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Cytomegaloviruses (CMV) reorganize membranous system of the cell in order to develop
a virion assembly compartment (VAC). The development starts in the early (E) phase of
infection with the reorganization of the endosomal system and the Golgi and proceeds
to the late phase until newly formed virions are assembled and released. The events in
the E phase involve reorganization of the endosomal recycling compartment (ERC) in
a series of cellular alterations that are mostly unknown. In this minireview, we discuss
the effect of murine CMV infection on Rab proteins, master regulators of membrane
trafficking pathways, which in the cascades with their GEFs and GAPs organize the flow
of membranes through the ERC. Immunofluorescence analyzes of murine CMV infected
cells suggest perturbations of Rab cascades that operate at the ERC. Analysis of cellular
transcriptome in the course of both murine and human CMV infection demonstrates
the alteration in expression of cellular genes whose products are known to build Rab
cascades. These alterations, however, cannot explain perturbations of the ERC. Cellular
proteome data available for human CMV infected cells suggests the potential role of
RabGAP downregulation at the end of the E phase. However, the very early onset of
the ERC alterations in the course of MCMV infection indicates that CMVs exploit Rab
cascades to reorganize the ERC, which represents the earliest step in the sequential
establishment of the cVAC.

Keywords: cytomegalovirus, virion assembly compartment, endosomal recycling compartment, Rab proteins,
Rab cascades

INTRODUCTION

Cytomegaloviruses, like other herpesviruses, induce extensive reorganization of cellular functions,
including the rearrangement of the membranous system (Johnson and Baines, 2011; Henaft et al.,
2012). CMV replication program is executed through the sequential expression of viral genes
organized into at least three phases: immediate early (IE), early (E) and late (L) phase. In human

Abbreviations: CMYV, cytomegalovirus; cVAC, cytoplasmic virion assembly compartment; EE/SEs, early/sorting endosomes;
ERC, endosomal recycling compartment; GAP, guanine-nucleotide activation protein; GEF, guanine-nucleotide exchange
factor; HCMV, human cytomegalovirus; MCMV, murine cytomegalovirus; REs, recycling endosomes; Tf/TfR, transferrin
bound to the transferrin receptor; TGN, the trans-Golgi network.
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CMV (HCMYV) infected fibroblasts, IE events are executed at 6—
24 h post infection (hpi), E events at 12-48 hpi, and L events
at 48-96 hpi, followed by assembly and release of infectious
virions at 72-96 hpi (Gurczynski et al., 2014). In fibroblasts
infected with murine CMV (MCMYV), a well-established model
for studying CMV infection in vivo and in vitro, the whole
cycle is much shorter, and the first viral progeny is produced
24-30 hpi (Shellam et al., 2006). The IE phase is restricted to
1-2 hpi and E phase to 2-16 hpi (Figure 1A). At 16 hpi viral
DNA synthesis is initiated, and a large number of late genes is
transcribed (Marcinowski et al.,, 2012). Transcriptome analysis
of both HCMV- (Tirosh et al., 2015) and MCMV- (Marcinowski
etal,,2012; Lisnic et al., 2013) infected cells and proteome analysis
of HCMV-infected cells (Weekes et al., 2014; Tirosh et al., 2015;
Jean Beltran et al., 2016) demonstrated that infection is associated
with alterations of numerous cellular gene expression.

One of the goals of CMV-induced cellular perturbations
is the establishment of a cytoplasmic environment for
assembly of newly formed virions. After synthesis of all
components in the L phase, nascent capsids are assembled
in the nucleus, released into cytosol through a process
of envelopment with the nuclear membrane (primary
envelopment), followed by a series of cytoplasmic steps that
involve tegumentation, envelopment at modified membraneous
organelles (secondary envelopment) and virion egress (rev.
by Tandon and Mocarski, 2012). The sequence of cytoplasmic
events and the secondary envelopment occur at the pre-
formed aggregate of membranous structures known as
cVAC.

The development of ¢VAC is initiated immediately upon
infection. It involves reorganization of the Golgi and the
endosomal system in a proper sequence of required membranous
structures around the cell center (Tandon and Mocarski, 2012).
The reorganization can be divided into at least two stages.
In MCMV infected cells, the first stage advances throughout
the E phase of infection (3-16 hpi) and the second stage
takes place in the L phase (16-24 hpi) until the first progeny
virions are released (Figure 1A). Studies of MCMV (Ili¢
Tomas, 2010; Karleusa et al, 2018) and HCMYV infection
(Krzyzaniak et al., 2009; Close et al., 2018; Zeltzer et al., 2018)
point that one significant target of membranous perturbation
is the endosomal recycling system and the ERC. The ERC
is also exploited by other viruses for various aspects of
viral pathogenesis (Vale-Costa and Amorim, 2016; Cruz and
Buchkovich, 2017).

The ERC represents one branch in the endosomal maturation
and highly dynamic router of membrane flow that undergoes
through a series of transitions regulated by the cascade
recruitment of Rab proteins and their effectors (Grant and
Donaldson, 2009). Thus, in this article, we focus on the
alteration of Rab protein cascades that regulate the ERC
in the E phase of CMV infection and the early stage
of ¢cVAC development. We do not, however, address other
important perturbations that coincide with it (i.e., perturbation
of TGN). We believe that analysis of Rab cascades in CMV
infected cells not only contribute to the understanding of the
development of cVAC but also may elucidate the physiological

interactions of membrane shapers under physiological expression
levels.

CMV ASSEMBLY COMPARTMENT IS
INITIATED IN THE EARLY PHASE OF
INFECTION

A study in MCMYV infected cells demonstrated that the
endosomal rearrangement and dislocation of the Golgi are
initiated already at 3-5 hpi (Karleu$a et al., 2018). Analysis
of endosomal markers expression indicates that the endosomal
rearrangement involves perinuclear aggregation of membranous
structures derived from EE/SEs, EE/SEs-to-ERC intermediates,
and the ERC. The initial structure observed at 6 hpi is
further expanded at 16 hpi and maintained at later stages
(i.e., 30 hpi) when the cVAC is fully developed (not shown),
suggesting that the E-phase events involve the development of the
cVAC core (Figure 1A). The endosomal rearrangement involves
alteration of endosomal routes at the stage of early/sorting
endosomes (EE/SE), as is also recently observed in HCMV
infected cells (Zeltzer et al., 2018). It causes retention and
merging of both clathrin-dependent endocytic (CDE; ie.,
Tf/TfR) and clathrin-independent endocytic (CIE; ie., MHC-
I) cargo molecule trafficking (Lucin et al., 2015; Karleusa
et al., 2018; Zeltzer et al, 2018). Recently described model
(Close et al., 2018) predicts that HCMV also changes the flux
through the ERC pathway and thereby accumulates transport
machinery into discrete regions distributed throughout the
cVAC.

CMV ASSEMBLY COMPARTMENT
INVOLVES RECYCLING ENDOSOMES

Multiple studies on the organization of the cVAC during HCMV
infection suggested that CMV infection reorganize REs into a
perinuclear cluster that form the core of the ¢VAC (Sanchez
et al, 2000; Homman-Loudiyi et al,, 2003; Das et al., 2007;
Krzyzaniak et al., 2009; Cepeda et al., 2010; Das and Pellett,
2011; Hook et al., 2014). These studies demonstrated retention
of the recycling cargo (TfR) in perinuclear cluster of Rabll-
and Arf6-positive vesicles and tubules. Membranes stained with
these markers of REs blended with vesicles or membranes
bearing markers of EE/SEs (i.e., Rab5, EEA1, Hrs), which often
highly colocalized with RE markers. The perinuclear cluster
impacts upon the nucleus and develops its reniform shape
(Tandon and Mocarski, 2012). Late endosomal markers are
excluded from the core and surround the perinuclear cluster
together with fragmented Golgi elements (Cepeda et al., 2010;
Das and Pellett, 2011; Rebmann et al., 2016). Despite many
studies, the biogenesis of the core remained unclear. A study
demonstrating the recruitment of a Rab11 effector that regulates
biogenesis of the ERC (Krzyzaniak et al, 2009) confirmed
the central role of the ERC in the biogenesis of the cVAC
core.
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FIGURE 1 | Reorganization of the ERC in the early phase of CMV infection. (A) Kinetics of MCM\V gene expression and development of cytoplasmic virion assembly
compartment (cVAC). Expression of MCMV genes is organized in the immediate early (IE, blue, first hour), early (E, green, 2-16 hpi) and late (L, orange, after initiation
of viral DNA replication) phase and is associated with perturbation of cellular functions throughout the entire replication cycle. The kinetics and the volume of
membranous organelle reorganization that lead to the development of the cVAC are outlined in red. E-phase events lead to reorganization of the endosomal
recycling compartment (ERC) and the Golgi, which at the end of E-phase (16 hpi) forms a compact juxtanuclear structure that represents the core of the cVAC
(yellow). Viral DNA synthesis and expression of L-genes lead to the cytoplasmic accumulation of viral tegument proteins and vacuolar accumulation of viral
glycoprotein as a cap (green) that surrounds the core at 24 hpi and later. Confocal immunofiuorescent images of membrane-bound small GTPases that that control
membrane trafficking through the ERC in uninfected cells (B) and MCMV-infected cells (C) at the end of the E phase of infection (16 hpi). Antibody reagents and
experimental procedures were described in the article by Karleusa et al. (2018). Tf/TfR represent transferrin receptor (TfR) after 60 min internalization (15-16 hpi) of

(Continued)
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FIGURE 1| Continued

AF488_|apeled transferrin (Tf). IE1 represents immediate-early 1 protein of MCMV that is expressed in the nucleus of the infected cell. Fine dotted and dashed lines
indicate cell and nuclear borders, respectively. Bars, 10 wm. (D) Schematic presentation of incoming and outgoing trafficking pathways at the ERC of uninfected and
MCMV-infected cells. Structures that form stable compartments visible by the conventional confocal microscopy are presented in blue and subvisible endosomal
intermediates in gray. Structures expanded by MCMV infection are presented in orange and pathways that may be inhibited by dashed lines and red crosses. EE/SE,
early/sorting endosome. RE, recycling endosome; TGN, the trans-Golgi network; LE, late endosomes.

THE ERC IS COMPOSED OF
HETEROGENEOUS SUBSETS OF
RECYCLING ENDOSOMES REGULATED
BY RAB CASCADES

The ERC represents a complex of heterogeneous subsets and
functionally linked populations of REs that include relatively
large perinuclear structures, tubular REs and a number of small
transport intermediates (Xie et al., 2016). Several studies suggest
that the ERC is composed of regularly present Rabl1-positive
membrane subset and an expandable, more pericentriolar, Arf6-
positive membrane subset (Kobayashi and Fukuda, 2013). It
appears that the ERC stratification reflects both biochemical
composition and functional segregation of membrane trafficking
(Xie et al., 2016), including multiple sorting functions toward the
recycling, retrograde and exocytic route (Uchida et al., 2011).

Rab GTPases are master regulators of membrane traffic that
control distinct steps in membrane flow by recruiting diverse
effector proteins (rev. by Wandinger-Ness and Zerial, 2014).
Inactive Rab proteins are present in the cytosol in the GDP form
and attach to membranes of the endosomal system when their
activation components become available during membrane flow
program. At membranes, Rab proteins are activated by GEFs
and inactivated by attachment of guanine-nucleotide activating
proteins (GAPs) that facilitate hydrolysis of GTP and thereby
detach Rab proteins from the membrane. Rab activation and
inactivation cycle at membranes is organized as a cascade of
programmed series of recruitment of Rabs, GEFs, and GAPs. GEF
proteins control the site of Rab recruitment and GAP proteins
control the lifetime of active Rab at the membrane.

The membrane flow into the ERC involve a transition of Rab5-
positive EE/SEs to Rab11-REs and Arf6/Rab8-REs (Homma
and Fukuda, 2016) and the flow of membranes from the TGN
(Progida and Bakke, 2016). Trafficking between EE/SEs and
the ERC may be regulated by Rab10 (Liu and Grant, 2015),
Rabl4 (Linford et al., 2012), and Rab15 (Strick and Elferink,
2005). The Arf6/Rab35 regulatory axis of recycling from the
ERC, in which they act antagonistically (Klinkert and Echard,
2016), may regulate the size of the Arf6-REs within the ERC.
Rab35 cascade which involves transition toward downstream
Rabs (Rab8A, Rabl0, Rab13, Rab36) (Kobayashi et al., 2014)
may regulate exit out of the Arf6-RE. Additionally, Rab8A and
Rabl0 may also regulate exit from Rab11-REs (Homma and
Fukuda, 2016). The outgoing flow of membranes at the Rab-11-
REs involves complex and sequential activation of Rab-to-Arf
cascades, as recently described for Rab4-orchestrated cascades
at SEs (D’Souza et al.,, 2014) and recruitment of EHD proteins
(Zhang et al., 2012). The trafficking routes to, within, and out of

the ERC and expected sites of action of Rab proteins are depicted
in Figure 1D.

CMV EXPLOITS RAB CASCADES TO
RESHAPE THE ERC AND REDIRECT THE
MEMBRANE FLOW

The sequences of regulatory networks that control membrane
flow through the ERC in uninfected cells as well as the sequence
of alterations that lead to the final establishment of the cVAC in
CMYV infected cells are far from being completely understood.
A small piece of evidence indicates that alteration of Rab
recruitment is exploited by CMVs as an integral part of a complex
mechanism that leads to the development of the cVAC.

In uninfected fibroblasts, Rab proteins and their effectors
are mainly cytosolic, and only those that decorate major
endosomal organelles display distinguishable structures visible by
conventional confocal microscopy (Figure 1B). Many transport
intermediates are dimly fluorescent and difficult to distinguish,
especially under conditions of physiological expression levels.
For example, Rabl0-positive vesicles that mediate transport
between endosomes are hardly detectable in static images
(Babbey et al.,, 2006). In MCMV infected cells, however, the
rearranged membranous organelles positive for several Rab
proteins, including Rabl0, are concentrated as a perinuclear
aggregate (Figure 1C). Enrichment of Rab5-positive membranes
indicates the concentration of EE/SEs and the absence of Rab22A
(Figure 1C) suggests dysregulation of Rab22A-to-Rab5 cascade
known to control exit from SEs (Magadan et al, 2006; Zhu
et al.,, 2009). Displacement of Rab4 toward the cell periphery
(Figure 1C) indicates reduced recruitment of small GTPase
cascade (Rab4-Arl1-Bigl/2-Arfl/3 cascade) at EEs described by
D’Souza et al. (2014) that controls recycling. Enrichment of
Rab10- and Rabl5-positive membranes (Figure 1C) indicates
expansion of intermediates that mediate flow from EEs to
the ERC and suggests alteration of downstream cascades,
whereas enrichment Arf6-, and Rab8-positive membranes and
the absence of Rab35 membranes (Figure 1C) indicates alteration
of the outgoing flow of membranes from the ERC.

In addition to the conditions of facilitated exit from EE/SEs,
it appears that CMV infection inhibits entry and expands
intermediates that mediate membrane flow toward the ERC.
Control of the trafficking between EE/SEs and REs has been
assigned to Rab10 (Shi et al., 2010), Rab14 (Linford et al., 2012)
and Rabl15 (Strick and Elferink, 2005), through often subvisible
intermediates in uninfected cells. The cascade transition of Rab5
to either Rab14 or Rabl5 has not been demonstrated, whereas
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FIGURE 2 | Effect of CMV infection on the expression of Rab proteins that control endosomal recycling route and their known GEFs and GAPs. (A) Rab proteins that
control endosomal recycling, their known GAPs (brown) and GEFs (green). The illustration outlines the known interaction reviewed recently by Muller and Goody
(2018). (B) Transcriptome of dendritic cells DC2.4 at 3 and 18 h post infection (p.i.). The data is represented as the fold change (log2) of gene expression in wild-type
MCMV infected cells relative to the mock-infected cells. Shown are the data for all differentially expressed genes. A significant difference to mock-infected cells at
p-value smaller than 0.1 (*) and 0.05 (#) is shown above or below bars. Both, mock and MCMV-infected cells were analyzed in three replicates. (C) Comparative
analysis of the transcriptome data in MCMV- (Lisnic et al., 2013) and HCMV- (Hertel and Mocarski, 2004) infected cells, and proteome data in HCMV-infected cells
(Weekes et al., 2014). The transcriptome data for MCMV represent pooled samples from all phases of infection, the transcriptome data for HCMV represent samples
at the end of the E-phase of infection (50 h p.i.), and the proteome data for HCMV represent samples at 40 h p.i. Left axis relates to the transcriptome data (log2 fold
change), and the right axis relates to the proteome data (the percentage of change relative to mock-infected cells).

the cascade between Rab5 and Rabl0 has been demonstrated
recently. In C. elegans epithelial cells Rab5 recruits an effector
which promote interaction of Rabl0 GEF with Rabl0 (Liu
et al., 2018), whereas Rabl0 recruits GAP for Rab5 at the
endosomes (Liu and Grant, 2015) thereby facilitating the exit
of recycling cargo from SEs. Thus, accumulation of Rabl0-
positive membranes in the perinuclear aggregate of MCMV-
infected cells (Figure 1C) indicates expansion of Rab10-positive
intermediates that mediate transport into the ERC and suggest
altered recruitment of Rabl0 GAP by a downstream cascade.
Given that Rab10 negative feedback controls entry of CIE cargo
into the ERC (Liu et al., 2018), the observed retention of CIE
cargo (Lucin et al., 2015; Karleusa et al., 2018) may occur in
these intermediates and could explain inhibitory effect of MCMV
infection on their recycling. Similarly, expansion of Rabl5-
positive intermediates in the perinuclear aggregate (Figure 1C)
may explain inhibitory effect of MCMYV infection on recycling
of CDE cargo (Karleusa et al., 2018), since it has been shown
that Rab15 controls entry of TfR from SEs into the ERC (Strick
and Elferink, 2005). Although, it has been shown that Rab14
controls trafficking and recycling of CDE cargo at intermediates

between EE/SEs and the ERC (Linford et al., 2012), it appears
that MCMYV infection does not affect these intermediates and that
Rab14 is recruited to more peripheral endosomal compartments
(Figure 1C), which mediates transport between EEs and the TGN
(Reed et al., 2013).

Accumulation of Arf6-positive compartments (Figure 1C) in
the perinuclear aggregate suggests the overactivation of Arf6
and expansion of Arf6-REs within the ERC. Overactivation of
Arf6 is associated with high recruitment of EPI64 (data not
shown), which is a known GAP for Rab35, and inhibition of
endosomal recycling (Klinkert and Echard, 2016). Arf6 activation
at the ERC could be controlled by Rab35, Rab10, and Rab8.
The well-established feedback loop between Arf6 and Rab35,
in which Arf6 recruits a GAP for Rab35 and Rab35 recruits
a GAP for Arf6, operates at the cell periphery and within
the ERC (Klinkert and Echard, 2016). This loop seems to be
altered in MCMYV infected cells since Rab35 (Figure 1C) and
its effector that shut off Arf6 (not shown) were not recruited at
the perinuclear aggregate. Apparently, overactivation of Arf6 is
essential for the progression of CMV infection. The extent of
Arf6 activation may be constrained by both Rab10 and Rab8.
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In C. elegans cells both Rab10 and Rab8 recruit the same GAP
as Rab35 (Shi and Grant, 2013) to control Arf6 activation.
However, a recent study in neuron-like cells (Homma and
Fukuda, 2016) suggest that Rab8 can be activated at Arf6 REs
and Rab10 at Rab11-REs. Although in polarized trafficking Rab8
and Rab10 may act at different locations, it has been suggested
that in non-polarized cells they could function redundantly
(Shi et al., 2010). Thus, both Rab10 and Rab8 may constrain
overactivation of Arf6 and expansion of Arf6-REs in MCMV
infected cells. However, Rab8 is absent from the perinuclear
aggregate at 6 hpi (Karleusa et al., 2018) and highly enriched at
16 hpi (Figure 1C), indicating the temporal sequence in Arf6
overactivation. Dysregulation of the Arf6 axis has been recently
described in the early phase of HCMV infection (Zeltzer et al.,
2018).

Overactivation of Arf6 at the ERC may turn off Rab35-
associated downstream cascades, which operate at Arf6-REs but
not at Rab11-REs (Kobayashi et al,, 2014). Rab35 through its
effector recruits Rab8A, Rab10, Rab13, and Rab36 at the ERC
and thereby promotes exit from the Arf6-REs (Rahajeng et al,,
2012; Kobayashi et al., 2014). However, only Rabl3 was not
recruited to the perinuclear aggregate (Figure 1C) indicating
that Rab8A, Rab10, and Rab36 are recruited at other locations
within the perinuclear aggregate. The downstream routes in
the Rab35 cascade are not well characterized, however, it is
known that Rab8A and Rabl0 may promote recycling from
REs by recruiting EHD proteins (Grant and Caplan, 2008;
Allaire et al, 2010). Although both Rabs are recruited to
the perinuclear aggregate, it seems that the recycling route at
the ERC controlled by Rab35 does not function in MCMV
infected cells. Similarly, the route based on the recruitment of
Rabl13 and Rab36 are shut off in MCMYV infected cells. Both
Rab13 and Rab36 may be involved in the control of trafficking
between TGN and REs (Nokes et al., 2008), and Rab36 also in
trafficking from EE/SEs and REs to LEs (Matsui et al., 2012;
Nottingham et al., 2012). Thus expansion of Rab36-positive
membranes in the perinuclear aggregate of MCMV-infected cells
(Figure 1C) could represent intermediates that link EE/SEs with
LEs.

Although enrichment of Rabll-REs at the perinuclear
aggregate (Figure 1C) and inhibited recycling of CDE cargo
(Karleusa et al., 2018) may suggest an alteration of outgoing flow,
it cannot be explained by altered recruitment of downstream
Rabs. The Rabl1l function is associated with the docking of
recycling intermediates to the plasma membrane (Takahashi
et al., 2012), whereas exit from Rabl1-REs involves multiple
factors, including recruitment of Rabl0 and Rab8 (Homma
and Fukuda, 2016) and EHD proteins (Grant and Caplan,
2008). Enhanced recruitment of Rabl0 and Rab8 at the
perinuclear aggregate is not consistent with the alteration of
outgoing membrane flow at Rab11-positive membrane domains
since activation of these Rabs facilitates exit from Rabll-
REs.

Altogether, analysis of the perinuclear aggregate in the E phase
of MCMYV infection indicates that CMV exploits multiple Rab
proteins to reorganize the ERC into the core of the cVAC. Possible
targets of MCMYV infection are depicted in Figure 1D.

CMV INFECTION AFFECT
TRANSCRIPTION AND EXPRESSION
LEVEL OF RAB PROTEINS AND
RAB-GAPs

One approach used by CMVs could be manipulation with the
amount of proteins that shape membranous organelles, either by
up- and down-regulation of transcription, translation or protein
degradation. Transcriptome analysis of MCMYV infected cells at
3 and 18 hpi (Figure 2B) demonstrated alterations of expression
of Rab, RabGEF, and RabGAP genes that control the recycling
system (Figure 2A). Many of these alterations may be considered
statistically significant (*) when the cut-off value was adjusted
to p < 0.1, whereas none of them was significant at the cut-off
p < 0.05. Even upregulation of TBC1D30 observed at 18 hpi is
insignificant at p < 0.05, because of the very low level of transcript
in uninfected cells. However, these alterations, as well as most of
the alterations observed in the previous study (Lisnic et al., 2013),
correlated by little with alterations observed in HCMV-infected
(Figure 2C).

Given that most of altered Rab protein genes are upregulated,
downregulation of Rab gene expression is not a mechanism that
could explain membrane reshaping in the E-phase of infection.
On the contrary, upregulation of some genes encoding GEFs and
GAPs may correlate with the low recruitment of Rab13, Rab22a,
and Rab35 and could explain some of the alterations observed
in the E phase of MCMYV infection. Thus, manipulation with the
expression level of regulatory proteins could be a potential target
of CMVs. This conclusion may be supported by observations
from temporal quantitative proteome analysis in HCMV infected
cells at the end of E phase (Weekes et al, 2014), which
demonstrated significant of several GAP proteins (Figure 2C).
Given that proteome alterations do not correlate with the
transcriptome alterations, it seems that CMVs can regulate
the organization of the ERC by modulating degradation of
Rab-cascades components, especially by enhancing degradation
RabGAP proteins.

Altogether, immunofluorescence, proteome, and
transcriptome analysis suggest that the main alteration of
CMVs in the E phase of infection could be the recruitment
of components of Rab cascades and that targeting of RabGAP
proteins could be a mechanism exploited by CMVs in order to
reshape membranous system of the cell.

CONCLUDING REMARKS

Analysis of the perinuclear endosomal aggregate that is
established at the end of the E phase of CMV infection indicates
that CM Vs exploit Rab cascades to take over the control at the
ERC trafficking routes and thereby initiate the establishment
of the cVAC. Although a plethora of data in the last decade
provided clues about Rab cascades, many components remain
unidentified and functional networks that construct the cascades
poorly characterized in vivo under physiological conditions
(Pfeffer, 2017). The analysis of the early events in the course of
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CMYV infection display small fragments of this map and suggests
that CMV infection could be a useful tool in analyzing Rab
cascades under physiological levels of Rab protein expression.
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