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Cancer is a disease of the elderly, and old age is its largest risk factor. With age, DNA
damage accumulates continuously, increasing the chance of malignant transformation.
The zebrafish has emerged as an important vertebrate model to study these processes.
Key mechanisms such as DNA damage responses and cellular senescence can be
studied in zebrafish throughout its life course. In addition, the zebrafish is becoming an
important resource to study telomere biology in aging, regeneration and cancer. Here
we review some of the tools and resources that zebrafish researchers have developed
and discuss their potential use in the study of DNA damage, cancer and aging related
diseases.
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INTRODUCTION

Dysfunctional DNA damage repair (DDR) underlies multiple diseases, including age-associated
diseases and cancer. The zebrafish, a model organism exploited mostly in developmental studies, is
now emerging as a powerful tool to study adult diseases, and scientists are exploring the potentials
of this organism for studying how DNA damage dysfunctions impact human health and life span.

Scientists gathering at the 5th European Zebrafish PI meeting held in Trento on 20–23 March
2018 had a dedicated workshop to present their latest research in Aging, DDR and Cancer. This
gave them the opportunity to plan the writing of an overview article that summarizes the state of
the art in this field. This perspective article conveys our view on the advantages of zebrafish as a
model vertebrate organism to study aging, DDR and cancer and sets up the stage for investigating
the complex interplay of metabolic, immune and pathophysiological changes associated with these
conditions.

In this perspective article, we summarize the recent advances using the zebrafish model for
studying diseases with a major DNA damage component. We survey the tools to investigate
the impact of DDR dysfunctions on diseases and review the contribution of the zebrafish
telomerase mutant to the understanding of aging and its relation with cancer. Moreover, we
report how technical advances in zebrafish disease modeling impacted our field, not only by
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providing more technical resources, but also by furthering
our understanding of the mechanisms of gene compensation
following mRNA depletion and DNA repair following CRISPR-
Cas9 genetic manipulations.

PERSPECTIVES IN STUDYING AGING
AND CONGENITAL DISEASES LINKED
TO AGING AND DDR IN ZEBRAFISH

Until now, aging research has mainly focused on single
diseases. However, this approach does not address the fact
that approximately 60% of people over 65 suffer from multiple
diseases at the same time, termed multimorbidity (Tinetti et al.,
2012; Fabbri et al., 2015). There is, therefore, the urgent need
to understand the hallmark mechanisms that go awry with
aging and promote and underlie multiple chronic diseases of the
elderly.

One important hallmark of aging in humans is telomere
dysfunction. Critically short telomeres cause cells to stop
dividing, and either die by apoptosis or enter a state of
“dormancy” termed senescence. Importantly, senescent cells
accumulate aberrantly with aging in multiple organisms,
including humans (Dimri et al., 1995), mice (Krishnamurthy
et al., 2004), and zebrafish (Carneiro et al., 2016b) and there is
strong evidence implicating telomere dysfunction and senescence
in age-associated pathologies, such as atherosclerosis (Minamino
and Komuro, 2007), arthritis (Price et al., 2002), liver cirrhosis
(Wiemann et al., 2002), chronic obstructive pulmonary disease
(Amsellem et al., 2011), and cancer (Campisi, 2013).

The zebrafish has recently emerged as a powerful
complementary model to investigate the fundamental
mechanisms of aging underlying disease. Like humans, and
unlike most lab-mice, both naturally aged (Carneiro et al.,
2016b) and telomerase mutant zebrafish, accumulate telomere-
dependent replicative senescent cells in aged tissues (Anchelin
et al., 2013; Henriques et al., 2013; Carneiro et al., 2016b), making
the zebrafish telomerase mutant an excellent model of premature
aging (see “Telomerase and TR” section below for a detailed
discussion of the telomerase mutant).

Zebrafish age-dependent tissue degeneration occurs in a
time- and tissue-dependent manner, and, for most tissues, it is
anticipated and exacerbated in the absence of telomerase. There
are critical tissues that age before others, such as the intestine
and muscle, and this is tightly linked to telomere shortening
and DNA damage in natural, wild type (WT) aging fish
(Carneiro et al., 2016b). Importantly, this is reminiscent of the
human scenario, where telomerase loss-of-function mutations,
or mutations affecting telomere stability, lead to premature aging
syndromes (termed progeria, Hofer et al., 2005; Alter et al., 2012).

In the past decades, the study of human monogenic
accelerated aging disorders, such as ataxia-telangiectasia (A-T),
Bloom’s syndrome (BS), Cockayne syndrome (CS), Dyskeratosis
congenita (DC), Fanconi anemia (FA), Rothmund-Thomson
syndrome (RTS), and Werner syndrome (WS), has uncovered
some commonalities in their etiology. One recurring theme
appears to be impairment of one or more pathways related to

DNA repair: RecQ class DNA helicases in BS, RTS and WS (de
Renty and Ellis, 2017; Lu et al., 2017; Oshima et al., 2017), the
homeostatic protein kinase ATM in A-T (Shiloh and Lederman,
2017) and at least some CS and FA gene products (Brosh et al.,
2017; Karikkineth et al., 2017) have all been implicated in the
maintenance of genomic stability.

Given the relatively large number of genes involved in
monogenic aging disorders it is striking that up to date only
a handful of bona fide mutations have been characterized in
zebrafish: brca2/fancd1, fancl and rad51/fancr (Rodríguez-Marí
et al., 2010, 2011; Botthof et al., 2017). Synthetic antisense
morpholino (MO) knockdown of ercc6 (Wei et al., 2015) and
fancd2 (Liu et al., 2003) have been also described, and TALEN
and CRISPR mutants for atm (Thomas et al., 2014) and ercc5/xpg
(China Zebrafish Resource Center [CZRC], 2017) have been
reported, but not characterized in detail. As for almost all other
genes, insertional and ENU mutants already exist at ZIRC and
EZRC. Given how straightforward it is to generate novel alleles
with CRISPR, it is likely that this apparent dearth of zebrafish
aging disorder models will change soon.

A peculiar characteristic of zebrafish as a model for DDR-
related conditions is that the impairment of this pathway often
results in biased sex ratios. The first documented cases were
described in brca2/fancd1 and fancl mutants, both models for FA,
where homozygous mutants all developed as males (Rodríguez-
Marí et al., 2010, 2011). The sex bias was restored when tp53 was
also blocked, demonstrating that p53-dependent apoptosis has a
role in the development of sex bias.

Recently, mutations in 19 genes related to the Fanconi anemia
(FA) pathway were created (fanca, fancb, fancc, fancd1/brca2,
fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm,
fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t,
faap100, and faap24). Knockouts for 12 of these genes showed
complete female-to-male sex reversal, and partial sex-reversal was
seen in KOs of five more genes. Sex reversal in the case of fancp
was Tp53-dependent, just as with the previously reported fancd1,
fancl, and fancr mutants. And while mutant males and females
were mostly fertile, fancd1, and fancj mutants showed partial and
complete sterility, respectively (Ramanagoudr-Bhojappa et al.,
2018). These results substantiate the role of the FA-pathway in
the PGC-dependent sex determination process of zebrafish and
provide further proof for the role of some DDR genes in germ-cell
specification.

The germ line has an active role in zebrafish sex-determination
(Siegfried and Nüsslein-Volhard, 2008). More precisely,
primordial germ cells (PGCs) in the developing juvenile ovary
have a key and most likely inductive role in gonad differentiation
and their number is a deciding factor in sex-determination.
Individuals with lower PGC number become male, whereas
high PGC count generally results in females (Tzung et al., 2015).
Therefore, the survival and expansion of the PGC population
during early phases of development adds another layer of
control to the complex polygenic sex determination system,
characteristic for zebrafish (Liew et al., 2012).

With this foresight, the sex biased phenotype of brca2/fancd1
and fancl mutants suggests that genes involved in DDR might
have an important role for the survival and proliferation of PGCs
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in the developing gonads. Defects in meiotic recombination do
not automatically lead to PGC death, however, for instance mlh1
mutant females and males are capable of producing eggs and
sperm but resulting embryos are aneuploid (Leal et al., 2008).
Also in the telomerase mutant, PGCs proliferation is impaired
(Anchelin et al., 2013; Henriques et al., 2013) and telomerase has
been reported to respond to mild DNA damage with an increased
activation (Akiyama et al., 2013).

RECENT TECHNICAL ADVANCES IN
DISEASE MODELING AND IMPACT ON
DDR STUDIES

Previous large-scale mutagenesis approaches, such as the
Zebrafish Mutation Project (ZMP) have created mutations
in most of the relevant zebrafish genes, and these lines are
available from major zebrafish stock centers (1Zirc and EZRC).
Furthermore, with the adoption of TALEN-based (Sander et al.,
2011; Bedell et al., 2012; Reyon et al., 2012) and CRISPR/Cas9-
based genome editing technologies (Hruscha et al., 2013; Hwang
et al., 2013a,b; Jao et al., 2013; Gagnon et al., 2014; Talbot and
Amacher, 2014) for zebrafish, practically any research group can
create loss-of-function alleles for the gene(s) of interest.

With regards to DNA repair, it is also noteworthy that over the
past couple of years, novel genetic and immunohistochemistry-
based tools have been developed that can help to understand the
prevalence of different DNA double-strand break (DSB) repair
pathways during the repair process, for instance GFP based
constructs are available that can report NHEJ, MMEJ, SSA, and
HR-based repair (Liu et al., 2012; He et al., 2015).

While during the previous decades of zebrafish research,
MOs have been the tool of choice for creating loss-of-function
phenotypes (Nasevicius and Ekker, 2000), recently, several
studies have highlighted the limitations of this approach (Schulte-
Merker and Stainier, 2014; Kok et al., 2015; Stainier et al.,
2017). MOs are extremely stable and can be easily delivered into
embryos at early stages, where they interfere with translation or
splicing. However, the effect of MOs is only transient, therefore
they are usually injected in molar excess to have a longer lasting
effect. The injection of large amounts of synthetic molecules
could be the reason why MOs often elicit strong, specific p53-
dependent effects (Robu et al., 2007) and the activation of an
innate immune response (Gentsch et al., 2018). Given that DNA
damage repair is inseparably linked to p53 activation, it is not
surprising that MOs have not been widely adopted in areas of
research where DNA damage responses (DDR) play a central role,
such as cancer and aging.

Bona fide mutants offer a more promising avenue for research
modeling diseases related to DDR. One caveat of the genetic
engineering approach is that, in zebrafish, mutations caused
by genetic engineering manipulations often result in altered
mRNA processing (Anderson et al., 2017) or trigger genomic
compensation effects through non-sense mediated decay (NMD,
Rossi et al., 2015; El-Brolosy and Stainier, 2017) ultimately failing

1Zirc: http://zebrafish.org/fish/lineAll.php, EZRC: https://www.ezrc.kit.edu

to induce a strong phenotype. New research suggests, however,
that these problems can be circumvented with the efficient
targeting of the promoter region (El-Brolosy et al., 2018). These
data are likely to be particularly useful in the functional analysis
of aging-related genes.

TELOMERASE: THE STATE OF THE ART

The telomerase zebrafish mutant has revealed a role for telomeres
and telomerase in aging and disease in zebrafish (Carneiro et al.,
2016a). Compared to common laboratory mice that possess
very long telomeres (40–150 kb), zebrafish telomere length
is similar to human telomeres (5–15 kb). Also like humans,
telomere length and telomerase expression decrease over time
in zebrafish. Telomerase deficient zebrafish (terthu3430/hu3430 or
tert−/−) have shorter telomeres, premature aging phenotype and
reduced lifespan. These defects do not occur all at the same
time. Strikingly, the majority of tissue dysfunction phenocopies
the events occurring during natural zebrafish aging (Anchelin
et al., 2013; Henriques et al., 2013; Carneiro et al., 2016b). Over
natural aging, the zebrafish intestinal epithelium is one of the first
tissues to show gradual DNA damage response activation (53BP1
and γH2AX foci associated with telomeres), increased onset of
apoptosis and senescence, and functional defects. Remarkably,
telomere shortening in tert−/− mutants anticipates these
alterations in this tissue. However, other proliferative tissues,
such as testis or kidney marrow showed altered phenotypes
independently of significant telomere shortening. Nevertheless,
absence of telomerase has a clear deleterious effect in the adult
zebrafish tissues. Thus, in absence of visible telomere shortening
in some tissues, lack of telomerase does have a clear impact
on their functions, resembling degeneration observed in old
age (Carneiro et al., 2016b). This leaves open the hypothesis
that, rather than just elongating short telomeres, presence of
telomerase may be required for the regenerative capacity of adult
organs. In agreement with this idea, telomerase was shown to
have a non-catalytic role in hematopoietic cell differentiation
(Imamura et al., 2008) and in DDR (Akiyama et al., 2013).

Similarly, also the RNA component (TERC/TR) of
the telomerase holoenzyme has a non-canonical role in
hematopoiesis. DC is a hereditary disease caused by defects in
telomere maintenance, and is due to mutations in telomerase
components or in telomere-stabilizing components. DC
is characterized, in 85% of cases, by cutaneous defects
and premature death due to failure in hematopoiesis and
immunodeficiency. Mutations in TERT (catalytic subunit) and
TERC/TR (RNA component) are responsible for the dominant
autosomic form of DC. Although 90% of patients with DC have
problems with the production of three types of blood cells, and
all have telomere shortening, the incidence of aplastic anemia
(AA), myelodysplastic syndromes (MDS) and cancer is greater
in patients with mutations in TERC/TR. However, the variability
and severity of the symptoms due to the different mutations
cannot be accounted for by the sole influence on telomere
length (Vulliamy et al., 2011). Indeed, genetic inhibition of
terc in zebrafish results in neutropenia and monocytopenia
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(Alcaraz-Pérez et al., 2014), similarly to DC patients. This
defect is fully independent of both telomerase activity and
telomere length. Terc/tr is expressed at very high levels in
isolated neutrophils, whereas tert is undetectable, suggesting
that terc/tr has a non-canonical function in these cells. Human
TERC physically interacts with 2,198 sites throughout the human
genome by recognizing the target sequence CCACCACCCC
(Chu et al., 2011). These findings suggest that TERC/TR has
an additional role to that as a telomerase component, and acts
as a long non-coding RNA which regulates myelopoietic gene
expression, revealing a new target for therapeutic intervention in
DC patients.

During aging, short telomeres are deprotected and recognized
as DNA damage. As a consequence, both WT and tert−/−

mutants zebrafish accumulate γH2AX foci at telomeres with
aging, mainly in gut and muscle (Carneiro et al., 2016b). The
formation of γH2AX telomeric foci correlates with telomere
shortening, supporting the idea that short telomeres are sensed
as DNA damage and activate the DDR. Damaged DNA is
recognized by the MRN complex, which recruits the kinases
ATM and ATR mediating H2AX phosphorylation. In addition
to γH2AX foci, gut and muscles of both aged WT and tert−/−

animals showed a significant reduction of proliferating cell
nuclear antigen (PCNA) staining and an increase of senescence
markers (e.g., senescence-associated β-galactosidase staining),
indicating that telomere shortening leads also to reduction of
proliferation and induction of senescence (Anchelin et al., 2013;
Henriques et al., 2013; Carneiro et al., 2016b). Decrease of
proliferation and accumulation of senescent cells cooperate to
the disruption of tissues homeostasis with aging. These effects are
mediated by the activation of p53, as the combination of tert−/−

and tp53−/− mutations rescues the replication rate and partially
abolish senescence in the gut (Anchelin et al., 2013; Henriques
et al., 2013).

Cells with critically short telomeres rely on either of two
mechanisms to avoid cell proliferation. They can either engage
a cell death program, through a p53-dependent expression of
pro-apoptotic proteins, such as PUMA (Wang et al., 2007), or
they can irreversibly arrest the cell cycle, upregulate a second
CDKi, p16Ink4a, and become senescent (Stein et al., 1999). To
date, it remains largely unclear what determines if a cell with
short telomeres undergoes senescence or apoptosis. Evidence
suggests that most cells are capable of both (Campisi, 2007).
Given that both outcomes are initiated by the same type of
stimulus and involve the same type of molecular players, this
raises the question of how do damaged cells, in an organism,
decide whether to continue living in a dysfunctional state or die.

Cancer may result from the occurrence of DNA damage that
generates oncogenic events, bypass senescence and apoptosis
and activates telomere maintenance mechanisms (TMMs), to
allow proliferation and overcome telomere attrition (Reddel,
2014). The study of TMMs in zebrafish cancer models could
shed light on the development of this important cancer
hallmark. Defining which TMM is adopted by different cancer
types, whether overexpression of telomerase (usually linked
to mutations or positive regulation at the level of the
promoter region) or Alternative Lengthening of Telomeres

(ALT), can support diagnosis (mesenchymal and pediatric
cancer being more prone to ALT, Apte and Cooper, 2017),
prognosis (i.e., Alt+ glioblastomas in adults have a better
prognosis, Hakin-Smith et al., 2003) and responses to anti-
telomerase therapy (Agrawal et al., 2012). A zebrafish model
of brain cancer (Mayrhofer et al., 2017) shows progressive
induction of ALT (Idilli et al., unpublished) and recalls
the prevalence of this TMM in pediatric brain tumors
(Abedalthagafi et al., 2013). One of the hallmarks of ALT is
the accumulation of DDR markers at telomeres, which suggests
that the repair machinery may have a role in the homologous
recombination and chromatid exchange occurring during ALT
(Koschmann et al., 2016). Here, the cooperation between the
activation of telomere maintenance mechanisms and DNA
damage signaling leads to a predominance of surviving and
proliferative signals, ensuring the survival and expansion of
cancer cells.

HOW TO STUDY DDR IN ZEBRAFISH?

With the mechanisms and signals of DDR conserved from yeast
to mammals, it is not surprising that the reports so far indicate
a strict conservation of the molecular players in DDR between
zebrafish and humans (see first section). Zebrafish are members
of the Teleostei infraclass, and its ancestors underwent an
additional round of whole-genome duplication (WGD) called the
teleost-specific genome duplication (TSD) (Meyer and Schartl,
1999). Comparison to the human reference genome shows that
approximately 71.4% of human genes have at least one obvious
zebrafish ortholog and reciprocally, 69% of zebrafish genes have
at least one human ortholog (Howe et al., 2013). Interestingly,
of the 648 DDR-associated genes, only 70 were found to be
duplicated (Supplementary Table S1). Although the zebrafish
genome has no BRCA1 ortholog, it has an ortholog of the
BRCA1-associated BARD1 gene, which encodes an associated and
functionally similar protein and a brca2 gene. Several studies
found that zebrafish is a suitable animal model to study DDR.

The DDR response can be studied from within minutes upon
DNA damage (recruitment of proteins, foci formation) to hours
(residual DNA damage, apoptosis) and days (morphological
changes) up to months later (tumor formation). When evaluating
the expression of genes involved in the DNA repair system, time
kinetics experiments are important – this parameter has to be
taken into account and may vary depending on the DNA damage
reagent exposed to, or the type of damage to be restored (e.g.,
Sandrini et al., 2009). We mainly focus here on DNA DSB repair.

Within the first minutes after induction of DNA damage,
a wide range of proteins are recruited to the damaged site.
This damage can be visualized through immunohistochemistry.
Subsequently, after damage recognition, repair proteins are
recruited. For example, dividing cells will repair DNA DSB in
part through Homologous Recombination (HR), which can be
visualized by Rad51 immunostaining. Rad51 foci formation is
an important event in HR and defects in genes upstream in this
pathway may lead to decrease or even absence of Rad51 foci
(Vierstraete et al., 2017).
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Unfortunately, there is still a lack of antibodies that can
be used reliably in zebrafish, and good DNA repair protein
antibodies are rare. Phosphorylated H2AX has been exploited
by numerous groups and can be used to visualize and quantify
DNA damage (Santoriello et al., 2009; Pereira et al., 2011, 2014;
Francia et al., 2012; Drummond and Wingert, 2018), but does not
show the repair pathway(s) that are used. There are only sporadic
reports on other important DNA repair proteins; Fernández-
Díez et al. (2018) published an immunostaining for p53BP1,
which promotes non-homologous end-joining-mediated DSB
repair while preventing homologous recombination, but signals
appeared mainly cytoplasmic, however, Henriques and Ferreira
(2012) reported nuclear staining. Here, higher resolution analysis
and costaining with Rad51 to confirm the occurrence of HR
would be beneficial.

Furthermore pAtm has been detected on tissue sections,
but costaining with other DDR proteins has not been shown
(Santoriello et al., 2009). Besides immunohistochemical stainings,
qPCR, RNAseq and Western blotting provide quantitative
information about up- or downregulation of expression and
proteins. Although these techniques are (semi-) quantitative, they
do not allow visualization of the localization of the damage (e.g.,
Zheng et al., 2018).

Other assays are “in development,” the van Eeden group
fortuitously generated a GFP loss of heterozygosity (LOH)
reporter system based on a strong inhibition of Hypoxia
Inducible Factor (HIF) by the presence of the Vhl protein
(Santhakumar et al., 2012); inactivation of the remaining
functional copy of vhl in heterozygous (vhl/+) cells leads to
activation of HIF which in turn activates a sensitive downstream
HIF reporter: phd3:eGFP. In this system the vhl gene is therefore
used as a detector of gene damage, where it is expected to be
representative of the entire genome, every cell in the embryos
that have lost VHL function after a particular treatment will
express GFP. This system detects all forms of damage capable
of inactivating the gene; chromosome loss, base changes, indels.
Thus, it cannot distinguish between different forms of genome
stability defects.

Comet assays using larvae have also been reported (Jarvis and
Knowles, 2003) as they are popular in toxicology studies. At least
one group has used a comet assay to show effects of genetic
mutations on levels of DNA damage (Lim et al., 2009). Detailed
protocols for several techniques were published by the Amatruda
Lab (Verduzco and Amatruda, 2011).

After protein recruitment, repair is performed through
either non-homologous end-joining (NHEJ), homologous
recombination (HR) and single strand annealing (SSA). Repair
through these pathways in zebrafish embryos can be analyzed
by utilizing specialized vectors, such as those developed by
Liu et al. (2012). Most genetic tools for DSB analysis rely on
fluorescence-based systems, where efficient repair following a
nuclease-triggered DSB break in the GFP coding sequence leads
to functional fluorescent protein. Visualizing efficient repair with
such tools is easiest during early stages of development, when
essentially all cells can be imaged at once. However, it is important
to keep in mind that during these earliest stages of embryogenesis
alternative end joining (alt-EJ) is the favored repair mechanism

as demonstrated recently by the characterization of polq
mutants (Thyme and Schier, 2016). Furthermore, although the
experiments with these reporter constructs appear technically
easy to perform (DNA micro-injection in freshly fertilized eggs)
the resulting uneven distribution of the DNA often leads to high
variance in the response, and high concentrations of DNA will
lead to strong developmental abnormalities.

The lack of good reporter systems for DDR could be alleviated
by the use of CRISPR mediated genome modification to tag
endogenous proteins involved in DDR, thus circumventing the
scarcity of verified antibodies in zebrafish. Unfortunately such
precise genome editing has so far been difficult in fish, but novel
methods like tethering the repair template to the Cas9 enzyme,
using Biotin-Avidin systems (Gu et al., 2018) or Cas9 related
enzymes that do not destroy their own binding site (Moreno-
Mateos et al., 2017) hold a lot of promise.

Faulty repair of DSBs can lead to the presence of micronuclei
in dividing cells, which can be assessed with the micronucleus
assay (Pereira et al., 2011; Moreno-Mateos et al., 2017). More
micronuclei indicate higher doses of specific DNA damage
agents, or higher sensitivity to a specific agent (Oliveira et al.,
2009) due to one or more defects in the DDR pathway.

Accumulation of DNA damage might lead to cell death by
apoptosis. For this, the TUNEL assay can be applied, on both
whole mount zebrafish embryos, as well as sections of embryos
or adults. Alternatively, the less sensitive acridine orange assay
can be used (Reimers et al., 2006; Usenko et al., 2007).

Defects in the DDR pathway can lead to morphological
aberrations in developing embryos. For example, exposure to
amifostine will radiosensitize embryos, leading to morphological
perturbations during development (Geiger et al., 2006).
Interestingly, tp53 deficiency may revert the effect of irradiation:

FIGURE 1 | Network displaying key genes involved in apoptosis, DSB repair,
Fanconi anemia pathway and homologous recombination. Each node is
clickable and linked to a pathway in ZFIN (write to the corresponding author
for a hyperlinked version of the figure). Gray lines indicate which pathway a
certain gene belongs to. Blue lines indicate pathway associations between
genes. Multiple blue lines indicate data from multiple sources. Network was
constructed using GeneMANIA.
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for example, in irradiated zebrafish embryos tp53 deficiency does
not lead to altered morphological features and actually increases
survival, when compared to irradiated wild type controls (Duffy
and Wickstrom, 2007).

Accumulation of mutations caused by faulty DDR can lead to
genomic instability and ultimately tumorigenesis. For example,
brca2 mutant fish form neoplasia at later stages in life (Rodríguez-
Marí et al., 2010). In combination with p53 deficiency, an
accelerated tumorigenesis process can be observed, proving that
Brca2 conserved its tumor suppressor role in zebrafish (Shive
et al., 2010).

In conclusion, the DDR is a complex process that starts
seconds after DNA damage, with effects potentially visible up to
months after initial damage. All of the different aspects of DNA
damage and (faulty) repair can be observed through a number of
different methods in zebrafish. This demonstrates that zebrafish
is a powerful system to investigate the DDR response.

CONCLUSION AND OUTLOOK

Research on DNA damage repair dysfunctions and their impact
on aging and cancer is progressing fast and the zebrafish offers
an excellent toolbox for these studies, particularly for in vivo
observation of whole organism effects. Advantages over the
mouse system include the similarities in telomere length and
maintenance mechanisms (Anchelin et al., 2013; Henriques et al.,
2013; Carneiro et al., 2016a), the toolbox for genetic manipulation
(reviewed in Mayrhofer and Mione, 2016), the in vivo assays,
including fluorescent reporters and high throughput chemical
screens for drugs affecting DDR.

The number of models (including mutant and reporter lines)
is growing (see Figure 1 for a network of DDR-related zebrafish
tools, linked to ZFIN pathway database). This is mostly due to the
recent addition of somatic transgenics (reviewed in Idilli et al.,
2017; Callahan et al., 2018) and somatic knock outs (Ablain et al.,
2015; Di Donato et al., 2016). Reporters of DDR and different
DNA repair systems are being perfected, while more tools for
detection (antibodies, techniques, etc.) are being tested and
protocols developed that can benefit our field. Our understanding
of the complex relationships between DNA damaged cells and
the microenvironment, including the important role of the
immune system and damage signals outside of the affected cells is
developing and so is our ability to detect and interpret them.

We are confident that zebrafish research will soon be able to
provide unique and important contributions to the wider and
distinguished community of DDR scholars, with a perspective
that embraces molecular events at a tissue level throughout the
life-time of a vertebrate.
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