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Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives,
drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated
with metastatic disease, which is mostly incurable due to the refractoriness of
metastatic cells to current treatments. Increasing data demonstrate that tumors contain
a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor
and metastasis. CSCs are endowed with multiple treatment resistance capabilities
comprising a highly efficient DNA damage repair machinery, the activation of
survival pathways, enhanced cellular plasticity, immune evasion and the adaptation
to a hostile microenvironment. Due to the presence of distinct cell populations
within a tumor, cancer research has to face the major challenge of targeting
the intra-tumoral as well as inter-tumoral heterogeneity. Thus, targeting molecular
drivers operating in CSCs, in combination with standard treatments, may improve
cancer patients’ outcomes, yielding long-lasting responses. Here, we report a
comprehensive overview on the most significant therapeutic advances that have
changed the known paradigms of cancer treatment with a particular emphasis on
newly developed compounds that selectively affect the CSC population. Specifically,
we are focusing on innovative therapeutic approaches including differentiation therapy,
anti-angiogenic compounds, immunotherapy and inhibition of epigenetic enzymes and
microenvironmental cues.
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CANCER STEM CELLS AS A MAIN DETERMINANT OF
THERAPY REFRACTORINESS

Cancer stem cells (CSCs) are defined as being a subpopulation of cells within the heterogeneous
tumor mass. This subset of cells is endowed with the ability to self-renew and differentiate into
non-CSCs, indicating their capability of reproducing the tumor of origin when transplanted into
immunocompromised mice. CSCs are also considered responsible for the metastatic spreading
and chemoresistance. Strong evidence suggests that conventional treatments, including radio- and
chemotherapy, spare the CSC subset, which is responsible for minimal residual disease (MRD)
and cancer relapse (Valent et al., 2012). Indeed, CSCs are characterized by more pronounced levels
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of drug transporters, enhanced DNA-damage repair mechanisms
and the ability to escape the cytotoxic chemotherapy by
maintaining a quiescent state. New emerging therapeutic
approaches using immunotherapy, anti-angiogenic compounds
and/or epigenetic probes aim to overcome the CSC resistance to
treatments. CSCs have been thoroughly investigated in the past
decades, starting in 1971 when they were observed by Perce and
Wallance, who described aggressive undifferentiated cells that are
able to generate squamous cell carcinoma in vivo (Lobo et al.,
2007). CSCs were first identified in Myeloid Leukemia in 1997
and since then they have been proposed to be the tumor initiating
cells responsible for disease recurrence and metastasis formation.
Bonnet and Dick identified a subpopulation of tumor initiating
cells with marked stem-like properties in acute myeloid leukemia
(AML). Later, several groups also identified CSCs in solid tumors,
including breast, brain, thyroid, melanoma, colon, pancreatic,
liver, prostate, lung, head and neck, ovarian, and stomach cancers
(Lapidot et al., 1994; Bonnet and Dick, 1997; Al-Hajj et al., 2003;
Hemmati et al., 2003; Singh et al., 2004; Collins et al., 2005; Ma
et al., 2007; Fukuda et al., 2009; Boiko et al., 2010; Todaro et al.,
2010). Based on these studies, a large number of biomarkers can
be adopted to identify CSCs (Table 1).

Interfering With the Intrinsic Mechanisms
of Therapy Resistance in CSCs
Cancer stem cells own a superior capability to survive current
therapeutic regimens, meaning that chemo- and radiotherapy
are not sufficient to successfully eradicate cancer and are
inadequate, especially when the diagnosis occurs at a later stage
(Valent et al., 2012; Ajani et al., 2015). Recent evidence showed
that the CSC subpopulation is enriched after chemotherapy,
suggesting that this subset is responsible for the majority of
treatment failure (Visvader and Lindeman, 2008; Alison et al.,
2011). Chemoresistance is favored by several mechanisms,

TABLE 1 | Expression of CSCs markers according to tumor types.

Tumor type Cancer stem cell markers

Breast cancer CD133+, CD44+, CD24+, EpCAM+,
ALDHhigh

Colon cancer CD133+, CD44+, CD24+, CD166+,
EpCAM+, ALDHhigh, ESA+

Gastric cancer CD133+, CD44+, CD24+

Glioblastoma CD133+

Head and neck cancer SSEA-1+, CD44+, CD133+

Leukemia (AML) CD34+, CD38−, CD123+

Liver cancer CD133+, CD44+, CD49f+, CD90+,
ALDHhigh, ABCG2+, CD24+, ESA+

Lung cancer CD133+, CD44+, ABCG2+, ALDHhigh,
CD87+, CD90+

Melanoma ABCB5+, CD20+

Ovarian cancer CD133+, CD44+

Pancreatic cancer CD133+, CD44+, CD24+, ABCG2+,
ALDHhigh, EpCAM+, ESA+

Prostate cancer CD133+, CD44+, α2β1+, ABCG2+,
ALDHhigh

among which cellular plasticity. Indeed, Liu et al. (2014)
and Luo and Wicha (2019) demonstrated that breast CSCs
can switch from proliferating epithelial characteristics to a
mesenchymal state which contributes to metastatic dissemination
and resistance to therapies.

Nevertheless, the resistance of CSCs to therapy is usually
not limited to one drug and this phenomenon referred to as
multidrug resistance (MDR) (Efferth et al., 2008). MDR is the
result of the endogenous expression of detoxifying enzymes,
increased drug efflux pump levels, enhanced DNA repair
activity, reduced drug response and activated survival pathways
(Singh and Settleman, 2010). These features, combined with the
capability of CSCs to evade the immune system, to activate an
epithelial to mesenchymal transition (EMT) program and to
adapt their metabolism under scarce nutrient conditions, render
CSCs almost an imperishable cancer population (Figure 1).

The aldehyde dehydrogenase (ALDH) 1 belongs to the
ALDH superfamily, which is composed by 19 enzymes (Hsu
et al., 1999). ALDH1 is the main isoform that by oxidizing
aldehydes to carboxylic acids and retinol to retinoic acid,
allows the detoxification from drugs and reactive oxygen
species (ROS) (Singh et al., 2013). ALDH is known to be
expressed by normal stem cells, for this reason its activity
may be an intrinsic characteristic of CSCs as well. As a
result, high levels of ALDH1 activity were found in CSCs,
thus representing a reliable marker for the identification of
this subset (Charafe-Jauffret et al., 2010). ALDH1 positive cells
showed an increased potential of forming xenograft tumors
in AML and breast cancer (Cheung et al., 2007; Ginestier
et al., 2007). Thereafter, ALDH1+ cells from stomach, lung,
liver, head and neck, pancreas, cervix, thyroid, prostate, colon,
bladder, and ovary tumors were successfully transplanted into
mice (Ma et al., 2008a). The implication of the ALDH
superfamily in detoxification suggests that these enzymes may
have a key role in CSCs’ chemoresistance. Indeed, it has
been demonstrated that ALDH expression confers resistance
to several chemotherapeutic agents, such as cyclophosphamide,
cisplatin, paclitaxel, docetaxel, doxorubicin, and gemcitabine in
leukemia, medulloblastoma, adenocarcinoma, colon and breast
cancer (Hilton, 1984; Friedman et al., 1992; Tanei et al., 2009;
Duong et al., 2012). Moreover, the inhibition of ALDH activity
with disulfiram, sorafenib, and sulforaphane can sensitize CSCs
to therapy, providing further confirmation of ALDH role in
chemoresistance (Rausch et al., 2010).

A large number of studies have demonstrated that the
reduction of chemotherapy efficiency is related to an increased
drug efflux from cancer cells. This is caused by the aberrant
expression of a family of proteins known as ATP-binding cassette
(ABC) transporters, which belong to a family of 49 molecules,
usually implicated in membrane trafficking using ATP as a source
of energy. Among these proteins, ABCB1 (also known as MDR1
or P-gp), ABCG2 (also known as BCRP1), ABCB5 and ABCC1
were largely studied and characterized (Leonard et al., 2003; Lobo
et al., 2007). Starting from these premises, it was hypothesized
that CSCs may over-express ABC transporters as compared to
non-CSCs. Indeed, several groups independently demonstrated
that CSCs share features with the Hoechst dye excluding side
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FIGURE 1 | The hallmarks of cancer stem cells. CSCs are endowed with a number of innate ad adaptive responses such as quiescence, EMT, increased DNA repair
and detoxifying enzymes, metabostemness, immune evasion and over-expression of ABC transporters, which gave them the ability to survive changes in the
microenvironment and anti-cancer therapies.

population (SP), which highly expresses efflux pumps able
to induce resistance to harmful toxins and chemotherapeutic
compounds (Hirschmann-Jax et al., 2004; Ho et al., 2007). ABC
transporters are involved in the resistance to a wide array of
drugs. In particular, it was demonstrated that ABCB1 is over-
expressed in breast CSCs, causing their resistance to doxorubicin
and paclitaxel, and in multiple myeloma stem cells, refractory to
carfilzomib (Wright et al., 2008; Hawley et al., 2013). On the other
hand, ABCG2 is responsible for the resistance of hepatocellular
CSCs to 5-fluorouracile, mephedrone, and cisplatin, whereas
ABCB5 was found on circulating melanoma cells resistant to
doxorubicin (Frank et al., 2005; Shi et al., 2008). The inhibition
of these transporters represents a useful tool to overcome CSCs’
chemoresistance. This was demonstrated by Frank et al., who
targeted ABCB5 by way of a specific blocking monoclonal
antibody to restore melanoma cells’ sensitivity to doxorubicin,
and by Lancet group who demonstrated the sensitizing
effect of zosuquidar, a P-gp inhibitor (Frank et al., 2005;
Lancet et al., 2009).

The B-cell lymphoma-2 (BCL-2) family plays a pivotal role
in regulating cell fate. The pro-survival proteins belonging to
this family are BCL-2 itself, B-cell lymphoma extra large (BCL-
xL), BCL-2-like-2 (BCL-W), BCL-2-related protein A1A (BCL-
A1A), and myeloid cell leukemia sequence-1 (MCL1), whereas
the pro-apoptotic molecules include BCL2-associated-X-protein
(BAX) and BCL-2 homologous antagonist killer (BAK) (Kelly and
Strasser, 2011). Among these molecules, BCL-2 was found over-
expressed in breast CSCs, while both BCL-2 and BCL-xL were
found up-regulated in leukemia CSCs (Konopleva et al., 2002;
Madjd et al., 2009). The role of the BCL-2 family has been further
elucidated by Strasser et al. (1990) who demonstrated that BCL-
2 over-expression promotes tumorigenesis. Consequently, the
inhibition of BCL-2 downstream pathways caused an increased

sensitization to chemotherapy in colon and hepatocellular CSCs
(Todaro et al., 2007; Ma et al., 2008b).

In vitro evidence suggests that CSCs are slow-cycling if
compared to non-CSCs (Viale et al., 2009). Interestingly,
quiescence makes CSCs less sensitive to cell-cycle directed
therapies such as vinca alkaloids, which prevents the polarization
of microtubules and taxanes, known to stabilize existing
microtubules (Gascoigne and Taylor, 2009).

Chemotherapeutic agents and radiotherapy are used in clinical
setting to induce DNA damage. Of note, CSCs do not respond
to therapy due to increased activity of DNA repair machinery
(Bao et al., 2006; Eyler et al., 2008; McCord et al., 2009;
Ropolo et al., 2009). In fact, in glioma and breast CSCs, a
higher phosphorylation of DNA repair proteins was observed,
in particular in ATM, CHK1, and CHK2 (Eyler and Rich, 2008;
Gallmeier et al., 2011; Maugeri-Sacca et al., 2011). Moreover,
ovarian and lung CSCs are enriched after cisplatin treatment,
a further indication that chemotherapy is limited to kill the
proliferating fraction of the tumor bulk (Levina et al., 2008;
Rizzo et al., 2011).

Furthermore, it has been demonstrated that chemotherapy
induced damage stimulates glioblastoma multiforme and bladder
CSCs to divide and thus to repopulate tumor bulk (Chen
et al., 2012; Kurtova et al., 2015). On the other hand, this
induced proliferation may be exploited to increase the efficacy
of therapeutic regimens (Saito et al., 2010). Interestingly, the
induction of CSC differentiation by using the bone morphogenic
protein 4 (BMP4) renders these cells more susceptible to
standard and targeted anti-cancer therapies (Lombardo et al.,
2011). Furthermore, the all-trans retinoic acid is among the
most common drugs used to cause differentiation of stem
cells particularly in acute promyelocytic leukemia (Nowak
et al., 2009). Inhibitors of epigenetic modulators such as DNA
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methyltransferase 1 (DNMT1), histone deacetylases (HDACs)
and bromodomain and extra-terminal (BET) inhibitors have
shown capabilities to function as differentiation therapies for
CSCs in various tumor types (Toh et al., 2017).

Additionally, one cancer hallmark is the activation
of angiogenesis, which concurs with the nurture of the
tumor mass by stimulating de novo vessels formation
(Hanahan and Weinberg, 2011).

Targeting the ‘Metabostemness’
Compelling evidence suggests that stem-like features can be
acquired as a result of metabolic shifts, which are able to render
normal stem cells or differentiated cancer cells more susceptible
to epigenetic reprogramming. These cells are thus more likely
to move up the cancer cell hierarchy by their expression of
pluripotent genes. The metabolic insults, able to induce this
reprogramming into CSCs in the context of a pre-malignant
tumor, are collectively termed ‘metabostemness’ (Menendez
and Alarcon, 2014). Consistently, some of the intermediates
deriving from mutated metabolic enzymes, involved in glycolysis,
tricarboxylic acid cycle, oxidative phosphorylation (OXPHOS)
and mitochondrial fatty acid oxidation, act as oncometabolites
for DNA and histones epigenetic modifications by driving
tumorigenesis (Menendez and Alarcon, 2014). For this reason,
targeting metabolic processes may represent a successful strategy.
In particular, in most cases OXPHOS is the preferential source
of energy rather than glycolysis, probably because of the low
levels of glucose in tumors. Moreover, increased OXPHOS
is a hallmark of resistance to chemotherapy (Lee et al.,
2017). Therefore, it is not surprising that the targeting of
OXPHOS via the BCL-2 inhibitor venetoclax in combination
with the hypomethylating agent azacitidine was able to impair
leukemia stem cells (LSCs) proliferation and metabolic activity
(Jones et al., 2018; Pollyea et al., 2018). Accordingly, the
OXPHOS inhibitor salinomycin was able to kill breast CSCs
(Gupta et al., 2009). Interestingly, it has been shown that,
during relapse, LSCs are able to rescue OXPHOS levels after
amino acid depletion thanks to increased mitochondrial fatty
acid oxidation (FAO) (Jones et al., 2018). FAO can also be
promoted by the crosstalk with adipose tissue, which fuels
LSCs metabolism by acting as a niche and promoting LSCs
chemoresistance (Ye et al., 2016). In addition, the targeting
of lipolysis, and in particular of COPI-Arf1 complex, was
shown to be a promising tool for the eradication of CSCs
in adult Drosophila (Singh et al., 2016). The crucial role
of mitochondria in CSCs impelled several groups to develop
therapeutic strategies aimed at their targeting (Skoda et al., 2018).
Notably, mitochondrial biogenesis can be abrogated through
the estrogen-related receptor α inhibitor XCT790 (Deblois and
Giguere, 2011; Deblois et al., 2013), whereas their fission can
be impaired thanks to the dynamin-related protein 1 (DRP1)
inhibitors Mdivi-1 and P110 (Xie et al., 2015). In addition, it
has been demonstrated that DRP1 activation may be promoted
by the interaction between cyclooxygenase-2 (COX-2) and
mitochondria. For this reason COX-2 inhibitors, resveratrol
and celecoxib, were repositioned as mitochondrial fission
inhibitors (Guo et al., 2015; Cilibrasi et al., 2017). Inhibitors

of mitochondrial respiration were used to target pancreatic
CSC subset (Sancho et al., 2016). Likewise, the inhibition
of the mitochondrial complex I through the repositioning of
the antidiabetic drug Metformin was recently proposed with
encouraging results (Wheaton et al., 2014).

CANCER STEM CELLS, TUMOR
MICROENVIRONMENT, ANGIOGENESIS
AND METASTASIS: HOW TO DISRUPT
THIS INTRICATE NETWORK?

Angiogenesis is a multistep physiological process, characterized
by the formation of new vessels from preexisting ones,
which governs many biological activities, such as development
and tissue repair. In order to maintain tissue homeostasis,
angiogenesis is tightly regulated by a balance between pro-
and anti-angiogenic factors (Hanahan and Folkman, 1996). In
pathological conditions, such as cancer, this balance is destroyed
favoring the secretion of pro-angiogenic factors. The term “tumor
angiogenesis” was used for the first time by Folkman (1971) to
point out the sprouting of cancer-associated neo-vessels from
existing vessels that are in close proximity. Proliferating cancer
cells require oxygen and high amount of nutrients, leading
to the formation of hypoxic areas in the innermost part of
the tumor. Under hypoxic condition, CSCs increase hypoxia-
inducible factor-1 (HIF-1) expression and activate the HIF-1
pathway, enhancing the secretion of many angiogenic growth
factors (Pugh and Ratcliffe, 2003; Gilbertson and Rich, 2007).
In particular, high levels of vascular endothelial growth factor-
A (VEGF-A) recruit VEGF receptors (VEGFRs)-expressing
endothelial cells (ECs), named tip cells. After VEGF-A binding,
tip cells up-regulate cell proliferation, cytoskeleton remodeling
and migration pathways (MAPK, PI3K/AKT, RhoA), sprout
toward tumor cells and activate the adjacent ECs (stalk cells) to
form new tumor vessels (Ricciuti et al., 2017). In addition to ECs,
CSCs’ secreted cytokines prime the microenvironment (tumor
microenvironment, TME) and recruit myeloid cells to fuel cancer
progression. In particular, cancer-associated fibroblasts (CAFs)
and activated tumor-associated macrophages (TAMs) secrete
high levels of metalloproteases (MMPs), growth factors and
interleukins to sustain angiogenesis and to promote CSC invasion
(Bhowmick et al., 2004; Crawford and Ferrara, 2009; Owen
and Mohamadzadeh, 2013). Furthermore, it has been reported
that de novo vessel formation may be boosted by CSCs from
different tumor types; this process is termed vascular mimicry
(Weis and Cheresh, 2011). It has been described that breast and
glioblastoma CSCs could give rise to both ECs and pericytes
supporting tumor growth and progression (Bussolati et al., 2009;
Ricci-Vitiani et al., 2010; Wang et al., 2010; Cheng et al., 2013).
Unlike normal vasculature, tumor vessels are tortuous and more
permeable due to the lower presence of pericytes (Jain, 2005;
Sawada et al., 2012). This “leakiness” reduces the capacity of
chemotherapeutic agents to target cancer cells and facilitate the
intravasation of metastatic cancer cells. These circulating tumor
cells (CTCs) possess a CSC-like phenotype, characterized by a
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high expression of EMT-related genes (Burgess, 2013; Grillet
et al., 2017). Although many cancer cells are able to intravasate,
only few cells survive in the bloodstream and extravasate,
activating a mesenchymal-epithelial transition program (Tam
and Weinberg, 2013). The persistence of extravasated cells
requires the presence of a favorable host microenvironment
(metastatic niche) and the escape from immune cell surveillance.
For these reasons, tumor cells remain in a dormant state, which
can last many years, and, after the release of molecules and
growth factors by the metastatic niche, they restart to proliferate
and disseminate (Gao et al., 2012; Giancotti, 2013) (Figure 2).

Targeting Tumor Angiogenesis and
Metastasis
The possibility of specifically blocking tumor angiogenesis and
the metastatic process could have a clinical impact on cancer
patients’ outcome. Bevacizumab is a humanized monoclonal
antibody that binds to VEGF, impairing VEGF/VEGFR
interaction, approved in 2004 by the Food and Drug
Administration (FDA) for the treatment of metastatic colorectal
cancer (CRC) in combination with standard therapy (Ferrara
et al., 2004; Hurwitz et al., 2004). Then, it was approved
for the treatment of other metastatic cancers, among which
non-squamous NSCLC and cervical cancer (Tewari et al.,
2014; Lin et al., 2016). In 2008, bevacizumab was approved
for the treatment of metastatic Her2 negative breast cancer in
combination with paclitaxel. However, other studies did not
show a significant overall survival (OS) and the FDA withdrew
the approval in 2011 for breast cancer treatment (Miller et al.,
2007; Aalders et al., 2017). Conversely, the European Medicines
Agency maintains bevacizumab approval in combination with
chemotherapy. Another strategy to inhibit tumor angiogenesis
is the use of tyrosine kinase inhibitors, such as sorafenib and
sunitinib. Sorafenib is an inhibitor of VEGFR-1,-2,-3 and
PDGFR-β, approved for the treatment of metastatic renal
cell carcinoma and unresectable hepatocellular carcinoma
(Wilhelm et al., 2006; Escudier et al., 2007), whereas sunitinib
blocks VEGFR-2 and PDGFR phosphorylation and is used
for gastrointestinal tumor and metastatic renal cell carcinoma
(Sun et al., 2003; Motzer et al., 2007). Although anti-angiogenic
therapy may potentially have clinical implication, the increase of
OS is insufficient. This is probably due to (i) acquired resistance
(Lu et al., 2012); (ii) the increment of tumor hypoxia (Erler et al.,
2009) and (iii) the diminished delivery of chemotherapeutic
agents (Jain, 2005).

Metalloproteases are crucial mediators of tumor angiogenesis
and cell migration (Kessenbrock et al., 2010). Although many
MMP inhibitors have been developed and many clinical trials
have been conducted, none of these have increased patients’ OS
(Coussens et al., 2002; Winer et al., 2018). On the contrary, MMP
inhibitors have numerous side effects, due to the MMP’s role
in numerous physiological processes. In order to obtain clinical
benefits, inhibitors should be highly selective for MMPs that drive
tumor progression.

The dysregulation of stem cell-specific signaling pathways,
such as Notch, Wnt and Hedgehog, could reduce metastatic

progression. In glioma patients, the use of a gamma secretase
inhibitor (RO4929097) reduced CSC number; unfortunately
the prolonged use of this inhibitor led to the acquisition
of angiogenesis-mediated resistance (Pan et al., 2016; Xu
et al., 2016). Vismodegib, an inhibitor of a component of the
Hedgehog pathway, Smoothened, was used in combination with
gemcitabine in pancreatic cancer, without affecting CSC number
(Catenacci et al., 2015). In order to increase the efficacy of these
inhibitors that target CSCs and block metastasis development,
further studies must be carried out especially to reduce the
side effects.

Cytokines, chemokines and growth factors secreted by TME
cells enhance the migration capacity of cancer cells and promote
angiogenesis (Wakefield and Hill, 2013; Scala, 2015; Gaggianesi
et al., 2017). Therefore the inhibition of their receptors could have
clinical benefits. In fact, reparixin, an inhibitor of IL-8 receptor
CXCR1, reduced the breast CSC population and lung metastases
(Ginestier et al., 2010) and is used in combination with paclitaxel
in an ongoing clinical trial in triple negative breast cancer patients
(Marcucci et al., 2016).

HARNESSING THE IMMUNE SYSTEM TO
FLUSH OUT AND ERADICATE CANCER
STEM CELLS

The new frontier of cancer treatment is aimed at strengthening
the immune system’s defenses against cancer cells. In the
last decade the remarkable progress made on immunotherapy
heralded an impressive novelty in the management of patients
affected by a variety of cancers. The results obtained by immune-
based therapies in terms of durable objective response rate
exceeded expectations and it is no wonder that the scientists
James Allison and Tasuku Honjo were recently awarded the
2018 Nobel prize in medicine for their pioneering discoveries
in immunotherapy. Their studies were different, although based
on the same principle: to fight cancer by harnessing the
immune system.

Several compounds based on the inhibition of immune
checkpoints have been approved by the FDA since 2011. Ever
since, the most promising of these therapies have been antibodies
targeting the cytotoxic T lymphocyte-associated protein 4
(CTLA-4) or the programmed cell death 1 (PD-1) pathway,
administered as single therapy or in combination.

The role of CTLA-4 as a negative regulator of T cell
activation was discovered in the laboratory of James Allison
and Jeffrey Bluestone. To induce antitumor responses, T cells
are initially activated in the lymph node in two subsequent
steps (i) engagement of T cell receptor (TCR) with a tumor
antigen MHC complex on antigen presenting cells (APCs)
and (ii) binding of CD28 to the costimulatory molecule B7.
Following T cell activation, CTLA-4 translocates from the
intracellular compartment to the cells’ surface to compete with
the costimulatory molecules, causing the inhibition of T cell
proliferation. The blockade of this essential immune checkpoint
with monoclonal antibodies enables T cells to active, expand and
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FIGURE 2 | Tumor angiogenesis and metastatic process. Cancer cells secrete pro-angiogenic and pro-tumorigenic factors (MMPs, VEGF-A, HIF-1A, cytokines,
chemokines, growth factors). VEGF-A activates endothelial cells (ECs) in tip cells, that direct the sprouting vessels, and stalk cells, implicated in vessel stability.
Moreover, cancer cells-released cytokines activate cancer-associated fibroblasts (CAFs) and activated tumor-associated macrophages (TAMs), that in turn favor the
intravasation of cancer stem cells (CSCs). Circulating cancer cells (CTCs) through the bloodstream reach target organ, extravasate and start to proliferate and
disseminate. CSC, cancer stem cell; CTC, tumor circulating cells; DCC, differentiated cancer cell; CAF, cancer associated fibroblast; TAM, tumor associated
macrophage; EC, endothelial cell; PC, pericyte cell.

reach the tumor burden, where they can find the cognate antigen
presented by cancer cells (Ribas and Wolchok, 2018).

Otherwise, Tasuku Honjo demonstrated that TCR
engagement at the tumor site causes the expression of the
PD-1 receptor that binds the PD-1 ligand (PD-L1) on cancer
cells, causing the exhaustion of T cells and hampering the
antitumor cytotoxic T cell responses (Okazaki et al., 2013).

These two mechanisms are generally implemented to impede
the overstimulation of the immune system but in the context
of cancer, they become detrimental for cancer cell elimination.
Nevertheless, an immune checkpoint blockade could be exploited
to potentiate the antitumor immune response.

Ipilimumab was the first CTLA-4 inhibitor that entered the
clinic and was approved by the FDA in 2011. A substantial
portion of advanced melanoma patients treated with ipilimumab
had a durable response that was unluckily accompanied by
toxicity, such as colitis and the inflammation of endocrine
glands. Nivolumab and pembrolizumab were the first anti-
PD-1 compounds approved by the FDA for melanoma
(2014) and NSCLC (2015) followed by the approval of anti-
PD-L1 antibodies, atezolizumab, avelumab, and durvalumab.
Interestingly, the anti-PD-1 pathway inhibitors were approved

for the first time based on their genetic background as for
example, the presence of unstable microsatellite rather than the
cancer type. Objective response rate was high varying from
15% for head and neck, gastroesophageal, bladder and urinary
tract cancers and reaching almost 90% for Hodgkin’s disease. Of
interest, an ongoing phase 2 clinical trial is assessing the optimal
adaptive dosage of an ipilimumab and nivolumab combination in
metastatic melanoma patients (NCT03122522). Moreover, other
promising results have been achieved by preclinical studies that
show a synergistic effect of anti-HER2 antibodies and immune
checkpoint inhibitors in breast cancer (Su et al., 2018).

Albeit immune checkpoint inhibitors are considered the
spearhead of immunotherapy against cancers that show an high
mutation burden, the expected accumulation of neoantigen and
the high PD-1/PD-L1 expression (Bailey et al., 2018) may not
produce a greater antitumor response (Gide et al., 2018).

According to the new iRECIST criteria of tumor response
following the administration of immunotherapy (Seymour et al.,
2017), patients undergoing treatment resistance may experience
pseudoprogression or hyperprogression, which consists in the
initial increase of tumor volume followed by its decrease or
in a faster progression of the disease as compared to the
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predicted rate, respectively (Champiat et al., 2017; Siefker-Radtke
and Curti, 2018). The mechanisms of resistance to immune
checkpoint inhibitors may be caused by the persistence of a
subpopulation of CSCs. Indeed, the activation of transcriptomic
profiles characterized by genes involved in EMT, angiogenesis
and stemness causes the lack of T cell recognition and
immunotherapy refractoriness (Spranger et al., 2015; Hugo et al.,
2016). Indeed, CSCs can evade the immune system (Lee et al.,
2016; Hsu et al., 2018) mainly due to the high expression
levels of PD-L1 (Wu et al., 2017), the down-regulation of
molecules involved in the presentation of the antigen to T cells
(Bruttel and Wischhusen, 2014) and their capacity to promote
the formation of an immune suppressive microenvironment
(Jachetti et al., 2015; Sorrentino et al., 2018; Szarynska et al.,
2018). On the other hand, the high levels of PD-L1 expressed
by the CSCs render them potentially susceptible to treatments
with checkpoint inhibitors, which can be combined with other
immune-based therapies for an effective response (Figure 3).

For instance, in a syngeneic melanoma mouse model, the
combination of immune checkpoint inhibitors (PD-L1 inhibitors
and CTLA-4 inhibitors) with CSC lysate-pulsed dendritic cells
(DCs) vaccine augmented T cell antitumor response and led to
tumor regression (Zheng et al., 2018).

The chimeric antigen receptor (CAR) T cell transfer is
currently being investigated (Gargett et al., 2016) and holds great
promise in the treatment of liquid and solid malignancies (Grupp
et al., 2013; Mount et al., 2018). CAR T cells are constituted
by an antigen receptor linked by a single chain fragment to an
intracellular domain, usually supplemented with a co-stimulatory
molecule. CAR T cells offer an exceptional substrate for the
development of selective CSCs therapies, being potentially able
to recognize any antigen exposed on the surface of CSCs (Guo
et al., 2018). A case report has recently been described by Feng
et al. (2017), which shows the efficacy of the subsequent infusion

of CAR T anti-EGFR and anti-CD133, a well known marker that
identifies CSCs, in a patient affected by cholangiocarcinoma. The
CAR T-EGFR and CAR T-CD133 are currently under clinical
evaluation (NCT01869166 and NCT02541370). Moreover, CAR
T cells, which target the CSC marker EpCAM, reduced prostate
cancer progression in preclinical models (Deng et al., 2015).
Thus, the CAR T cell-based therapies offer the opportunity to
specifically eliminate the CSC subpopulation and are a valid
alternative to checkpoint inhibitors, in a subset of cancer with
paucity of neoantigens expression. Additionally, CAR T cells
transfer could strengthen the efficacy of CTLA-4/PD-1 pathway
inhibitors and targeted therapies.

Hence, contrary to the targeted therapies, which are almost
mutation-related and could induce the reactivation of alternative
survival pathways, immunotherapy offers the opportunity to
achieve long-lasting responses in a broad range of tumor types,
by overcoming the highly adaptive behavior of CSCs.

EPIGENETIC REPROGRAMMING AND
CANCER STEM CELLS

Dynamic epigenetic reprogramming of the CSC subpopulation
adds a further layer of inter- and intra-tumor heterogeneity
to the complexity of tumors, which represents a hurdle for
successful therapies. Epigenetics is the study of heritable changes
and phenotypes not encoded in DNA (Dawson, 2017). The
epigenetic enzymes responsible for histone modifications
(writers, erasers, and readers) and DNA methylation (DNMT)
have been extensively described (Arrowsmith et al., 2012). The
histone methylation and acetylation are catalyzed by histone
methyltransferases (HMTs) and histone acetyltransferases
(HATs), while the histone demethylation and deacetylation are
catalyzed by the histone demethylases (HDMs) and HDACs,

FIGURE 3 | The efficacy of immune-based therapies in the eradication of CSCs. The standard anti-cancer therapies are able to affect differentiated cancer cells
(DCCs) while sparing CSCs. Novel immunotherapy approaches have shown promising therapeutic efficacy in several type of cancers. Combinations of checkpoint
inhibitors (CTLA-4 and PD-1/PD-L1 pathway inhibitors) and CAR T cell transfer, in particular, efficiently eliminate the CSCs subpopulation.
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respectively. Acetylated histones tend to be less compact
and more accessible to RNA polymerase and transcriptional
machinery, thereby enabling the transcription of nearby genes.
Methylated histones can be either repressive or activating,
depending on the site and degree of methylation. In particular,
histone H3/H4 acetylation (H3Ac, H4Ac) and H3 lysine 4
methylation (H3K4me) are generally associated with active
transcription, while histone H3 lysine 9 and 27 methylation
(H3K9me, H3K27me) are commonly linked to gene repression
(Bird, 1986; Jones and Takai, 2001; Venters and Pugh,
2007; McCabe et al., 2009). The well-known “histone code”
hypothesis is based on the knowledge that different patterns of
histone modifications on each histone determine the ultimate
transcriptional event, either gene expression or silencing (Strahl
and Allis, 2000). Several interrelated molecular mechanisms
contribute to epigenetic gene regulation, such as chromatin
remodeling via ATP-dependent processes and exchange of
histone variants, regulation by non-coding RNAs, methylation
and related modifications of cytosines on DNA, as well as
covalent modification of histones. Local chromatin state at gene
promoter is governed by DNMT and posttranslational histone
modifications, thus playing an essential role in transcription
regulation. DNMT1, DNMT3A, and DNMT3B are responsible
for the methylation of the CpG islands, CpG-dense regions that
are included in the majority of human gene promoters. While
the unmethylated status of CpG islands is aimed to maintain
promoter chromatin in a transcriptionally permissive state, their
methylation is linked to gene silencing (e.g., X-chromosome
inactivation, tumor suppressor gene silencing in cancers). The
chromatin remodeling complexes, including the SWI/SNF
complex, are at least five families that use ATP-hydrolysis
to modify chromatin structure and remodel nucleosomes.
Polycomb repressive complexes (PRC1 and PRC2) are epigenetic
repressors of transcriptional programs fundamental for
the cell’s identity, development, differentiation and lineage
specification, by catalyzing the trimethylation of histone 3
lysine 27 (H3K27me3) (Di Croce and Helin, 2013). Recently,
it has been demonstrated that EZH2, the functional enzymatic
component of the PRC2, is required for stable self-renewal and
differentiation not only in mouse but also in human embryonic
stem cells (Collinson et al., 2016).

Epigenetic alterations, including DNMT and histone
modifications, are a key manifestation of the stem cells’
differentiation into various tissue subtypes. The increasing
number of recently discovered mutations in epigenetic regulators
has shed new light on the importance of epigenetic dysregulation
in tumor initiation and in the biology of CSCs. These may
originate from a deregulated epigenetic reprogramming,
which leads to the loss of differentiation genes and to the
reestablishment of stem cell-specific characteristics. Epigenetic
mechanisms play an important role in endowing stem cell
characteristics to cancer cells. This is well established in many
types of cancer, as: (1) CSC markers are directly regulated by
epigenetic modifications (i.e., CD133 and DCLK1) (Yi et al.,
2008; Vedeld et al., 2014); (2) CSCs exhibit mutations in
chromatin remodeler components (loss of function mutations
of PRC2 complex and deregulation of EZH2) (van Vlerken

et al., 2013); (3) EMT, which confers cells with tumor-initiating
capabilities and CSC properties (Mani et al., 2008), is finely
controlled by epigenetic mechanisms (Kanwar et al., 2010; Beck
et al., 2015; Avgustinova and Benitah, 2016).

This link between epigenetics and CSCs suggests that
epigenetic alterations may be key therapeutic targets in this
abnormal subpopulation. Furthermore, the development of
specific epigenetic enzymes inhibitors has been a promising area
of drug discovery, due in part to the “druggability” of these critical
regulators. Therefore, an extensive investigation of the epigenetic
enzymatic activities that are critical for the reprogramming of
CSCs toward differentiation may be crucial for the tailoring
and designing of new therapeutic strategies against a variety of
deadly tumors. Hence, epigenetics enzymes are fundamental in
regulating survival pathways, EMT, metastatic phenotype and
chemoresistance in CSCs (Figure 4).

CSC Formation and Maintenance
Of note, many epigenetic mechanisms that promote the
acquisition of uncontrolled self-renewal and CSC formation are
based on driver mutations that have been found in principal
epigenetic regulators, in both chromatin-related driver genes and
DNA-methylation-related genes (Wainwright and Scaffidi, 2017).

LSCs bear the fusion protein product of the KMT2/MLL
gene. This gene encodes for a HMT involved in many biological
processes. Importantly, the MLL fusion proteins have been
associated with an oncogenic role due to their ability to initiate
the tumorigenic process in both AML and acute lymphoblastic
leukemia (ALL) cells (Cozzio et al., 2003; Krivtsov et al., 2006;
Somervaille et al., 2009).

In about 33% of pediatric glioblastoma patients, gain-of-
function mutations have been identified in the gene encoding
for histone H3. The most represented alteration is a K27M
substitution, which leads to the impaired functions of the PRC2
complex and a lack of gene repression, which in turn leads to
the aberrant activation of oncogenic programs and self-renewal
ability (Lewis et al., 2013). DNMTs are mutated in 25% of AML
patients. These mutations hamper the enzymatic activity and
leads to the propagation of pre-LSCs.

Importantly, the dynamic cooperation between the genetic
and epigenetic alterations in cancer initiation and promotion has
been supported by recent evidence, especially in CRC model.

DNA methyltransferases have been shown to play a key
role in the initiation and progression of CRC. Many tumor
suppressor gene promoters are hypermethylated in CRC (MLH1,
RB, P16, RARB, SFRP). The expression and the activity of the
DNMTs seem to be controlled by APC mutation, a driver event
in CRC (Hammoud et al., 2013), confirming once again that
genetic and epigenetic interactions may cooperate to induce
tumor initiation and progression. Specifically, it has been shown
that the expression levels of DNMT1 are higher in CRCs
compared to normal controls, suggesting that the elevated levels
of this DNA methyltransferase may determine a dysregulation
in the methylome by suppressing the transcription of the tumor
suppressor genes. Moreover, this supports the hypothesis that
deregulation of DNMT in CR-CSCs could be a crucial event
during cancer progression.
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FIGURE 4 | Model showing the different layers of epigenetic regulation in CSCs and the potential therapeutic approaches. The chromatin fiber and the nucleosome
are represented in the nucleus of a cancer stem cell. Epigenetic enzymes [writers (1), erasers (2), readers (3), and DNA methyltransferases (4)] are the principal actors
in regulating the key survival pathways in CSCs, such as the Notch, Wnt and Hedgehog signaling. Moreover, epigenetic alterations guide the epithelial-mesenchymal
transition (EMT) and the aberrant process of metastatization in CSCs, contributing to CSC resistance to therapy. Many of the latest generation compounds
(epigenetic probes) have been designed to target the epigenetic enzymes involved in the CSC survival, maintenance, EMT and metastasis. DNMTi (DNA
methyltransferase inhibitors): decitabine, azacitidine; HMTi (histone methyltransferase inhibitors) such as EZH2, DOT1L, and SETD8 inhibitors; HDACi (histone
deacetylase inhibitors): vorinostat, romidepsin; BETi (bromodomain inhibitors): JQ1, I-BET762. Me, methylation; Ac, acetylation.

Crucial pathways involved in CSC maintenance, such as
Wnt/β-catenin, Notch and Hedgehog signaling pathways are
finely regulated by epigenetic mechanisms. These pathways in
physiological conditions control self-renewal and development
in embryonic and adult stem cells. DNMT, aberrant histone
modification and also non-coding RNA have been identified as
epigenetic aberrations in the main regulators of these pathways
in CSCs. For instance, aberrant DNMT silences Wnt inhibitory
factor genes with a tumor suppressor role, such as WIF-1,
AXIN-2, SFRP-1, and DKK1 (Suzuki et al., 2004). The promoter
of DKK1 is also silenced by decreased acetylation of H3K16
and increased H3K27 trimethylation (Hussain et al., 2009). In
multiple myeloma cells, an enhanced histone acetylation has
been found at the promoter region of JAGGED2, a Notch

receptor ligand, leading to the activation of Notch signaling by
overexpression of its ligand (Ghoshal et al., 2009). The histone
methylation of H3K27 is inhibited on the promoters of two Notch
signaling target genes, HES1 and HES5. This is accomplished by
the serine-threonine kinase receptor-associated protein (STRAP),
which interacts with PRC2 complex components, thus leading
to gene activation in CRC. SNF5, a member of a chromatin
remodeler complex SWI/SNF, binds directly Gli1, which is
the down-stream effector of the Hedgehog signaling pathway,
leading to a repression of the target genes transcription (42).
Indeed, in human malignant rhabdoid tumors inactivation of
SNF5 results in an aberrant activation of Hedgehog signaling.
Moreover, HDAC1 is required to transcriptionally activate Gli1
and Gli2. However, this inhibitory mechanism is hampered by
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the frequent somatic mutations in REN gene, which encodes for
the E3-ubiquitin ligase complex that mediates the degradation
of HDAC1 (Di Marcotullio et al., 2004; Canettieri et al., 2010).
Aberrant DNA hypomethylation of the Sonic Hedgehog ligand
promoter is responsible for the pathway activation.

Therefore, the integration of genetic and epigenetic
mechanisms disrupts the balance between self-renewal and
pro-differentiation stimuli thus generating an aberrant program
that sustains CSC survival.

EMT, Metastasis, and Resistance to
Therapies in CSCs
The concept of CSCs in the maintenance and progression of
many types of cancer is now well accepted and continues to
evolve (Todaro et al., 2007, 2014; Kemper et al., 2010). This
cell status is dynamic during cancer progression as it is mainly
affected by genetic and epigenetic changes and influenced by the
TME. Another characteristic of CSCs is their ability to invade
and metastasize by acquiring the EMT phenotype that can be
determined by examining the expression of E-cadherin (CDH1)
and vimentin, which represent the effectors for Wnt and Notch
signaling. It has been reported that Wnt/β-catenin signaling plays
a critical role in regulating growth and maintenance of CR-
CSCs (Kanwar et al., 2010). In particular, our group identified
CD44v6 as a marker of metastatic potential that defines the
CR-CSC subpopulation (Todaro et al., 2014). In CR-CSCs the up-
regulation of Wnt signaling is correlated with a higher CD44v6
expression, suggesting that this population may retain metastatic
traits and chemoresistance.

Many different epigenetic mechanisms have been linked to
the activation of an uncontrolled EMT process. The loss of
E-cadherin can be defined as a hallmark of EMT given the lack
of the cell–cell adhesion. Of note, DNMT of the CDH1 promoter
by recruiting HDACs to the promoter site results in histone
deacetylation and transcriptional silencing. Furthermore, EZH2
and the PRC2 complex mediate the histone methylation of the
CDH1 promoter, repressing its expression (Cao et al., 2008).

MiR-200 family members have been associated with a role
in repressing EMT and invasion through a direct binding to
ZEB1 and ZEB2 (zing finger E-box-binding homeobox 1 and
2), which are two transcription factors. Epigenetic silencing of
these miRNAs by DNMT and H3K27 tri-methylation induces
the acquisition of both an EMT-like and CSC phenotype
(Tellez et al., 2011).

One of the most common mechanisms of drug resistance,
subjected to epigenetic regulation in CSCs, is mediated by a
pronounced expression of the drug efflux transporters, such
as the ATP-binding cassette family (ABCG2, MDR1, MRP1).
Decreased HDAC1 levels and increased histone acetylation and
phosphorylation are responsible of an enhanced expression of
ABCG2 (To et al., 2008).

Alternative Epigenetic Mechanisms of
CSCs Regulation
On one hand, it is well known that the addition or removal
of epigenetic marks on the histones of the nucleosomes play a

crucial role in regulating the gene expression of oncogenic drivers
or oncosuppressors (Louis and Shohet, 2015). On the other hand,
oncogenes and tumor suppressors can themselves be activators
of epigenetic mechanisms fundamental in CSCs by the induction
of a “non-canonical” epigenetic program. Indeed, recent data
have demonstrated that MYC favors a stem cell-like phenotype
in mammary epithelial cells and induces an alternative epigenetic
program, supported by the activation of de novo enhancers
and repression of lineage-specifying transcription factors, which
causes loss of cell identity and the activation of oncogenic
pathways (Poli et al., 2018). Moreover, HMTs can methylate non-
histone proteins such as the pivotal tumor suppressor gene TP53.
It has been demonstrated that the tumor suppressor function
of WT p53 is inhibited by repressive epigenetic pathways. p53
and “stemness” may be considered as conceptual antagonists.
p53 suppresses self-renewal and promotes differentiation of
adult stem cells. Inactivation of p53, by deletion, mutation,
or expression of dominant-negative isoforms of p53 family
members, enriches stem cell populations including CSCs
(Molchadsky and Rotter, 2017). Some HMTs (SETD8 and
SMYD2) have been found to regulate the methylation of non-
histone proteins in particular p53 in lysine residues. These
modifications such as the monomethylation on lysine 370 and
lysine 382 of p53 (p53K370me1 and p53K382me1) have been
associated with a pro-tumorigenic function (Zhu et al., 2016;
Veschi et al., 2017). Further studies are needed to better
elucidate these mechanisms and their targeting as a therapeutic
approach in CSCs.

Treatments That Target Epigenetic
Modifications in CSCs
The dynamic nature of epigenetics indicates that it may be
possible to alter cancer-associated epigenetic states through direct
manipulation of the molecular factors involved in this process.
Currently, the major challenge in epigenetic drug discovery is
to identify selective compounds with significant in vitro cellular
activity at nM concentrations and well tolerated in vivo. Recently,
mostly by using high throughput screening approaches, many
studies identified and characterized new epigenetic regulators
and their roles in various cancers. These findings represent
the translational basis for the initiation of clinical trials in the
area of specific epigenetic target classes. HDACs and DNMTs
were the first epigenetic targets to be approved for cancer
application by the FDA, but more recently additional families
of epigenetic regulators have been the subject of intense studies,
such as, methyltransferases (EZH2, SETD8, DOT1L, PRMT5),
demethylase (LSD1, KDM4B), and BET proteins. Some potent
inhibitors are now being studied in a clinical setting, more
specifically in hematological and solid tumors. Early results are
encouraging, despite relevant toxicity.

Histone deacetylases are key regulators of histone
acetylation levels and are mostly associated with enhanced gene
transcription. HDACs remove acetyl groups on histones’ lysine
residues and maintain cell balance by opposing the function
of the HATs. Despite promising anti-cancer data from clinical
trials, HDAC inhibitors need to be considered as pan-inhibitors

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 February 2019 | Volume 7 | Article 16

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00016 February 14, 2019 Time: 19:8 # 11

Turdo et al. Targeting Cancer Stem Cells

with associated side effects, although increasing efforts have been
made to develop selective HDAC inhibitors. Vorinostat (SAHA)
represents the first FDA approved pan-HDAC inhibitor that
targets HDAC1-3 and 6. Currently, there are 6 clinical trials using
Vorinostat targeting refractory or recurrent pediatric cancers
and adult tumors. Romidepsin is an FDA approved selective
HDAC1/2 inhibitor that is well tolerated in clinical trials for
advanced pediatric and adult tumors (Children’s Oncology et al.,
2006; Amiri-Kordestani et al., 2013). DNA demethylating or
hypomethylating agents, such as DNMTs inhibitors (DNMTi,
azacitidine and decitabine), are currently in clinical phases I and
II for a variety of tumors, including CRC.

The chromatin readers (BET family) recruit additional
chromatin modifiers and remodeling enzymes, which serve as
the effectors of the modification. For instance, acetylated histones
serve as docking sites for bromodomain containing proteins
(Dhalluin et al., 1999; Dey et al., 2003). Thus, the histone code
imparts a tertiary level of genomic control beyond the DNA
sequence and corresponding transcription factors (He et al.,
2013). BET inhibitors have been demonstrated to successfully
target CSCs in MLL-driven ALL and in other cancers. Among the
first selective and more efficacious BET inhibitors, JQ1 is able to
target c-MYC in many different cancers and I-BET762 is in Phase
I-II clinical trial for NUT midline carcinoma, neuroblastoma and
other tumors1 (Filippakopoulos et al., 2010; Filippakopoulos and
Knapp, 2014). However, nowadays many deleterious effects on
healthy cells and resistance mechanisms to the BET inhibitors
have been elucidated.

One of the major areas of interest regarding drug discovery
is the great potential of combination therapies, especially
in the case of resistance to existing standard therapy and
or refractory states. Combination strategies, including pan-
HDAC inhibitors in association with other agents and/or small
molecules (chemotherapy, anti-GD2 antibody, retinoic acid,
DNMTi, JQ1), are under evaluation in many pediatric and adult
cancers. Specifically, the addition of JQ1 or EZH2 inhibitors
to panobinostat (HDAC inhibitor) showed synergistic effects
in vitro and in vivo (Shahbazi et al., 2016; Chen et al., 2018).

A detailed overview of the synergistic therapies with BET
inhibitors and other epigenetic drugs or targeted agents
can be found in Ramadoss and Mahadevan (2018). Aside
from the above mentioned combination of HDAC and BET
inhibitors, synergistic effects have also been demonstrated in
combinatorial treatments using HDACs and DNMTs inhibitors,
or DOT1L and DNMTs inhibitors in MLL-arranged leukemia
cells (Klaus et al., 2014).

CONCLUDING REMARKS

In the past few years, an improved survival rates in cancer
patients has been witnessed, due to early diagnosis and the advent

1 http://www.cancer.gov/clinicaltrials NCT01587703

of new targeted therapies. However, there are still millions of
patients who die every year. Tumor recurrence and relapse
may be driven by a variety of molecular events that are
modulated according to different treatment pressure. It is now
clear that within the tumor bulk there is a subpopulation of
cancer cells, named CSCs, which are mainly responsible for
the anti-cancer drug refractoriness. Thus, the novel frontiers
of cancer treatment are aimed at defeating CSCs by using
newly discovered drug delivery methods. For instance, one
appealing approach is represented by the use of nanotechnology
as an efficient tool for detection and elimination of CSCs (Qin
et al., 2017). Nanomaterials including gold particles, origami
and tetrahedron DNA nanostructures, liposomes, graphene
and nanodiamond have been loaded with chemotherapeutics
compounds or agents effective against CSCs, such as Salinomycin
and Hedgehog pathway inhibitors (Xu et al., 2012; Yao et al.,
2014). The enzymatic functionalization of nanomaterials with
ligands of cell surface markers of CSCs, such as CD44 and
CD133, is crucial to confer specificity in CSCs binding and
targeting (Yao et al., 2014; Ni et al., 2015; Al Faraj et al.,
2016). The potential clinical application of these carriers
rely also on their high solubility, fast internalization and
photothermal features.

The urgent need of successful cancer cures is due to the
mechanisms of CSC resistance, which are disparate and act
at different levels, including activation of survival pathways,
metabolic adaptation, epigenetic modifications and immune
escape. All these aspects have been thoroughly investigated in this
review with the aim of offering an overview and food for thought
on the novel developed therapeutic strategies to improve cancer
patients management.
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