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Over the past decades, immunotherapy has demonstrated a prominent clinical efficacy
in a wide variety of human tumors. For many years, apoptosis has been considered
a non-immunogenic or tolerogenic process whereas necrosis or necroptosis has long
been acknowledged to play a key role in inflammation and immune-related processes.
However, the new concept of “immunogenic cell death” (ICD) has challenged this
traditional view and has granted apoptosis with immunogenic abilities. This paradigm
shift offers clear implications in designing novel anti-cancer therapeutic approaches.
To date, several screening studies have been carried out to discover bona fide ICD
inducers and reveal the inherent capacity of a wide variety of drugs to induce cell
death-associated exposure of danger signals and to bring about in vivo anti-cancer
immune responses. Recent shreds of evidence place ER stress at the core of all the
scenarios where ICD occur. Furthermore, ER stress and the unfolded protein response
(UPR) have emerged as important targets in different human cancers. Notably, in multiple
myeloma (MM), a lethal plasma cell disorder, the elevated production of immunoglobulins
leaves these cells heavily reliant on the survival arm of the UPR. For that reason, drugs
that disrupt ER homeostasis and engage ER stress-associated cell death, such as
proteasome inhibitors, which are currently used for the treatment of MM, as well as
novel ER stressors are intended to be promising therapeutic agents in MM. This not
only holds true for their capacity to induce cell death, but also to their potential ability
to activate the immunogenic arm of the ER stress response, with the ensuing exposure
of danger signals. We provide here an overview of the up-to-date knowledge regarding
the cell death mechanisms involved in situations of ER stress with a special focus on
the connections with the drug-induced ER stress pathways that evoke ICD. We will also
discuss how this could assist in optimizing and developing better immunotherapeutic
approaches, especially in MM treatment.

Keywords: immunogenic cell death, multiple myeloma, ER stress, danger-associated molecular
pattern, immunotherapy

INTRODUCTION

Every day in the human body, billions of cells pass away and are kindly replaced by newborn
members leaving no trace behind, allowing in this way conservation of whole-body homeostasis.
In order to occur without catastrophic consequences, this process must remain almost completely
unnoticed to the immune system. During this physiological, programmed cell death, mainly in the
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form of apoptosis, intracellular content is confined within
membranous bodies that are rapidly cleared by phagocytes in an
immunological “silent” manner. Hence, apoptosis has long been
considered a non-immunogenic or even tolerogenic process,
whereas necrosis and necroptosis have been shown to play a
key role in inflammation and immune related processes (Poon
et al., 2014; Yatim et al., 2015). However, the new concept of
“immunogenic cell death” (ICD) has challenged this traditional
view and has granted apoptosis with immunogenic abilities. This
immunostimulatory kind of apoptosis is characterized by the
ability of dying cells to elicit robust adaptive immune responses
against altered self-antigens/cancer-derived neo-epitopes, in the
case of tumor cells, or against pathogen-derived antigens (Ags)
during the course of an infection (Galluzzi et al., 2017).
Besides antigenicity, another vital factor needed to unleash a
genuine immune response is adjuvanticity, which is conferred
by microorganism- and/or danger-associated molecular patterns
(MAMPs and DAMPs, respectively). These are molecules that are
exposed or released by dying cells and let the immune system
know the existence of a menace to the organism (Fuchs and
Steller, 2015). This “danger” state is sensed in the human body
by pattern recognition receptors (PRRs) displayed by innate
immune cells such as monocytes, macrophages and dendritic
cells (DCs), hence promoting activation and maturation of
these cells to engage the adaptive arm of the immune system
(Matzinger, 2002).

Screening studies have been carried out to unveil the
immunogenic potential of myriads of anti-cancer agents
(Sukkurwala et al., 2014). To date, only a small yet diverse
collection of anti-cancer therapies, whether chemotherapeutic
drugs (e.g., anthracyclines, oxaliplatin, bortezomib) (Obeid et al.,
2007; Garg et al., 2017) or physical modalities [e.g., radiotherapy,
hypericin-based photodynamic therapy (Hyp-PDT), and high
hydrostatic pressure (HHP)] (Golden et al., 2012; Adkins et al.,
2014) have been shown to induce bona-fide ICD. However,
a common denominator can be extracted from the action
mechanisms of all these approaches: ER stress and ROS
generation. Thus, activation of the ER stress pathways also
known as the unfolded protein response (UPR), and specially,
the PERK-mediated arm of the UPR is vital for the vast majority,
if not all, the scenarios where ICD occurs (Rufo et al., 2017).
Moreover, during tumor development, cancer cells have to cope
with harsh conditions that trigger ER stress. Thus, UPR activation
constitutes an important hallmark of several human cancers
that endow cancer cells with the ability to acquire essential
characteristics required for tumor progression (Corazzari et al.,
2017). Of note, although UPR activation is initially intended to
restore cell homeostasis, it can also shift the cellular fate toward
cell death. All the aforementioned has clear implications for
cancer therapy. The UPR-dependency of tumor cells together
with the connection of ER-stress and the emission of danger
signals (or ER stress-ICD connection), can be harnessed to
design novel therapeutic tools. These therapeutic approaches
not only would reduce tumor burden, but also improve the
immunogenic capacity of dying cancer cells to elicit long-term
adaptive immune responses. In particular, in multiple myeloma
(MM), a lethal plasma cell disorder, the elevated production of

immunoglobulins leaves these cells heavily reliant on the survival
arm of the UPR. Nevertheless, although myeloma cells rely on the
UPR to thrive, they are extremely sensitive to ER-stress associated
cell death. This feature explains why proteasome inhibitors
show a prominent clinical efficacy in the treatment of MM
(Merin and Kelly, 2014; Scalzulli et al., 2018). Sadly, resistance
to therapy is recurrent, and in most of the cases accounts for
the lethality of the disease (Robak et al., 2018). MM is also a
genuine neoplasia where the immune system is compromised.
Nonetheless, immunotherapeutic interventions in this disease
have potential to be successful, as graft-vs-myeloma effect has
been evidenced in patients subjected to allogenic stem-cell
transplantation or under donor lymphocyte infusions (Ladetto
et al., 2016). In fact, current immunotherapeutic approaches
are giving promising results in relapsed and refractory patients.
Among the novel and more promising immune-based therapies
that are under investigation, we can include: (1) Antibody-
based therapies with daratumumab and elotuzumab as the
flagships of this kind of approach, (2) Boost the immune effector
line of defense with adoptive cell therapy (ACT), either with
expanded tumor-infiltrating lymphocytes (TILs), NK cells or
CAR-T cells, (3) Releasing the brakes of immune response
with immune-checkpoint blockade, (4) Enhancing general anti-
tumor immunity through vaccination strategies, and finally (5)
Combinatorial strategies of the immunotherapies themselves
or combined with immunogenic chemo- or radiotherapies.
Noteworthy, all of these approaches can theoretically be
benefited by ICD. Hence, the immunostimulatory potential of
chemotherapeutics or other ICD-related modalities could be
exploited to enhance general immunity or at least create an
immune-friendly tumor microenvironment. This way, some
of the drawbacks occurring in the clinical setting could be
circumvented to achieve an effective immune response in cancer
patients (Montico et al., 2018).

THE UNFOLDED PROTEIN RESPONSE

Tumor cells are constantly coping with aggressive insults and
subjected to different types of cellular stress. Some of these
extrinsic (hypoxia, nutrient deprivation, acidosis) and intrinsic
(oncogenic activation, genetic alterations, exacerbated secretory
capacity) factors are common instigators of ER stress (Dufey
et al., 2016). To cope with ER stress, cells activate an adaptive and
well-conserved mechanism called UPR. The UPR is a fine-tuned
process controlled by three membrane-bound ER stress sensors:
Protein Kinase RNA-activated (PKR)-like ER Kinase (PERK),
Inositol-Requiring transmembrane kinase/Endonuclease (IRE1)
and Activating Transcription Factor 6 (ATF6). These sensors
remain inactive in basal conditions due to the interaction with
Binding Immunoglobulin Protein (BIP, also known as GRP78)
through their ER luminal domains. Under ER stress conditions,
BIP dissociates from the ER stress sensors to help in protein
folding (Almanza et al., 2018). This event allows ER stress sensors
to self-activate by homodimerization/oligomerization and trans-
auto-phosphorylation in the case of PERK and IRE1, and
translocation to the Golgi in the case of ATF6. First, the UPR tries
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to restore cell homeostasis, by attenuating protein translation,
enhancing degradation of misfolded proteins and increasing
levels of ER chaperones and redox enzymes to increase folding
capacity (Almanza et al., 2018). However, if ER stress persists,
the UPR can trigger proapoptotic programs controlled mainly
by the IRE1 and PERK arms. IRE1 is a Ser/Thr kinase that also
has an endoribonuclease domain. When activated, IRE1 drives
XBP1 mRNA splicing, leading to a more stable XBP1s protein
that acts as a transcription factor upregulating genes controlling
ER homeostasis maintenance (Sano and Reed, 2013). Moreover,
during the chronic phase of ER stress, IRE1 is also able to degrade
many ER-targeted mRNAs through regulated IRE1-dependent
mRNA decay (RIDD) process. Activation of PERK signaling leads
to phosphorylation of eIF2α, which results in inhibition of global
protein translation in order to reduce protein load. Nonetheless,
some transcripts like ATF4 are translated more efficiently during
ER stress. ATF4 increases the expression of genes involved in
aminoacid and redox metabolism, ubiquitin ligases and the
transcription factor CAAT/enhancer-binding protein (C/EBP)
homologous protein (CHOP/GADD153). ATF4 and CHOP are
also key determinants of ER stress-induced cell death. Finally,
the cytosolic domain of ATF6 also acts as a transcription factor
that mainly regulates the expression of genes involved in the
ER-associated degradation (ERAD) pathway (Dufey et al., 2016).

IMMUNOGENIC CELL DEATH

During the last decade, our conception of the characteristics
of different types of cell death has significantly changed.
Necrosis was first conceived as an accidental, pathological
and pro-inflammatory form of cell death, whereas apoptosis
was recognized to be a non-immunogenic, physiological and
regulated way of cell demise (Poon et al., 2014). However,
these features are no longer so clear-cut since programmed
necrosis (necroptosis) has been shown to be triggered by a
genetically encoded, well-regulated molecular program (Golstein
and Kroemer, 2007; Vanden Berghe et al., 2009; Dhuriya and
Sharma, 2018). On the other hand, apoptosis is no longer
considered to be an immunologically “silent” process, since
some apoptotic cells are able to induce antigen-specific immune
responses (Obeid et al., 2007). In cancer research, the role of the
immune system has been overlooked for many years due, in part,
to the way chemotherapy and other anticancer therapies were
usually tested. Particularly, the frequent use of immunodeficient
mice to assess the efficacy of these treatments has precluded
from gaining insight on the precise role of the immune system
in cancer therapy (Krysko et al., 2012). Nonetheless, the re-
evaluation of concepts like cancer antigenicity and ICD, as
well as the interpretations from Danger Theory, has redirected
the focus in oncological research toward novel or improved
immunotherapeutic protocols (Garg et al., 2015a).

The ICD concept has been defined as an unique class of
regulated cell death capable of eliciting complete antigen-
specific adaptive immune responses through the emission
of a spatiotemporally defined set of danger signals or
DAMPs (Casares et al., 2005; Kroemer et al., 2013). These

signals are endogenous molecules that perform conventional
intracellular functions but when extracellularly exposed, gain
immunogenic competences. The release or membrane exposure
of these molecules, allow their interaction with their cognate
PRRs displayed by innate immune cells such as monocytes,
macrophages and DCs. This leads to activation and maturation
of these cells that migrate to draining lymph nodes loaded with
cancer-derived antigen-specific cargoes. Cancer antigens are
then presented to T cells (CD4+ and CD8+ T lymphocytes)
which enable a potent anticancer adaptive immune response
(Chen and Mellman, 2013). To date, four modes of ICD have
been described, each related to a particular type of inducing
stimulus and to the emission of a specific set of danger signals
(Galluzzi et al., 2017) (see Figure 1): (1) Pathogen-driven ICD,
as one of the defense mechanisms against invading pathogens;
(2) ICD exhibited by physical cues, such as Hyp-PDT, irradiation
and HHP; (3) Necroptosis, but not accidental necrosis, since
this regulated form of cell death was able to vaccinate syngenic
mice against a rechallenge with cells of the same type (Aaes et al.,
2016). According to this, RIPK3 or MLKL deficiency abrogated
the ability of these cells to secrete the required immunogenic
signals that lead to an anticancer immune response in mice (Yang
et al., 2016); and (4) ICD evoked by some chemotherapeutics
targeting different types of essential cell components or processes
that induce cell death pathways. It has been demonstrated
that a diverse panel of drugs can elicit protective immune
responses in mice (Apetoh et al., 2007; Obeid et al., 2007;
Michaud et al., 2011). Of note, despite some screening studies
using large drug libraries have been performed, only a small
group of candidates have emerged to be valid ICD inducers
(Obeid et al., 2007; Martins et al., 2011; Menger et al., 2012;
Sukkurwala et al., 2014). The chemical nature of these agents,
is considerably diverse: oxazophorines like cyclophosphamide
(Schiavoni et al., 2011); Pt-based compounds as oxaliplatin
(Tesniere et al., 2009); anthracyclines (Minotti et al., 2004)
such as idarubicin and doxorubicin; anthracenediones such
as mitoxantrone and dipeptides such as bortezomib (Merin
and Kelly, 2014). Similar to bortezomib, carfilzomib another
proteasome inhibitor used in the treatment of MM, has also
shown to expose CRT in different MM cell lines (Jarauta et al.,
2016). Although it may appear attractive, no simple structure-
function relationship has been found that could predict the
suitability of drugs to trigger ICD. This is clearly exemplified
by the oxaliplatin-cisplatin or the melphalan-cyclophosphamide
paradigms (Tesniere et al., 2009; Martins et al., 2011; Dudek-
Perić et al., 2015). Several factors, such as the type of cell death,
the ICD stimuli and the interconnection between various cellular
stress responses, influence the type of danger signals emitted
during the course of cell death (Agostinis, 2017). On the other
hand, combinatorial strategies can be exploited to compensate
for DAMPs generation scarcity displayed by some agents, restore
immunogenicity and hence transform tolerogenic cell death
into immunogenic modalities (Martins et al., 2011; Bezu et al.,
2015). Furthermore, not all the DAMPs exposed during cell
death are immunostimulatory. In fact, there are some molecules
(Prostaglandin E2, adenosine, etc.) (Agostinis, 2017; Galluzzi
et al., 2017) that exhibit immunosuppressive properties and play
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FIGURE 1 | Immunogenic cell death cycle and forms of ICD. (A) Cancer cells subjected to some type of chemotherapeutics and other anti-cancer therapies expose
calreticulin (CRT) and other endoplasmic reticulum chaperones, such as Hsp70, Hsp90 or Bip on their surface, secrete ATP, initiate type I interferon (IFN) response
that is able to trigger the production of CXC-chemokineligand 10 (CXCL10), and release high-mobility group box 1 (HMGB1) and annexin A1 (ANXA1). When
secreted or exposed extracellularly, they bind to their cognate receptors on the surface of myeloid or lymphoid cells, which enables the engulfment of cell corpses by
antigen-presenting cells, including DCs. This process in the context of proper immunostimulatory signals, eventually leads to the priming of an adaptive immune
response involving both αβ and γδ T cells. This culminates in the establishment of a CTL-mediated anti-cancer immune response with potential to kill
therapy-resistant cancer cells via an IFNγ-dependent mechanism. In the clinical setting, cancer cells with higher expression of some DAMPs have been found.
Depending on the cancer type, this could be correlated with good or bad prognosis, as well as to markers of an active anti-cancer immune response. (B) Forms of
ICD. Different variants of ICD could be evoked by distinct types of stimuli that are associated with a differential set of danger signals. Even in the form of
immunogenic chemotherapy, each drug could instigate differential danger signaling pathways (Galluzzi et al., 2017); P2RX7, purinergic receptor P2X7; P2RY2,
purinergic receptor P2Y2; TLR4, Toll-like receptor 4.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2019 | Volume 7 | Article 50

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00050 April 14, 2019 Time: 13:17 # 5

Serrano-del Valle et al. Immunogenic Cell Death

important roles in tolerance to dead cells. Among all members of
DAMP family, the best studied, and those who have been shown
to be pivotal for ICD are described in the next section.

Calreticulin and ER Chaperones
Calreticulin (CRT) is a, highly conserved, soluble, ER-associated
chaperone with numerous functions inside and outside the ER
(calcium homeostasis, assembly of MHC-I, etc.) (Johnson et al.,
2001; Michalak et al., 2009). In stressed or dying cells, CRT is
exposed in the outer leaflet of the plasma membrane (ecto-CRT)
where it functions as a potent “eat-me” signal. CRT binds to LRP1
(also known as CD91), and possibly other scavenger receptors,
displayed by phagocytic cells. This role in phagocytic clearance of
dead cells was first described by Gardai et al. (2005). Nonetheless,
Obeid et al. (2007) went a step further and demonstrated that
CRT exposure was a key determinant in ICD-driven anticancer
immunity. Actually, cancer cells undergoing cell death triggered
by certain chemotherapeutics, expose CRT on their surface. This
event leads to the engulfment of cancer material by DCs and,
more importantly, to tumor antigen presentation and anticancer
cytotoxic T lymphocyte (CTL) specific responses (Kroemer et al.,
2013). Furthermore, ecto-CRT has been shown to prompt IL-
6 and TNF expression on DCs, priming pro-inflammatory
T-helper type 17 (Th17) polarization (Pawaria and Binder,
2011). Likewise, other ER-resident chaperones such as heat-shock
protein 70 (Hsp70) and Hsp90, play also an important role in the
immunogenicity of dying cancer cells. Thus, ecto-Hsp90 has been
reported to enhance DC uptake of bortezomib-treated MM cells,
including primary cells isolated from MM patients and induction
of anticancer immunity (Spisek et al., 2007). On the contrary,
Dudek-Perić et al. (2015), using blocking antibodies against
Hsp90 in a DC maturation assay, reported that this chaperone
was not (or at least partially) involved in the immunogenicity
of melanoma cells treated with melphalan. The specific role
of Hsp70 in the immunogenicity of cancer cells has not been
studied so extensively. However, it has been reported that in
shikonin- or gemcitabine-treated cells, Hsp70 was involved in
DC-mediated activation of CD4+ and CD8+ T cells (Pei et al.,
2014; Lin et al., 2015). In the case of Hyp-PDT treatment, Hsp70
promotes nitric oxide (NO) generation in innate immune cells
(Song et al., 2013). In a different context, Hsp70 has shown to
efficiently vaccinate mice against murine MM cells using a DNA-
based vaccination strategy (Liu et al., 2018). BIP, a fundamental
regulator of ER function and the UPR, has been described to
be secreted and participate in the cross-presentation of tumor-
derived Ags in DCs, inducing Ag-specific CTL immune responses
(Tamura et al., 2011). Indeed, chaperones as efficient protein
folding mediators, are often present bound to antigenic peptides.
When released, these chaperone-peptides complexes enter APCs
by endocytosis via CD91 receptors and are cross-presented on
MHC-I and MHC-II molecules to CD8+ and CD4+ T cells (Feng
et al., 2001, 2003). Thereby, these molecules not only potentiate
immunogenicity of dying cancer cells by acting merely as potent
danger signals, but also contribute to boost cancer antigenicity
assisting in the cross-presentation process.

With regards to the kinetics and the cellular pathways
involved in the exposure of CRT (depicted in Figure 2), it has

been documented that they may differ depending on both the
apoptotic phase under evaluation and the inducing stimulus
(Krysko et al., 2012). For example, there are some instances where
ecto-CRT exposure precedes phosphatidylserine externalization
(Panaretakis et al., 2009; Osman et al., 2017), is systemically
accompanied by ERp57 to the plasma membrane and requires
PERK-mediated phosphorylation of eIF2α. This is followed by
caspase-8 activation and specific cleavage of BAP31, leading to
the subsequent activation of BAX and BAK. CRT relocation
also requires anterograde ER-Golgi trafficking and the exocytic
pathway in a SNAP23-dependent manner (Panaretakis et al.,
2009). On the contrary, Hyp-PDT mediated CRT exposure
requires PERK, BAX, BAK and the secretory pathway but not
eIF2α phosphorylation and caspase-8 activation (Garg et al.,
2012c). However, there are other ways by which CRT can be
relocated to the cell surface and that are independent from
the aforementioned mechanisms. Other studies claimed that
CRT can bind with high-affinity to phosphatydilserine (Païdassi
et al., 2011; Wijeyesakere et al., 2016) in a Ca2+-dependent
manner, and thus during cell death these two molecules are co-
translocated at the same time in a caspase-independent fashion
(Tarr et al., 2010).

Many studies investigating the role of CRT in ICD, carried
out either in vitro or using in vivo animal models, assume
the fact that CRT exposure is a consequence of the therapy
itself. However, these studies have not considered basal surface
expression of CRT on cancer cells and its potential implication
on immunogenicity. Clinical studies supporting tumor cell-
dependent immunity associated to basal CRT exposure are scarce
and direct immunogenic effects of cells killed by chemotherapy in
cancer patients have been rarely observed. It has been proposed
that this is probably due to the fact that the chemotherapeutic
dose needed to efficiently induce ICD is not reached in the
clinical practice (Montico et al., 2018). Most of the available
data indicate that tumor tissues express higher levels of CRT
than healthy tissues, and that CRT expression may correlate
with cancer progression and aggressiveness (Fucikova et al.,
2018). Moreover, increasing clinical evidence is supporting the
notion that CRT exposure, as well as other DAMPs may serve
as important prognostic biomarkers in cancer patients (Fucikova
et al., 2018). Different studies have shown that, depending on
the cancer cell type, CRT expression could stand as a positive
or negative prognostic factor for cancer patients. For example, in
acute myeloid leukemia (AML), indolent B-cell lymphoma, non-
small cell lung cancer (NSCLC), ovarian cancer, glioblastoma,
endometrial cancer or colon cancer, the increased expression
of CRT correlates with a favorable clinical outcome, as well
as (in some cases) with increased levels of biological markers
related to an active anti-cancer immune response (Peng et al.,
2010; Zappasodi et al., 2010; Garg et al., 2015b; Stoll et al.,
2016; Fucikova et al., 2016a,b, 2018; Xu et al., 2018). Meanwhile,
in other cancer types like gastric cancer, pancreatic cancer,
neuroblastoma, bladder carcinoma and mantle cell lymphoma,
higher CRT levels were related to a poor clinical outcome (Chen
et al., 2009; Chao et al., 2010; Sheng et al., 2014). In some
cases like in esophageal squamous carcinoma, no differences in
overall survival between CRT-high and low expression groups
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FIGURE 2 | Mechanisms of DAMPs exposure. Differential mobilization pathways can be observed between Type I and Type II ICD inducers, defined by their
off-targeted or targeted effect on the ER, respectively. Exposure of CRT in the plasma membrane upon treatment with Type I ICD inducers requires an intrincate
pathway with activation of the ER stress–ROS signaling mediated by the activation of the PERK, and the ensuing phosphorylation of eiF2α. This is followed
by the required cleavage of B-cell receptor-associated protein 31 (BAP31) by preapoptotic caspase-8. Bax/Bak activation is also mandatory in this process. Finally CRT

(Continued)
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FIGURE 2 | Continued
relocation also requires anterograde ER-Golgi trafficking and the exocytic pathway in a SNAP23-dependent manner (Panaretakis et al., 2009). Along all the way from
the ER to the plasma membrane, CRT is accompanied by ERp57. Upon treatment with Type II ICD inducers fewer requirements are needed, since this pathway only
relies on PERK, Bax, Bak, and the secretory pathway. Regarding ATP secretion upon type II ICD inducers treatment, it follows a pathway quite similar to that of CRT,
except for Bax/Bak and involving partially caspase 8. Type I ICD inducers require an independent pathway mediated by autophagy as ATG5, ATG7 and BCN1 are
required in ATP release. Moreover, other molecules involved in different cellular processes like lysosomal exocytosis (LAMP1), membrane blebbing (ROCK1),
apoptotic machinery (caspases) and membrane permeabilization (PANX1) have been shown to be essential in type I ICD-induced ATP externalization (Martins et al.,
2014). CRT, calreticulin; eIF2a, eukaryotic initiation factor 2; ER, endoplasmic reticulum; ICD, immunogenic cancer cell death; PANX1, Pannexin 1; PERK, protein
kinase R-like ER kinase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; ROCK1, rho-associated, coiled-coil-containing protein kinase 1; ROS, reactive
oxygen species; SNARE, SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) receptor.

were found (Suzuki et al., 2012; Fucikova et al., 2018). In
some of these studies, other markers involved in ICD or
ER stress response such as phosphorylation of eIF2α, Hsp70,
Hsp90 and BiP (GRP78/HSPA5), correlated with CRT expression
and patient prognosis (Uramoto et al., 2005; He et al., 2011;
Fucikova et al., 2016a,b). As mentioned above, only in a few
studies a correlation between increased CRT expression and
the chemotherapy regimen and good prognosis was found. For
example, ovarian tumors from patients that displayed high levels
of CRT showed a good clinical response to radiotherapy or
treatment with paclitaxel (which are well-known ICD inducers)
(Garg et al., 2015b). Similarly, in endometrial cancer patients,
low CRT expression was associated with poor survival rates
and resistance to doxorubicin (another reported ICD inducer)
(Xu et al., 2018). However, in other cases such as in patients
with NSCLC or AML, cancer cells exposed heterogeneous levels
of CRT, regardless of the treatment received. Cancer cells can
also experiment stress prior to chemotherapy, perhaps due
to the oncogenic malignant transformation itself (Fucikova
et al., 2018). This alternative source of stress also activates ER
stress responses culminating in CRT translocation and danger
signaling (Fucikova et al., 2018). This process facilitates anti-
cancer immunosurveillance, represented by the higher amount
of infiltrating mature DCs and effector T cells in the case of
NSCLC patients (Stoll et al., 2016) and increased numbers of
circulating NK cells and IFN-γ producing CD4+ and CD8+ T
cells in AML patients (Fucikova et al., 2016b). Moreover, cancer
cells that express low levels of CRT have shown to correlate, in
some cases, with therapy resistance, such as in endometrial cancer
patients (Xu et al., 2018). It is possible that this reduced CRT
expression may arise from the ability of cancer cells to resist ER
stress conditions (whether oncogenic- or chemotherapy-driven).
Therefore, this situation might be overcome by using ER stressors
that directly target ER stress response, possibly sensitizing to
conventional chemotherapy and restoring danger signaling and
the ensuing anti-cancer immunosurveillance.

ATP
During the course of ICD, dying cells expel ATP (Ghiringhelli
et al., 2009; Michaud et al., 2011) to the extracellular milieu
where it functions as a powerful short-range “find me” signal
(Elliott et al., 2009). Once secreted, ATP binds to ionotropic
(P2X7) and metabotropic (P2Y2) purinergic receptors on APCs
(Elliott et al., 2009; Ghiringhelli et al., 2009), stimulating their
phenotypic maturation and chemotactic attraction, respectively
(Galluzzi et al., 2015). In particular, extracellular ATP can
activate the caspase-1 dependent NLRP3 complex (the so called

inflammasome) triggering IL-1β secretion (Ghiringhelli et al.,
2009), which in turn promotes CD8+ T cell (Ghiringhelli et al.,
2009), as well as, IL-17 producing-γδ T cell (Ma et al., 2011)
anti-tumor responses. According to this, mice lacking any of
these components (Nlrp3−/−, P2rx7−/− or Casp1−/−) seem to
be incapable of promoting adaptive immune responses during
drug-induced ICD (Ghiringhelli et al., 2009; Ma et al., 2011).
The molecular mechanisms of ATP secretion during ICD are
also dependent on ICD-inducing stimulus. In mitoxantrone- or
oxaliplatin-driven early apoptotic ATP secretion, autophagy has
been demonstrated to be mandatory, since depletion of important
autophagy proteins (ATG5, ATG7 and BCN1) prevented ATP
release (Martins et al., 2014). Moreover, other molecules involved
in other cellular processes such as lysosomal exocytosis (LAMP1,
VAMP1), membrane blebbing (ROCK1, myosin II), apoptotic
machinery (caspases) and membrane permeabilization (pannexin
1, PANX1) have been shown to be essential for ICD-induced ATP
release (Martins et al., 2014). Interestingly, PANX1 activation
and surface exposure, as well as, LAMP1 translocation are
strongly dependent on caspases rather than on the autophagic
machinery (Martins et al., 2014). In fact, it is possible that
remodeling of autophagic effectors and lysosomal effectors
or PANX1 hemichannels by caspases rather than the mere
presence of these components per se, are the real originators
of ATP secretion (Garg et al., 2014; Martins et al., 2014).
However, as it occurs in Hyp-PDT induced CRT relocation,
ATP secretion mechanisms may differ from those described for
chemotherapy-induced ICD. In particular, Hyp-PDT mediated
ATP is autophagy independent (Garg et al., 2013) and rather
requires the PERK-mediated proximal secretory pathway and
PI3K-regulated exocytosis (Garg et al., 2012c).

HMGB1
High mobility group Box 1 is a non-histone chromatin-
binding protein localized in the nucleus, where it interacts
with DNA and regulates transcription (Garg et al., 2010). In
particular, it regulates the activity of NF-κB and p53 and other
transcription factors and favors VD(J) recombination (Müller
et al., 2004; Krysko et al., 2012). Extracellularly, HMGB1 can
perform cytokine-based (distinct from DAMP-based) functions
in monocytes and macrophages under the influence of pro-
inflammatory molecules (TNF, LPS, IL-1β) (Scaffidi et al., 2002;
Müller et al., 2004; Krysko et al., 2012). When released from
dying cells, HMBG1 exerts potent immunostimulatory effects
by interacting with distinct PRRs (TLR2, TLR4 and RAGE)
(Sims et al., 2010). During chemotherapy- or radiotherapy-
induced cell death, HMGB1 is released from dying cells and
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signals through TLR4-MyD88 axis on DCs, facilitating antigen
processing and presentation (Apetoh et al., 2007; Saenz et al.,
2014). The molecular pathways that participate in release of
this DAMP remains to be elucidated. It has been documented
that necrotic cells passively release huge amounts of HMGB1,
acting as a potent mediator of inflammation (Scaffidi et al.,
2002). Similarly, HMGB1 is also released by secondary necrotic
cells and the use of Z-VAD-fmk (a broad caspase inhibitor that
delays secondary necrosis) impede HMGB1 discharge in cells
undergoing ICD (Bell et al., 2006; Apetoh et al., 2007). The
immune related features of HMBG1 are strongly influenced by
its redox status (Venereau et al., 2012; Yang et al., 2012), and
this may account for the observed contradictory results (Palumbo
et al., 2004; Jube et al., 2012). This redox modulation as well as the
different behaviors observed in different studies have precluded
from drawing definitive conclusions (Garg et al., 2014).

ICD – ER STRESS CONNECTION

As stated before, numerous studies have been carried out to
decipher ICD mechanisms and large screening studies (Martins
et al., 2011; Menger et al., 2012; Sukkurwala et al., 2014) have
been performed to unveil the immunogenic potential of myriads
of anti-cancer agents. All this work has converged toward a
common denominator in ICD molecular pathways: ER stress and
ROS generation (Tesniere et al., 2008; Rufo et al., 2017). Then,
activation of the ER stress control pathways, also known as the
UPR, and specially the PERK-mediated arm, is vital for the vast
majority if not all the scenarios where ICD occurs (Panaretakis
et al., 2009; Rufo et al., 2017). As mentioned in previous sections,
CRT exposure induced by chemotherapeutics requires ER stress
with a decisive participation of PERK-mediated phosphorylation
of eIF2α (Panaretakis et al., 2009). Meanwhile, in hypericin-
PDT induced ICD, the ER stress module is similarly required
being PERK fundamental, but not eIF2α phosphorylation. Here,
PERK may modulate proper secretory pathway functioning, in
both ecto-CRT induction and ATP secretion (Garg et al., 2012c;
van Vliet et al., 2015). Regardless of these dissimilarities, PERK
abrogation through genetic maneuvers, significantly diminished
(but not completely abolished) the immunogenicity of stressed
cancer cells in vivo (Panaretakis et al., 2009; Garg et al.,
2012c). Altogether, PERK have shown to be a major player
in ICD-derived emission of danger signal(s). Depending on
the trigger stimuli it could be involved only in CRT emission
or both in ATP and CRT emission (Kepp et al., 2013; van
Vliet et al., 2015; Rufo et al., 2017). Nevertheless, this context
dependency determines whether PERK contribution arise from
its UPR-related function (Panaretakis et al., 2009) or through
its ability to modulate the proximal secretory pathway (Garg
et al., 2012c). Moreover, other novel PERK cellular functions
related to actin cytoskeleton dynamics and formation of ER-
plasma membrane contact sites, may sustain DAMP trafficking
in ICD (van Vliet et al., 2015, 2017; van Vliet and Agostinis,
2016; Rufo et al., 2017). Interestingly, although the three branches
of the UPR (PERK, IRE1α and ATF6) were triggered under
cardiac glycoside treatment (Menger et al., 2012), abrogation

of IRE1α and ATF6 pathways through genetic interventions
did not alter CRT exposure in dying cells under the influence
of different types of therapies (mitoxantrone, oxaliplatin, UVC
irradiation) (Panaretakis et al., 2009). Furthermore, tunicamycin
and thapsigargin, two potent chemical ER stressors, both of
which induce strong UPR responses (Obeng et al., 2006; Almanza
et al., 2018; Shen et al., 2018), have been shown to efficiently
restore CRT relocation and/or in vivo immunogenicity of cis-
platinum or mytomicin C (Martins et al., 2011), two reported
non-ICD inducers. Of note, it seems that ER stress alone is
not sufficient to trigger CRT translocation or in vivo immune
responses (Kepp et al., 2013). In line with this, tunicamycin
and thapsigargin have been shown to be ineffective (or at
least less effective as other bona fide ICD inducers) in eliciting
ICD (Martins et al., 2011; Kepp et al., 2013). In contrast,
thapsigargin has reflected the opposite in some scenarios (Peters
and Raghavan, 2011). The relative importance of ER stress (the
process itself and also its kinetics and intensity) is underscored
by the classification of ICD inducers. There are two main
groups of ICD inducers, type I and type II (Krysko et al.,
2012; Rufo et al., 2017), depending on cell death is either
a consequence of a primary effect of ER stress or death is
triggered through a different path and ER stress is merely a
secondary effect of the therapeutic agent under consideration
(Krysko et al., 2012). For example, some oncolytic viruses
(Newcastle disease virus) (van Vloten et al., 2018; Ye et al.,
2018), Pt(II) N-heterocyclic carbene complex (Wong et al., 2015)
and hypericin-PDT (Garg et al., 2012c) fall within type II ICD
inducer category as they selectively target the ER provoking
intense ROS-based ER stress (Krysko et al., 2012; Rufo et al.,
2017). Conversely, anthracyclines (type I ICD inducers) exert
its cytotoxic effects primarily on the nucleus, where they are
mainly localized (Minotti et al., 2004) and leave the ER stress as a
secondary side-effect. Bortezomib is also considered a type I ICD
inducer. Although bortezomib affects ER homeostasis generating
a potent ER stress response (Obeng et al., 2006; Verfaillie et al.,
2013; Gandolfi et al., 2017; Manasanch and Orlowski, 2017) and
elevation cellular ROS levels (Lipchick et al., 2016), its direct
cellular target is the inhibition of 26S proteasome (Gandolfi
et al., 2017). Thus, as the cellular targets of these two types of
ICD inducers are different, it is conceivable that the cellular
responses triggered (particularly in the ER stress context) are
different both in their kinetics and potency. Consequently, this
has clear implications in the quality and amount of danger signals
emitted. In fact, it has been shown that hypericin-PDT (a type
II ICD inducer) has a superior capacity of emitting faster, a
higher number and a broader spectrum of DAMPs, compared to
type I ICD inducers (Garg et al., 2012a,b,c; Krysko et al., 2012;
Rufo et al., 2017).

It’s important to mention that, in some regulated variants
of cell demise, ROS-mediated ER stress may be dispensable for
triggering ICD and the ensuing in vivo immune responses (Aaes
et al., 2016; Rufo et al., 2017). Specially, different to hypericin-
PDT based and anthracycline-induced ICD, the necroptotic
variant occurred in absence of apparent/perceptible ER stress or
PERK activation (Aaes et al., 2016). This reveals that there may
be alternative mechanisms that may take part in the induction
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of danger signaling and further reinforce the idea that ICD
induction may be stimulus and context-dependent.

ER stress could also instigate immunosuppressive effects in
the tumor microenvironment. In particular, transmissible ER
stress has been observed in myeloid cells incubated with tumor
supernatants obtained under ER stress conditions (Mahadevan
et al., 2011; Colegio et al., 2014; Parker et al., 2015; De
Sanctis et al., 2016). Moreover, tumor cells can activate in a
paracrine fashion the UPR in tumor-infiltrated myeloid cells
(DCs, MDSCs) that adopt an immunosuppressive phenotype,
showing an impaired antigen presenting capacity, secretion of
pro-inflammatory cytokines (IL-6, TNFα, IL-23, ...) as well as
other immune-restraining factors (Mahadevan et al., 2011, 2012).
Supporting this notion, mice tumors exposed to thapsigargin
displayed exacerbated tumor growth which correlated with the
increased numbers and aggressive phenotype of MDSCs (Lee
et al., 2014). To our knowledge, although transmissible ER stress
has not been directly demonstrated in MM, this system share
common players with MM pathogenesis (IL-6, MDSCs, alteration
of DCs). Therefore, as MM cell suffer from ER stress, it is
not rare to think that transmissible ER stress might contribute
to the characteristic immunosuppressive BM microenvironment
in MM patients. Collectively, all these data seem to point to
the fact that low to moderate ER stress may contribute to
create an immunosuppressive environment, whereas high-level
ER stress, such as the one occurred in ICD, could bring about
immunostimulatory responses (Cubillos-Ruiz et al., 2017).

Besides the contributions to ICD stated before, ER stress
may further boost DAMP signaling abilities of stressed cancer
cells through the induction of autophagy (Martins et al., 2014;
van Vliet et al., 2015). It is known that upon UPR activation,
autophagy is activated as a defense mechanism to promote
cell survival (Høyer-Hansen and Jäättelä, 2007; Velasco et al.,
2010; Michallet et al., 2011; Corazzari et al., 2017). Moreover,
as mentioned in previous sections, autophagy plays a crucial
role in ATP secretion during ICD driven by chemotherapeutics
(Martins et al., 2014). For these reasons, it may seem feasible
that ER stress-induced autophagy triggered by ICD inducers
further contributes to the immunogenicity of dying cancer cells.
However, whether autophagy is directly induced by these drugs
or is just a consequence of ROS-based ER stress in the context
of ICD, needs to be thoroughly explored. Nonetheless, there are
at least three facts that question the involvement of ER stress-
induced autophagy in ICD: (1) The extensive characterization
of molecular pathways involved in autophagy-mediated ATP
secretion comprise molecular mechanisms (caspases, LAMP1-
dependent trafficking, PANX1 channels lysosomal exocytosis)
that seem to be independent of ER stress/UPR pathways (Martins
et al., 2014). (2) In chemotherapy-induced ICD, autophagy do
not regulate the emission of DAMPs which are dependent on
ER stress pathways (Panaretakis et al., 2009; Michaud et al.,
2011; Martins et al., 2014). (3) Finally, ATP secretion and CRT
exposure appear to follow a different time-course, since CRT
mobilization has been shown to occur prior phosphatidylserine
externalization, whereas ATP is expelled during the blebbing
phase of apoptosis. Altogether, these considerations may point
to ER stress and autophagy as two independent constituents

of ICD, at least in chemotherapeutic-driven ICD. On the
other side, under Hyp-PDT treatment, autophagy has also been
shown to be activated and to confer resistance against ROS-
mediated cytotoxicity of stressed cancer cells (Dewaele et al.,
2011; Rubio et al., 2012). One might argue that as hypericin
is a direct ER sensitizer (Garg et al., 2012a) (type II ICD
inducer), autophagy is triggered as a consequence of ER stress
induction. Meanwhile in type I ICD inducers, as ER stress
is not the primary target, autophagy could be induced upon
interaction with other cellular targets. Furthermore, the ICD
pathways involved in danger signaling are not identical when
triggered by type I or type II ICD inducers. Thus, contrary to
chemotherapy-induced ATP secretion, in the Hyp-PDT scenario
ATP secretion is not dependent on autophagy machinery (Garg
et al., 2013). Outstandingly, autophagy was found to attenuate
CRT translocation and DCs maturation as well as suppress DC-
mediated proliferation of CD4 and CD8 T cells (Garg et al.,
2013). This has been rationalized as the autophagy machinery
is able to clear oxidized proteins and organelles (Rubio et al.,
2012; Garg et al., 2013), which in turn would alleviate the ER
retention system that becomes overwhelmed under ER stress
conditions (Johnson et al., 2001; Wiersma et al., 2015). Hence,
during Hyp-PDT treatment, ER stress and ROS production
allow oxidized proteins to accumulate leaving the ER retention
system saturated (Dewaele et al., 2011; Rubio et al., 2012).
Under these conditions, autophagy inhibition would increase
the amount of oxidized proteins (possibly by augmenting ROS-
based ER stress) and would favor that ER resident chaperones
such as CRT could escape from ER confinement (Johnson et al.,
2001; Peters and Raghavan, 2011; Garg et al., 2013). Similarly,
in a model of melanoma, in wild-type as well as in BRAF-
resistant cells, concurrent silencing of ATG5 and treatment with
a MEK-inhibitor (U0126), amplified the levels of ecto-CRT and
ecto-HSP90 compared to those cells in which autophagy was
intact (Martin et al., 2015). Additionally, emerging mechanisms
underpinning the crosstalk between the autophagic flux and the
endosomal pathway could contribute to unravel the interplay of
autophagy in modulation of ER-stress driven DAMP trafficking
(Kim et al., 2012; Hyttinen et al., 2013; McKnight et al., 2014;
van Vliet et al., 2015). ER stress could also have an impact over
intracellular ATP levels through stimulation of mitochondrial
respiration and bioenergetics (Bravo et al., 2012). This way the
cell fill their bioenergetic stores to restore cell homeostasis.
Given the chemotactic power of ATP, by increasing its cellular
levels, the cell may also be preparing to alert the immune
system that something is wrong. Finally, ER stress and the UPR
could also impact on cytokine production in multiple levels
(PRRs, transcription factors involved in cytokine production,
etc.) (Smith et al., 2018). The mechanisms involved in this process
are out of the scope of this manuscript and have been recently
reviewed in Reverendo et al. (2019) and Smith et al. (2018).

ER STRESS-ASSOCIATED CELL DEATH

With all these players around the table, it seems tempting to
target PERK and/or ER stress in cancer. In fact, ER stress
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as a target, is increasingly getting more adepts in the cancer
crusade. During tumor development cancer cells have to cope
with harsh conditions that are widely known to trigger ER stress
(e.g., nutrient deprivation, hypoxia, acidic pH) (Sano and Reed,
2013). Thus, UPR activation constitutes an important hallmark of
numerous human cancers (Riha et al., 2017). This process endows
cancer cells with the ability to acquire essential characteristics
(dormancy, resistance to therapy, tumor-driven angiogenesis,
etc.) required for tumor progression (Sano and Reed, 2013;
Corazzari et al., 2017; Mohamed et al., 2017). As stated before,
ER stress could also negatively influence immunity at different
levels, favoring this way tumor development (Mahadevan et al.,
2011; De Sanctis et al., 2016; Cubillos-Ruiz et al., 2017). In the
particular case of MM, their exacerbated secretory phenotype
leave these cells heavily reliant on the survival arm of the UPR.
Therefore, as plasma cell development and survival strongly
relies on an intact UPR (Reimold et al., 2001; Iwakoshi et al.,
2003), it does not seem unusual that UPR activity increases
with MM progression (Nakamura et al., 2006). Furthermore,
whole genome sequencing studies have revealed that MM
patients frequently harbor mutations in genes related to the
UPR (Chapman et al., 2011). Among the UPR mediators,
XBP1 has been found to be overexpressed in MM and has
also been identified to be mutated in a small subpopulation of
patients (Carrasco et al., 2007; Bagratuni et al., 2010; Chapman
et al., 2011; Nikesitch et al., 2018). Nevertheless, although
myeloma cells count on the UPR to thrive, they are extremely
sensitive to ER stress-associated cell death (Obeng et al., 2006;
Ling et al., 2012; Gandolfi et al., 2017). This feature explains
why proteasome inhibitors, have shown a prominent clinical
efficacy in the treatment of MM (Leleu et al., 2018; Scalzulli
et al., 2018), although resistance to therapy is recurrent and
in most of the cases accounts for the lethality of the disease
(Nikesitch et al., 2018; Robak et al., 2018). For these reasons,
novel ER stress/UPR-targeting therapies have emerged. Given its
important role in myeloma pathogenesis, novel drugs targeting
the RNAse domain of IRE1 (4µ8C, MKC-3946, STF083010)
have been developed. These drugs showed significant tumor
growth inhibition in mouse myeloma models (Papandreou
et al., 2011; Mimura et al., 2012), as well as in primary
myeloma plasma cells (Papandreou et al., 2011). In addition,
new potent and selective first-in-class inhibitors have been
developed against PERK (GSK2606414 and the derived form
GSK2656157) (Atkins et al., 2013; Hoi et al., 2013). These
drugs have shown promising pre-clinical results in a model
of pancreatic cancer (Atkins et al., 2013; van Vliet et al.,
2015). Nonetheless, given the dual role of ER stress and UPR
related pathways in cancer, a word of caution about needs
to be taken when targeting these cellular pathways. On one
side we may be inhibiting the pro-tumorigenic role of UPR
mediators but in the other, we may reduce the immunogenicity
of cancer cells dampening danger signaling (or vice versa).
Therefore, future investigations assessing the repercussion on
overall immunity, as well as cell-autonomous responses on
cancer cells, on immunocompetent mice models are needed
in order to truly evaluate the therapeutic relevance of these
approaches in cancer.

Although UPR activation is initially conceived to restore
cell homeostasis, it is also able to shift the cellular demise
toward cell death. When ER stress persists, the UPR is able
to trigger proapoptotic programs controlled mainly by IRE1
and PERK arms. Activated IRE1 can act as a docking platform
to recruit other proteins such as the adaptor protein TRAF2,
that subsequently tethers ASK1 which causes activation of
JNK/p38 MAPK pathway. These downstream stress kinases, are
reported to promote apoptosis in several ways. For example, JNK
phosphorylation has been shown to inhibit the anti-apoptotic
members Bcl-2, Bcl-xL and Mcl-1, while activating pro-apoptotic
members BID and BIM (Deng et al., 2001; Lei and Davis, 2003;
Almanza et al., 2018). As regards to p38 MAPK, it phosphorylates
and activates transcription factor CHOP which contributes to
apoptosis controlling several Bcl-2 family members (Yamaguchi
and Wang, 2004; Puthalakath et al., 2007). As in the case of PERK
signaling, it increases the expression of ATF4 and CHOP, two key
determinants of ER stress-induced cell death. CHOP can increase
the transcription of BH3-only proteins BIM (Puthalakath et al.,
2007) and PUMA (Cazanave et al., 2010). Moreover, Noxa has
been reported to be upregulated by ATF4 (Armstrong et al.,
2010). ATF4/CHOP pathway also downregulates the expression
of Bcl-2 and Mcl-1 anti-apoptotic proteins, contributing in this
way to cell death (Puthalakath et al., 2007; Gomez-Bougie et al.,
2016). Moreover, PUMA, BID and BIM deficient cells, as well as
BAX and BAK double-knock-out cells, are protected from cell
death by external ER insults (Ren et al., 2010; Almanza et al.,
2018). The extrinsic apoptotic pathway could also be upregulated
under ER stress conditions. Thus, CHOP and ATF4 have been
shown to increase the expression of DR4 and DR5 receptors
(Hiramatsu et al., 2015; Iurlaro et al., 2017). In fact, bortezomib
have been shown to cooperate and potentiate cell death induced
by Apo2L/TRAIL in MM cell lines (Balsas et al., 2009).

Bcl-2 family are better known for their roles in controlling
mitochondrial permeability and cell death mechanisms.
However, they also play important roles in regulating calcium
ER homeostasis and ER stress-induced cell death. Interestingly,
an intense crosstalk between mitochondria and ER organelles
exists, which even increases during ER stress conditions
(Bhat et al., 2017). For example, BAX and BAK are capable
of modulating IRE1 activity during ER stress by interacting
with IRE1 (Hetz, 2006). In similar way to mitochondria,
BAX and BAK can also oligomerize at the ER membrane
under ER stress conditions. This results in an increase of
ER-membrane permeability and the release of ER resident
proteins such as calreticulin, BIP, PDI and GRP94, which
could aggravate ER stress and ROS production (Rodriguez
et al., 2011; Pihán et al., 2017). This process is triggered by
BH3-only members and counteracted by Bcl-2 and Bcl-xL
(Wang et al., 2011; Kanekura et al., 2015). The mechanism by
which ER permeabilization leads to cell death is still unknown.
However, it has been speculated that ER permeabilization
could bring about release of ER-Ca2+ stores and increase
Ca2+ flux to the mitochondria through mitochondria ER-
associated membranes (MAMs). This would instigate cell
death by mitochondrial permeabilization transition pore
(mPTP) (Pihán et al., 2017). Taken together, these studies
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delineate the ER as an important stress sensor and integrator
where also cell fate decisions may take place, with Bcl-2
family as the critical circuitry that connect and modulate
the mechanisms involved in cell fate (UPR, apoptosis and
also autophagy).

IMMUNOTHERAPY IN MM

Multiple myeloma is a hematological malignancy that arises
due to uncontrolled proliferation of abnormal plasma cells. It
accounts for 10–20% of all hematological neoplasms and 0.9% of
all newly diagnosed cancer cases worldwide (Bray et al., 2018).
Over the past two decades, treatment regimens and survival rates
of myeloma patients have witnessed a radical improvement, with
ASCT, IMiDs, proteasome inhibitors and monoclonal antibodies
as the contributors to this advance. Among them, proteasome
inhibitors, stand out as the cornerstone of this scientific
and medical achievement (Scalzulli et al., 2018). However,
although overall survival and patient outcomes have considerably
improved, drug resistance is still a major concern and accounts
for the fatality of the disease (Nikesitch et al., 2018; Robak et al.,
2018). That is why novel and more efficient (immuno)therapeutic
approaches may take the relief. It is important to point out
that MM is a genuine example where the immune system is
compromised. Deficits in antibody production/immunoglobulin
levels due to a reduction of bone marrow (BM) B-cell progenitors
are common in MM (Rawstron et al., 1998). General disruption
of T-cell immune profile has also been observed, characterized
by increased numbers of regulatory T cells (Tregs), aberrant
CD4/CD8 ratios and altered CD4+ T cell numbers among
others (Braga et al., 2014; Joshua et al., 2016; Chen et al.,
2017). MM is also characterized by augmented expression of
programmed cell death ligand 1 (PD-L1), one of the immune
checkpoint inhibitory ligands that counterbalance T cell activity
by binding to PD-1 on activated T cells (Paiva et al., 2015;
Jung et al., 2017). MDSCs are also a major issue in MM, as
expansion of this population usually correlates with disease
progression and a negative clinical outcome (Malek et al., 2016).
In addition, MM also finds good allies in BM stromal cells
(BMSCs), which are important players sculpting a permissive
BM microenvironment (Mahindra et al., 2010). Through cell-
to-cell (Mondello et al., 2017) o exosome-mediated contacts
(Wang et al., 2014) with MM cells, they secrete cytokines that
favor the recruitment of immunosupressive populations such
as Tregs and MDSCs (Giallongo et al., 2016; Malek et al.,
2016). Finally, several studies have documented an impaired
DC function and although contradictory results have been
reported, alterations in DCs frequencies and phenotypes have
been found in in MM patients (Pasiarski et al., 2013; Leone
et al., 2015; Brown et al., 2018). Despite all these stones
in the immunotherapeutic path, immune-interventions have
potential to be successful in this disease. Graft-vs-myeloma
effect was firstly evidenced in patients subjected to ASCT or
under donor lymphocyte infusions, suggesting an active immune
response against myelomatous cells (Ladetto et al., 2016). Current
immunotherapeutic approaches that are giving positive results

in relapsed and refractory patients are going to be described
below (see also Figure 3).

Antibody-Based Therapy
Although monoclonal antibodies (moAbs) have been in
the anticancer therapeutic armamentarium for some years,
effectively treating some solid and hematological cancers, it
was only a few years ago that Daratumumab was approved
for the treatment of MM. Daratumumab is a moAb that
selectively targets CD38, an antigen highly expressed in aberrant
plasma cells and at relatively low levels on normal lymphoid
and myeloid cells, including normal PCs. Similarly, other
anti-CD38 moAbs are currently under investigation such
as isatuximab and MOR22. As single agent, Daratumumab
showed a promising efficacy, observing objective response rates
(ORRs) of approximately 30%, progression free survival (PFS) of
4 months and overall survival (OS) of 20 months, in relapsed and
refractory MM (RRMM) patients heavily treated with at least two
prior lines of therapy (Lokhorst et al., 2015; Lonial et al., 2016;
Rodríguez-Otero et al., 2017). Daratumumab has been shown
to kill MM cells through a plethora of mechanisms ranging
from antibody-dependent cell mediated cytotoxicity (ADCC)
mediated by NK cells, complement-medicated cytotoxicity
(CDC), antibody-dependent cell phagocytosis (ADCP) mediated
by macrophages and even apoptosis via direct cross-linking
(van de Donk and Usmani, 2018). NK cell-mediated cytotoxicity
seems to be one of the main mechanisms, and since patient
NK cell status may vary, this could explain differences in
response between patients (van der Veer et al., 2011). Nowadays,
another moAb, elotuzumab, has been approved in MM therapy
targeting the SLAMF7 molecule expressed among normal and
myeloma PCs, NK, and T cells. The mechanism of action of
Elotuzumab is thought to differ from that of daratumumab.
This thought is based on the fact that elotuzumab alone has
not reached objective responses in MM patients but when
combined with lenalidomide and dexamethasone, in a phase II
trial and afterward in the Eloquent-2 phase III trial, significantly
improved ORRs and OS in RRMM patients (Lonial et al., 2015;
Rodríguez-Otero et al., 2017).

Combination of chemotherapy with this kind of approach
could render synergistic effects and improve patient’s outcomes.
Interestingly, IMiDs have shown to prime MM cell lines to
Daratumumab-induced NK cell-mediated cell death (Fedele
et al., 2018). In fact, several clinical trials combining IMiDs
and Daratumumab have been performed obtaining good
results (Gavriatopoulou et al., 2018). Similarly, the efficacy
of Daratumumab alone was even improved with combination
regimens of daratumumab plus lenalidomide and dexamethasone
or daratumumab with bortezomib plus dexamethasone,
significantly extending PFS period with strong and durable
responses (Blair, 2017; Rodríguez-Otero et al., 2017). As
Carfilzomib has shown better survival curves compared to
bortezomib, combinations of Daratumumab plus carfilzomib
and dexamethasone are currently under phase I investigation
(clinical trial NCT03158688).

Other novel and promising designs of these kind of
therapy are the conjugated antibodies and the bi-specific T
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FIGURE 3 | Current clinical immunological scenario in MM. MM is a genuine example where the immune system is compromised. It is characterized by: (1) Deficits in
antibody production due to a reduction of bone marrow (BM) B-cell progenitors (Rawstron et al., 1998). (2) General disruption of T-cell immune profile, characterized
by increased numbers of regulatory T cells (Tregs), aberrant CD4/CD8 ratios and altered CD4+ T cell numbers among others (Braga et al., 2014; Joshua et al., 2016;
Chen et al., 2017). (3) Increased expression of programmed cell death ligand 1 (PD-L1), one of the immune checkpoint inhibitory ligands that counterbalance T cell
activity (Paiva et al., 2015; Jung et al., 2017). (4) MDSCs and BMSCs are also a major issue in MM. They are important players sculpting a permissive BM
microenvironment, through cell-to-cell (Mondello et al., 2017) o exosome-mediated contacts (Wang et al., 2014) with MM cells, they secrete cytokines that favor the
recruitment of immunosupressive populations such as Tregs. (5) An impaired DC function and alterations in DCs frequencies and phenotypes have been found in
MM patients (Pasiarski et al., 2013; Leone et al., 2015; Brown et al., 2018). At the right is depicted the current immunotherapeutic repertoire in MM therapy. All these
immunotherapeutic approaches could be virtually benefited from the immunostiumulatory effect of ICD-related therapies.

cell engagers (BiTEs). Conjugated antibodies carry in their
structure cytotoxic molecules that are guided by the specificity
of the antibody part and delivered directly into the target. In
particular, an anti-BCMA specific antibody linked to a new
class of antimitotic agent, monomethyl auristatin F, has been
developed (GSK2857916). This formulation has demonstrated
in a phase I trial a 60% response rate and PFS of 7.9 months
in RRMM patients with at least three prior lines of therapy

(Trudel et al., 2018). Regarding the BiTEs, these are bispecific
antibodies that hold on one side specificity for the target
cancer cell epitope and on the other recognizes (generally)
CD3 molecules on T cells facilitating the contact between
them. This way, contact between effector cells and cancer cells
is facilitated. There are several BiTEs targeting the BCMA
antigen that are currently under development (BI 836909, EM801
and JNJ-64007957) and showed positive results in preclinical
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models (Cho et al., 2018). Some of these have now entered
clinical trials (NCT02514239, NCT03145181, NCT03269136
and NCT03269136), we will have to wait to new updates
of these and other studies to check the efficacy of these
new formulations.

Adoptive Cell Therapy
Another way to confront the tumor is by directly using and
improving patient’s own defenses (immune effector cells) to
kill cancer cells with ACT. By expanding, activating and even
engineering NK or T cells outside the immunosuppressive
tumor microenvironment, some of the immune barriers may
be successfully, or at least partially overcome. As mentioned
earlier, graft versus myeloma effect has been observed in patients
subjected to autologous stem cell transplantation (ASCT). This
effect is thought to be mainly mediated by T cells. Therefore, this
population and more specifically, tumor infiltrating lymphocytes
(TILs), MILs in the case of myeloma, represents one of the
major immune effector cells that could be used to fight MM.
Although clinical data in this issue is still scarce, encouraging
results has been reported. Noonan et al. (2015) reported that
a 90% reduction of tumor burden was achieved with a PFS of
25.1 months, hence demonstrating the feasibility and efficacy
of this approach. Genetically engineered T cells stand as a
novel and a leading therapeutic opportunity in cancer in general
and also in MM. There are two categories: (1) Transgenic
TCRs, with specificity toward a tumor antigen in the context
of MHC molecule and (2) chimeric antigen receptor (CAR)
T cells, which are fusion proteins composed of a single-chain
variable fragment (scFv) that directs the specificity toward the
cancer cell antigen, coupled to intracellular signaling modules
(CD3ζ) or costimulatory molecules (CD28 or CD137/4-1BB).
TCR engineered T cells have the advantage to recognize both
intracellular and surface antigens, therefore virtually any tumor
antigen could be targeted. However, they are restricted to the
HLA-I type limiting the patient eligibility criteria (Rodríguez-
Otero et al., 2017). Moreover, potential recombination with
TCR α and β chains could lead to off-target toxicities due to
generation of unexpected MHC-TCR-peptide complex (Cohen,
2018). Fatal and sudden toxicities have been observed in two
patients receiving transgenic TCR T cells with specificity to
MAGE-A3 class I peptide, due to unwanted specificity of
transgenic TCR toward the myocardial protein titin (Linette
et al., 2013). Therefore, caution in selecting the proper Ag must
be taken. In myeloma, transgenic TCR T cells for NY-ESO1
peptide and its homolog LAGE are currently under clinical
testing (Rapoport et al., 2015). Regarding the use of CAR T
cells, one of its limitations is that only surface antigens can
be targeted, so the number of available targets is lower with
this approach. Therefore, the success of this therapy relies on
selecting the appropriate target, to selectively kill the cancer cell
limiting off-target and targeted-toxicities on healthy tissue. To
date CD19 CAR T cells has shown remarkable results on acute
lymphoblastic leukemia, chronic lymphocytic leukemia and non-
Hodgkin lymphoma (Porter et al., 2015; Maude et al., 2018).
Nowadays, there are several antigens in the anti-myeloma CAR
T cell repertoire including CD19, CD138, CD38 and SLAMF7.

To date BCMA CAR T cell formulation is the one that has been
developed in further extent (Cohen, 2018). Several clinical trials
have tested or are currently testing BCMA CAR T cells in heavily
treated RRMM patients reporting encouraging results. In these
studies, overall response rates were close to 80% or even higher
and CRs were achieved in an important proportion of patients
(Castella et al., 2018; Cohen, 2018).

Similarly, NK cells also pose as a committed ally in cancer
therapy. They do not rely on MHC restriction or antigen
recognition, but rather they are dependent on the balance
between activating and inhibitory receptors. In MM, NK cell
numbers and functionality are usually altered, therefore it is
feasible to think that restoration of NK cell compartment with
ACT could represent a suitable opportunity to face this disease.
There are many therapeutic options that are currently under
clinical evaluation. They mainly differ in their source (umbilical
cord vs. peripheral blood), in their allo-reactivity (autologous
vs. allogeneic), and the expansion and stimulation protocols
used to prepare and improve these cells (Fionda et al., 2018).
One conclusion may be drawn out from all these studies and
that is the superior capacity of allo-reactive NK cells to bring
myeloma down. Regarding the use of CAR NK cells in MM,
they are still under preclinical studies and have not move yet to
clinical investigation.

Here chemotherapy could also improve the effectiveness of
these approaches. In particular, Lenalidomide has shown to
improve the function and persistence of anti-myeloma CS1
CAR T cells in vivo (Wang et al., 2018). Carfilzomib has
also shown activating and sensitizing activities over NK cells
and MM cells, respectively (Chang et al., 2018). In addition,
the combination of expanded and activated allogeneic NK
cells (eNK) with therapeutic mAbs directed against tumor
antigens (e.g., daratumumab in the case of MM), could
give excellent results through ADCC mediated by eNK cells
(Sanchez-Martinez et al., 2018).

Releasing the Brakes With
Checkpoint Blockade
T cell activation is a complex and well-regulated process.
When the menace have been removed, returning to the
homeostatic state and preventing damage of tissues requires
negative feedback signals that terminate with the immune
response. To that end, checkpoint inhibitors are the major
class of receptors that provide these attenuation signals to
limit the T cell response. Multiple inhibitory checkpoints
have been discovered so far: CTLA-4, PD-1, LAG-3, TIM-
3, etc. Although, currently both stimulatory and inhibitory
checkpoints are under investigation, the checkpoint drugs on
which clinical therapies have been developed are CTLA-4, PD-
1 and PD-L1. CTLA-4 is an inhibitory receptor expressed
on activated T cells and binds to B7 costimulatory molecules
on APCs with higher affinity than CD28. Therefore, CTLA-
4 blocks and displaces costimulatory interactions eventually
leading to abrogation of T cell activation. Ipilimumab, a blocking
antibody against CTLA-4, was the first of these type of drugs
clinically tested, showing important improvements in metastatic
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melanoma patients (Robert et al., 2011; Sharma and Allison,
2015). Like CTLA-4, PD-1 is also a checkpoint inhibitory
receptor expressed on activated T cells and has two known
ligands, PD-L1 and PD-L2. PD-1/PD-L1 (PD-L2) signaling
axis interferes with TCR signaling and contributes to T cell
exhaustion. PD-L1 / PD-L2 are widely expressed among different
cell types and their expression is known to increase under IFN-
γ exposure (Sharma and Allison, 2015). Hence, it is thought
that this pathway is a late mechanism of protection from T
cell activation and represents a physiological way to regulate
termination of inflammatory reactions (Sharma and Allison,
2015; Cogdill et al., 2017). PD-L1 is upregulated in tumor cells
acting as a disguise mechanism that allow them to escape from
T cell-mediated tumor surveillance. Moreover, PD-L1 expression
has been linked with poor prognosis in a variety of human
cancers (Ghebeh et al., 2006; Mu et al., 2011). On the other
hand, probably due to the immunosuppressive character of
the tumor microenvironment, TILs show higher expression of
PD-1 (Fourcade et al., 2010; Zhang et al., 2010). In MM, PD-
L1 expression is upregulated on myeloma cells but not in
normal plasma cells from healthy donors (Liu et al., 2007;
Tamura et al., 2012; Paiva et al., 2015; Yousef et al., 2015).
In fact, higher PD-L1 expression in MM cells was associated
with disease progression as shown in the differences of PD-L1
expression between MGUS, MM and relapsed/refractory MM
(RRMM) patients (Paiva et al., 2015). Blocking PD-1 alone with
nivolumab has not reached good clinical objective responses
with half of the patients experiencing disease stabilization
in a phase I study (Lesokhin et al., 2016; Rodríguez-Otero
et al., 2017). Similarly, on KEYNOTE-013 study, Ribrag and
colleagues assessed the clinical efficacy of the anti-PD-1 mAb
pembrolizumab as single agent in patients with RRMM. No
patient of the 30 enrolled in the study experienced any response
and the best outcome observed was again disease stabilization
(Paul et al., 2018).

Although checkpoint blockade therapy alone has shown
promising results in some cancer patients, this response is not
universal and strongly relies on the tumor microenvironment.
Thus, checkpoint blockade efficacy may also be refined by
induction of more propitious immunogenic conditions in
the tumor tissue through ICD. Recent preclinical studies
have shown that immunogenic chemotherapy may sensitize
cancer cells to checkpoint blockade leading to synergistic
responses. In a lung mouse cancer model, an approved clinical
chemotherapy regimen (Oxaliplatin plus cyclophosphamide)
were able to foster CD8+ T cell infiltration and increase
TLR4+ DCs in tumor tissue, which leads to sensitization
of tumors to immune checkpoint therapy (Pfirschke et al.,
2016). Another study also showed that the CDK inhibitor
dinaciclib was able to increase immune infiltration and activation
within tumors and combination with anti-PD1 therapy resulted
in enhanced anticancer activity in three different syngeneic
mouse cancer models (Varpe et al., 2012). In the clinical
practice, NSCLC patients treated with combined regimens of
chemotherapy (platinum-based) with different anti-PD1 agents
have demonstrated considerable higher response rates and
improved clinical outcome compared to that seen on single-agent

modalities (Mathew et al., 2018). In patients with metastatic
renal cell carcinoma, combination of anti-PD1 (nivolumab) plus
pazopanib or sunitib also showed promising clinical responses
(Amin et al., 2014).

In MM, preclinical data shows that lenalidomide, one
of the so-called immunomodulatory drugs (IMiDs), reduce
the expression of PD-1 and PD-L1 in MM cells and BM
accessory cells isolated from RRMM patients. Moreover, a
synergistic effect between lenalidomide and anti-PD-1 or anti-
PD-L1 was observed (Görgün et al., 2015). These results
encouraged the rationale of using PD-1/PD-L1 blockade in
combination with IMiDs in the treatment of MM. Hence,
phase I and phase II clinical trials on RRMM patients
who underwent at least three prior lines of therapy have
been conducted (Wilson et al., 2016; Badros et al., 2017).
These studies showed ORRs of 60% with even some cases
of complete response. Therefore, development of phase III
clinical trials were the following step to test these combination
modalities (Malavasi et al., 2018). Pembrolizumab plus Len
and Dex (KEYNOTE-185, NTC02579863), Pembrolizumab plus
Pom and Dex (KEYNOTE-183, NTC02576977) and another
phase III study testing three different combination regimens
(Poma and Dex vs. nivolumab, Pom and Dex vs. nivolumab,
elotuzumab, Pom and Dex; CheckMate 602, NCT02726581)
were developed. However, these studies were discontinued due
to an increase of unprecedented deaths in the pembrolizumab
group as well as that no objective responses were observed in
the tested groups.

DC-Based Vaccines and Its
Enhancement/Upgrade With ICD
Due to its particular nature, DCs are at the fine-tuned crossroads
between innate and adaptive immunity, playing a pivotal role
in anti-cancer host immune responses. Therefore, DC-based
vaccines seem to be a good option to re-educate the host immune
system against myeloma, leading not only to the expansion
of anti-tumor specific T cells, but also to long-term memory
generation. Since its first documented clinical use on melanoma
patients in 1995 (Mukherji et al., 1995), DC-based vaccines
have gained momentum in anti-cancer therapy. In fact, this
approach has showed positive survival benefits in a diverse
set of human cancers (Kantoff et al., 2010; Nakai et al., 2010;
Anguille et al., 2014; Cao et al., 2014). In the particular case
of MM, DC-MM fusion vaccines achieved anti-cancer immune
responses and disease stabilization in the vast majority of
patients (Rosenblatt et al., 2011; Rosenblatt et al., 2013). In
hematological cancers, following ASCT a complete “resetting”
of the hematological system occurs, leaving a huge opening to
vaccination strategies to succeed (Rodríguez-Otero et al., 2017).
However, although considerable objective clinical responses have
been observed, the overall clinical outcome still has not reached
the expected standards (Anguille et al., 2014; Vandenberk et al.,
2015). As mentioned earlier, due to the hostile microenvironment
surrounding MM cells, DC populations are dysfunctional in
MM, showing impaired T-cell stimulation capacity (Guillerey
et al., 2016; Chung, 2017). Moreover, it is said that the antigens
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displayed by myeloma cells are presented to DCs in absence of the
appropriate costimulatory signals. Therefore, these interactions
lead to inadequate immune responses and even create tolerance
against cancer Ags (Chung, 2017). For these reasons, there is
a consensus that DC vaccines may need to be optimized and
standardized in order to enhance their clinical efficacy. There
are several factors that have a direct impact on DC biology and
the quality and potency of the ensuing T cell responses: route
of administration and frequency of injection, delivery system,
use and type of adjuvants, nature of DC vaccine formulations,
and nature of tumor cell lysates/antigen cargo (Vandenberk
et al., 2015; Rodríguez-Otero et al., 2017). Among them, the
immunogenicity of dying cancer cells used to load DCs could be
easily and notably improved by using ICD-inducers. Numerous
studies have proven the potential of ICD-inducers to have a huge
impact on DC biology and improve the ability of DCs to stimulate
effector cells and enhance anti-cancer T cell responses in vivo.
For example, γ-irradiation, has been shown to effectively induce
DCs maturation and stimulate in vivo CTL responses (Goldszmid
et al., 2003). Moreover, γ-irradiated cells efficiently immunized
mice against a subsequent rechallenge with live syngeneic cancer
cells in various preclinical models (Strome et al., 2002). Different
ICD-related modalities such as UV light (Brusa et al., 2008),
oncolytic viruses (Donnelly et al., 2011), HHP (Mikyšková et al.,
2016), heat shock (Adkins et al., 2017) among others have shown
to upregulate maturation markers in DCs as well as prime antigen
specific T-cell responses both in vitro and in vivo. Hyp-PDT
is also equally effective in inducing complete tumor regression
in vivo both in curative and prophylactic vaccination settings
(Sanovic et al., 2011). DCs charged with Hyp-PDT treated cells
significantly enhanced CTL responses, IFN-γ producing CD8+
T cells and Th1-driven immunity in ectopic murine mammary
tumors (Jung et al., 2012) as well as orthotopic glioma mice
models (Garg et al., 2016).

In the clinical practice, melanoma and high-grade glioma
patients have successfully been treated with DC vaccines loaded
with γ-irradiated tumor cells (Cho et al., 2012). In the case of
glioblastoma multiforme, patients who underwent conventional
treatment plus DC-based therapy showed an increased short-
term (1–3 years) survival rates compared to control group
receiving conventional therapy (Cho et al., 2012). Relapsed Non-
Hodgkin’s B-cell lymphoma (NHL) patients have also benefited
from DC vaccines pulsed with γ-irradiated, heat shock or UV
light-treated tumor cells (Zappasodi et al., 2010). Accordingly,
CRT and HSP90 expression levels on NHL cells positively
correlated with the observed clinical and immune responses
(Zappasodi et al., 2010).

In MM, data regarding the use of ICD-dying cells to provide
an enhanced immunogenic feed to DCs and the expected in
vivo anti-cancer immune responses are still lacking. In particular
lenalidomide has shown to impact DCs biology and enhance
CD8+ T cell cross-priming by primed DCs (Henry et al., 2013).
Another study evaluated ICD induced by bortezomib in MM cell
lines and MM primary cells, as well as the capacity of bortezomib-
treated cells to increase maturation markers in DCs and to induce
proliferation and polarization toward IFN-γ producing T cells

in vitro (Spisek et al., 2007). There is currently an ongoing phase
II clinical trial testing DC/MM fusion vaccines in combination
with lenalidomide and GM-CSF (NCT02728102). We will need
to wait for further studies to see the clinical advantages of
combining this type of approaches.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Over the past years, ICD and ER stress are gaining momentum
in anti-cancer therapy. The ability of chemotherapeutics and
other anti-cancer therapies, not only to mount an active immune
response against the tumor, but also to modulate the cancer
immune environment, has transformed the therapeutic scenario
in oncoimmunology. Moreover, understanding of the molecular
pathways involved in all these processes, is uncovering a
whole new set of potential prognostic biomarkers with which
cancer patients could be better monitored and stratified to
determine their optimal therapeutic regimen. However, given
that certain danger signaling markers have been found both
in treated and untreated patients, further investigations are
needed to unravel the real repercussion of therapy driven-
ICD, as well as oncogenic-driven DAMP exposure in the
clinical setting. Furthermore, special caution is needed when
targeting ER stress and UPR pathways, as it could pose both
beneficial and detrimental consequences on patient’s outcome.
On one sid, we may be enhancing cell death pathways or
boosting immunogenicity of cell death, but on the other we
could also be fostering the cytoprotective function of the
UPR as well as some ER stress-related immunosuppressive
effects. Nonetheless, given the adaptability and complexity of
cancer, it is becoming increasingly clear that future anti-cancer
therapeutic approaches will take advantage from combination of
immunogenic (chemo)therapeutic modalities with current and
novel immunotherapeutic regimens. In particular, in MM, this
type of combinatorial approaches have a great opportunity to
success, since encouraging results have been already obtained.
Nonetheless further investigations awaits to circumvent and
manage some of the basic problems and clinical adverse events
that arise with these novel kind of approaches.
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