in AD
conditions, zebrafish and other regenerating organisms but not
mammals could teach us these programs. In the long run, those
programs must be tested in mammals to investigate if they are
evolutionarily conserved and whether they are sufficient to elicit
a stem cell response similar to that of zebrafish. This could be
the step where zebrafish could come in handy: identification of
naturally occurring “candidate” programs that might underlie a
regenerative touch to the old problem of AD. It is also necessary
to mention that the nature of regenerative ability and why it is
lost evolutionarily in mammals are still unknowns. Therefore,
the applicability of the knowledge from zebrafish to humans
needs further studies, which will shed more light onto the
extent of parallelism between mammals and zebrafish in disease
conditions.

NEURAL STEM CELLS AND NEURONAL
REGENERATION

Mammalian nervous system contains NSCs that give rise to
newborn neurons during development as well as adulthood
(Doetsch et al., 1999; Gage, 2000; Conti and Cattaneo, 2010;
Gage and Temple, 2013). The ability of NSCs to form neurons
however varies and is still controversial (Kronenberg et al., 2003;
Galvan and Jin, 2007; Kempermann et al., 2008, 2018; Ernst
et al., 2014; Magnusson et al., 2014; Urban and Guillemot,
2015; Magnusson and Frisen, 2016; Boldrini et al., 2018; Sorrells
et al., 2018). During development, NSCs give rise to all neuronal
subtypes (Gage, 2000; Temple, 2001; Doetsch, 2003; Kriegstein
and Alvarez-Buylla, 2009; Hansen et al., 2010; Pacary et al.,
2012; Urban and Guillemot, 2015). But, during the adulthood,
the NSCs are restrictive and limited to fewer areas – the
subventricular zone (SVZ) of the lateral ventricle and the
dentate gyrus of the hippocampus (Doetsch and Scharff, 2001;
Alvarez-Buylla et al., 2002; Spalding et al., 2013; Kempermann
et al., 2018). Though constitutive neurogenesis occurs in these
neurogenic regions, upon injury they fail to achieve neuronal
repair due to lack of neurogenic inputs (Silver and Miller,
2004; Rolls et al., 2009; Costa et al., 2010). For instance, in
case of mammalian traumatic injury model, there is absence of
permissive environment for NSCs to react effectively.

Unlike mammals, zebrafish can successfully regenerate the
injured part of its brain (Chapouton et al., 2007; Zupanc, 2008;
Kroehne et al., 2011; Baumgart et al., 2012; Kishimoto et al.,
2012; Kizil et al., 2012a,b,c; Kyritsis et al., 2012; Marz et al.,
2012; Barbosa et al., 2015; Cosacak et al., 2015; Bhattarai et al.,
2016; Kizil, 2018). This ability is possible because of the stem
cell niches and the neurogenic regions that harbors proliferative
neural progenitor cells (Adolf et al., 2006; Grandel et al., 2006;
Chapouton et al., 2007; Kaslin et al., 2009). However, there is
more to it. The regenerative ability after neuronal loss in zebrafish

brain relies on the activation of specific molecular mechanisms
that do not exist in normal homeostatic state or even during
development of those structures (Zupanc, 2008; Kaslin et al.,
2009; Fleisch et al., 2010; Kizil et al., 2012b; Cosacak et al., 2015;
Alunni and Bally-Cuif, 2016; Kizil, 2018; Shimizu et al., 2018).
There is still a long way to understand the complete picture that
makes the zebrafish brain special, yet the path is quite promising.
Can we understand in zebrafish how new neurons are made
and can we harness this information for humans to effectively
regenerate our brains when needed – for instance in AD?

ADDRESSING STEM CELL POTENTIAL
IN ALZHEIMER’S DISEASE MODEL IN
ADULT ZEBRAFISH BRAIN

One of the hallmarks of AD is accumulation of amyloid
plaques that are made up of the short peptide Amyloid-beta42
(Aβ42) (Yang et al., 1995; Duff et al., 1996; Younkin, 1998). In
mammals, plaques elicit chronic inflammation and together with
the plaques lead to synaptic failure, reduced neural stem cell
plasticity and neurogenesis (Figure 1). We recently developed
a microinjection-based method to generate an Aβ42 model in
adult zebrafish that displayed AD-like phenotypes (Bhattarai
et al., 2016, 2017a,b). Aβ42 aggregation in adult zebrafish brain
led to phenotypes reminiscent of human AD pathophysiology:
neuronal death, inflammation, synaptic degeneration, memory
and learning deficits. In addition, this model also induced
regenerative response by activation of NSCs and subsequent
neurogenesis to compensate the neuronal insult (Figure 1).
Therefore, this Aβ42 toxicity model in adult zebrafish offers
an opportunity to study the molecular mechanisms how NSCs
can be activated to form neurons and induce regeneration
in AD condition. Interestingly, this regenerative neurogenesis
response upon Aβ42 in adult zebrafish brain was mediated by
a crosstalk between the immune system and the NSCs via an
unexpected mediator: Interleukin-4 (IL4), an anti-inflammatory
cytokine (Figure 1). Although the role of IL4 in suppressing
the inflammatory response and in turn relieving the suppressive
effects of inflammation on the neural stem cell proliferation
in mammalian Alzheimer’s models were known, the direct
regulation of the inflammatory environment on NSCs – which
are the only non-immune cell types that express the receptor for
IL4 – was a novel finding. Even with known molecules, zebrafish
could provide novel understanding and ideas on how crosstalk
mechanisms between the neurodegenerative milieu and the NSCs
in the adult zebrafish brain could induce regenerative response
(Bhattarai et al., 2016; Kizil, 2018). These studies also proposed
that neural stem cell activity might be key to a successful recovery
from neurodegeneration.

CAN ALZHEIMER’S BE TREATED WITH
INCREASED NEUROGENESIS?

The role of neurogenesis in Alzheimer’s pathology and whether
new neurons could really rescue the symptoms of Alzheimer’s is
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FIGURE 1 | A simplified comparison of the effects of Alzheimer’s disease on neural stem cell plasticity in mouse and zebrafish. In mouse, Amyloid deposition initiates
pro-inflammatory response that potentiates Amyloid toxicity that impairs neural stem cell proliferation, neurogenesis, neuronal maturation, and synaptic integrity. This
chronic inflammation suppresses anti-inflammatory factor Interleukin-4, which is beneficial for neuronal survival and synaptic integrity. In zebrafish, although Amyloid
deposition follows a toxicity cascade similar to that of the mouse (activation of pro-inflammatory response and hampered synaptic integrity), Amyloid also leads to
induction of anti-inflammatory factor Interleukin-4, which enhances neural stem cell proliferation, neurogenesis, and neuronal maturation. The effects of Interleukin-4
counteracts synaptic degeneration and reduced neural stem cell plasticity.

quite controversial and some researchers are skeptical toward this
approach because the effects of Amyloid deposition on stem cell
proliferation are beneficial or detrimental in a context dependent
manner (Haughey et al., 2002; Lopez-Toledano and Shelanski,
2007; Diaz-Moreno et al., 2013; He et al., 2013; Lee et al., 2013;
Bhattarai et al., 2016). Since neurogenesis cannot be equated with
functional integration into the circuitry, the need to detect the
effects of newborn neurons on circuit integrity has not been met
sufficiently (Wen et al., 2004; Yamasaki et al., 2007; Blurton-
Jones et al., 2009; Gomez-Nicola et al., 2014). However, when
we scrutinize the course of manifestation of AD, we see that the
NSCs are affected during the neurodegenerative conditions in
all mammalian model systems tested: a progressive decline in
neural stem cell pool during the course of neurodegeneration
(Haughey et al., 2002; Ziabreva et al., 2006; Waldau and
Shetty, 2008; Rodriguez and Verkhratsky, 2011; He et al.,
2013; Martinez-Canabal, 2014; De Strooper and Karran, 2016;
Dzamba et al., 2016; Tincer et al., 2016). But in case
of Aβ42-mediated neurodegeneration in zebrafish, increased
neuronal death was followed by increased proliferation of NSCs
(Bhattarai et al., 2016, 2017a,b). Zebrafish brain reacted to

neurodegeneration by utilizing neuro-inflammatory crosstalk
to mediate the regenerative response. It indicates that the
molecular mechanism regulating the regenerative response after
amyloid-mediated neurodegeneration was pathology-induced
plasticity response, and could be helpful to alleviate the
symptoms of AD (Kizil, 2018). In fact, supporting evidence
to this hypothesis came from comparative studies in a tissue
mimetic 3D human NSCs plasticity assays and neuronal cultures
as 3D systems are emerging as promising surrogates for
human brain disease modeling (Justice et al., 2009; Haycock,
2011; Tang-Schomer et al., 2014; Zhang et al., 2014; Pasca
et al., 2015; Ravi et al., 2015; Choi et al., 2016; Murphy
et al., 2017; Papadimitriou et al., 2018). To test whether IL4
would act, similarly, in humans during AD – and therefore
can be used as a regenerative paradigm, we developed an
in vitro 3D culture system to grow mature human cortical
neurons and networks from human NSCs (Papadimitriou
et al., 2018). This system provides an in-vivo like environment
including the essential components of the extracellular matrix,
which are dynamically produced by the cultured cells and
allows experimentation on a wide spectrum of human brain
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physiology: from neural stem cell plasticity to neuronal
differentiation, from neuronal maturation to integration of
neurons into existing networks. Adapting a glycosaminoglycan-
based, cell-responsive hydrogel platform, we stimulated primary
human neural stem cells (NSCs) from human cortex to form
extensive neuronal networks in vitro. The 3D cultures exhibited
neurotransmitter responsiveness, electrophysiological activity,
tissue-specific extracellular matrix (ECM) deposition, and the
expression of pro-neural genes and cortical neuronal markers
that are undetectable in conventional 2D cultures. Importantly,
those cultures formed from primary (human fetal) cortical cells,
closely resemble the human physiology, which is critical for any
disease modeling or therapeutic drug discovery efforts. The 3D
cultures displayed a robust neural stem cell proliferation and
neuronal differentiation, which is essential for a self-sustaining
germinal niche of the human brain. After being formed in situ,
our cultures express mature cortical neuronal markers showing
a tissue-mimetic development (Papadimitriou et al., 2018).
In this system, we modeled Amyloid toxicity as in adult
zebrafish brain and found that the 3D culture system nicely
recapitulated the major Alzheimer’s phenotypes such as the
synaptic degeneration, loss of network connectivity, reduced
neural stem cell proliferation and Tauopathies in a highly
reproducible manner (Papadimitriou et al., 2018). Interestingly,
treatment with IL4 under high Amyloid burden restored the
neural stem cell proliferation, neurogenesis, network formation
and functional integration of neurons into the existing circuitry,
suggesting that increasing the neurogenesis in Alzheimer’s

TABLE 1 | Comparison of zebrafish and rodent models in Alzheimer’s disease
research.

Zebrafish Rodents

Zebrafish advantegeous over rodents

Amyloid-mediated neuronal
death

No neuronal death

Neuroregenerative capacity No neuroregenerative capacity

Stem cell plasticity for
neurogenesis

Stem cells reduce plasticity and
neurogenesis

Cost efficient generation and
maintenance

Expensive generation and
maintenance

High number of animals
testable

Limited number of animals
testable

3R strategies developed 3R strategies to be developed

Zebrafish and rodents equal

Synaptic degeneration Synaptic degeneration

Cognitive decline with
Amyloidosis

Cognitive decline with
Amyloidosis

Genetic tools available Genetic tools available

Does not reflect the entire
biology of the human disease

Does not reflect the entire
biology of the human disease

Rodents advantegeous over zebrafish

Non-mammalian physiology Mammalian physiology

Need for adaptation to
preclinical studies

Suitable for preclinical studies

Limited number of models
expressing disease-related
proteins

Variety of models expressing
disease-related proteins

conditions could rescue the symptoms and might be a plausible
way to cure this disease. In fact, a recent in vivo study found
that increasing adult neurogenesis in Alzheimer’s model of
mice increases the cognitive abilities and generated a healthier
brain microenvironment in AD conditions (Choi et al., 2018),
suggesting that the role of neurogenesis in conjunction with
inflammation is a charming research realm in AD.

Notwithstanding with the ease of charting this interaction,
realizing an immune-stem cell crosstalk in human brains that will
lead to a real recuperation seems like a sci-fi novel. However,
we know quite a bit on how inflammation is affecting the
AD brain (Akiyama et al., 2000; Sastre et al., 2006; Amor
et al., 2010; Glass et al., 2010; Aguzzi et al., 2013; Heneka
et al., 2013, 2015; Heppner et al., 2015). Chronic phase of
inflammation impinges on stem cell plasticity and synaptic
integrity while resolution of inflammation provides a relief on
the inflammatory burden and affected cell types may regain
their potentials. An example of this regulation pertaining to our
findings is the effects of Interleukin-4. After experimental models
of inflammation, microglial dynamics were shown to be regulated
by Interleukin-4 (e.g., pro-inflammatory cytokine release and the
extent of initial inflammatory response) and this had an effect
on neurogenesis dynamics and neuronal activity (e.g., long term
potentiation in hippocampus, neural stem cell proliferation and
neuroprotection) (Maher et al., 2005; Nolan et al., 2005; Lyons
et al., 2007, 2009; Clarke et al., 2008; Nunan et al., 2014; Barrett
et al., 2015). These “beneficial” effects of IL4 was considered to
be because of its anti-inflammatory roles. However, in mouse
brains, a direct interaction between anti-inflammatory factors
and NSCs was not shown. In zebrafish and 3D cultures of human
brains, on the other hand, IL4 seems to be directly affecting neural
stem/progenitor cells by enhancing their neurogenic output
(Bhattarai et al., 2016; Papadimitriou et al., 2018). This proposes
an alternative approach to neuroinflammation research where we
may need to decouple the microglial inflammation dynamics and
direct interaction of immune factors with NSCs, which may be a
collateral by-stander effect. In one hypothetical scenario, we may
need to investigate which molecules partake in the direct crosstalk
between immune system and NSCs in zebrafish and see whether
those molecules are able to activate NSCs directly in mammals.
Given that even though an immune-related factor would be
available in AD brains, its effect is limited to those cells that can
receive the signal. The by-stander effects of immune factors could
be used to design a stage-specific modulation of NSCs in disease
conditions. By a hypothetical scenario, we can appreciate why the
immune-related signaling in neuronal compartment and in NSC
niche can give us alternative treatment options in humans. For
example, in a scenario, an immune factor could turn out to be
beneficial for NSC plasticity in AD conditions, but this molecule
would be an anti-inflammatory factor (e.g., IL4). Therefore,
this factor would prevail only when there is a resolution of
inflammation, which is not the case in AD. Therefore, the human
NSCs would not be able to increase their proliferation simply
due to the stage of the disease (they could otherwise do). Then,
a drug can be designed to activate the immune-type signaling
in NSCs regardless of the inflammation conditions and this can
help elicit a neurogenic contribution from NSCs even if the
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inflammation is not resolved. When combined with strategies
to increase the survival of newborn neurons, such a “nudge”
on NSCs could contribute to the remedy of the disease, which
could otherwise not happen naturally. Therefore, understanding
the direct interaction of immune system with NSCs by using
zebrafish and other appropriate models is important to establish
deeper knowledge on the crosstalk between various cell types and
NSCs. Additionally, activating the neural stem cell proliferation
and neurogenesis in AD conditions must definitely be re-visited
as an effective way of tackling this horrendous disease. The neural
stem cell aspect of the AD could also provide us new ways for
clinical therapies and may help to overcome the inefficient drug
discovery efforts for Alzheimer’s so far.

LIMITATIONS AND PROMISES AHEAD

Although zebrafish could be an excellent tool from which we
could understand how NSCs could be utilized to revert the
symptoms of AD, there are experimental and physiological
limitations we have to consider (Table 1). Zebrafish is a vertebrate
and has evolutionary similarities to humans; however, it is
still different than the human brains in terms of complexity,
molecular structure, and physiology. Given that even mouse
models of Alzheimer’s cannot be perfect surrogates for human
disease, it would be naive to assume that zebrafish brain would
fully recapitulate the AD in human brains. This is an aspect where
the disease models could be refined in fish and could be made
more compatible with human situation. By doing so, zebrafish
could also be in part used for early phase pre-clinical studies to
test drug efficiency. Additionally, the neurodegenerative disease
models should be diversified in zebrafish in order to match
the versatility of disease causing proteins. A future perspective
for AD modeling in zebrafish could be to generate transgenic
animals that display a more chronic and steady accumulation of
disease hallmarks that persist throughout the adult stages. Several
examples of those efforts are emerging (Malaga-Trillo et al., 2011;
Xi et al., 2011; Schmid and Haass, 2013; Cosacak et al., 2017;
Lopez et al., 2017; Kizil, 2018). Additionally, using comparative
mammalian assays such as organoids or 3D culture systems (Choi
et al., 2014, 2016; Fatehullah et al., 2016; Mansour et al., 2018;
Papadimitriou et al., 2018) could be a way to check the stringency
of conclusion from zebrafish as to whether or not they would hold
true in mammalian brains.

Despite its disadvantages listed above, zebrafish holds up well
with the handiness of the rodent models of AD in several aspects
such as the diversity of genetic tools and the ability of modeling
disease hallmarks such as synaptic degeneration and cognitive
decline (Table 1). Nevertheless, neither mouse models nor
zebrafish models can recapitulate the whole pathophysiological
biology of AD as in human brains, which suggests that those
models are useful insofar as their strengths in particular aspects
were found. For instance, zebrafish is quite advantageous over
rodents in many aspects (Table 1). These include (1) the
pathological outcomes that resemble the human brain such as
the ability of Amyloid depositions to lead to neuronal death, (2)
regenerative ability owing to the capacity of NSCs to respond

to tissue loss by enhanced plasticity and neuro-regenerative
outcome, (3) cost of experimental studies, (4) number of animals
that can be tested in a laboratory setting, and (5) the availability
and possibility of 3R-friendly experimentation schemes.

OUTLOOK

Although zebrafish lags behind the mammalian models in
certain aspects, it already outperforms in many (Table 1). For
instance, stem cell biology in zebrafish offers unprecedented
information on the molecular programs that enable stem
cell-based regeneration. Many research reports contributed to
understanding of how NSCs in adult zebrafish brain function,
are affected by external cues and respond to loss of neurons
through recruitment of diverse signaling pathways including
Notch, Wnt, Fgf, Bmp, and chemokine signaling (Mueller et al.,
2004; Adolf et al., 2006; Grandel et al., 2006; Chapouton et al.,
2007, 2011; Pellegrini et al., 2007; Zupanc, 2008; Diotel et al.,
2010, 2013; Kroehne et al., 2011; Rothenaigner et al., 2011;
Baumgart et al., 2012; Coolen et al., 2012, 2013; Kishimoto
et al., 2012; Kizil et al., 2012a,b,c; Kyritsis et al., 2012; Marz
et al., 2012; Alunni et al., 2013; Salta et al., 2014; Barbosa
et al., 2015; Rodriguez Viales et al., 2015; Than-Trong and
Bally-Cuif, 2015; Alunni and Bally-Cuif, 2016; Bhattarai et al.,
2016; Kizil, 2018; Shimizu et al., 2018; Than-Trong et al., 2018).
This large repertoire of knowledge will be instrumental in
comparing the neuro-regenerative aptitude of zebrafish NSCs
to human conditions and would help to find out how a
successful proliferation-neurogenesis cascade could be elicited
in mammals. Especially in the AD condition, which is the
focus of this Perspective Article, such information could be
instrumental and be a game-changer by providing an alternative
approach to the disease mechanism and to its treatment
(Figure 1). The role of neurogenesis in the manifestation of
AD and its cure is rising to the spotlight again and zebrafish
could offer valuable information on how our NSCs could
be made “regenerative” using endogenous molecular programs
and possibly by tweaking the immune system. Together with
chemical/genetic screens, gene targeting and advances in research
methodology; zebrafish stands out as an influential model that
could drive preclinical findings toward novel clinically relevant
discoveries.
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