
fcell-07-00084 May 18, 2019 Time: 16:3 # 1

MINI REVIEW
published: 21 May 2019

doi: 10.3389/fcell.2019.00084

Edited by:
Guillaume Thibault,

Nanyang Technological University,
Singapore

Reviewed by:
Jesse C. Hay,

University of Montana, United States
Marcelo Ehrlich,

Tel Aviv University, Israel

*Correspondence:
Patrick Lajoie

plajoie3@uwo.ca

Specialty section:
This article was submitted to

Membrane Traffic,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 05 March 2019
Accepted: 03 May 2019
Published: 21 May 2019

Citation:
Chadwick SR and Lajoie P (2019)

Endoplasmic Reticulum Stress
Coping Mechanisms and Lifespan
Regulation in Health and Diseases.

Front. Cell Dev. Biol. 7:84.
doi: 10.3389/fcell.2019.00084

Endoplasmic Reticulum Stress
Coping Mechanisms and Lifespan
Regulation in Health and Diseases
Sarah R. Chadwick and Patrick Lajoie*

Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada

Multiple factors lead to proteostatic perturbations, often resulting in the aberrant
accumulation of toxic misfolded proteins. Cells, from yeast to humans, can respond
to sudden accumulation of secretory proteins within the endoplasmic reticulum (ER)
through pathways such as the Unfolded Protein Response (UPR). The ability of cells to
adapt the ER folding environment to the misfolded protein burden ultimately dictates cell
fate. The aging process is a particularly important modifier of the proteostasis network;
as cells age, both their ability to maintain this balance in protein folding/degradation
and their ability to respond to insults in these pathways can break down, a common
element of age-related diseases (including neurodegenerative diseases). ER stress
coping mechanisms are central to lifespan regulation under both normal and disease
states. In this review, we give a brief overview of the role of ER stress response pathways
in age-dependent neurodegeneration.
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INTRODUCTION

Protein homeostasis (or proteostasis) is the sum of cellular processes involving protein
transcription, translation, folding, and degradation (Balch et al., 2008). In order for a cell to remain
functional and capable of adapting to changing biochemical and environmental signals, proteostasis
must remain uncompromised (Ben-Zvi et al., 2009). Protein folding is particularly important for
cellular processes, as the final conformation of a folded protein is essential to its function. Cellular
membrane dynamics are a pivotal aspect of protein folding; adaptations in the ER membrane’s
composition and size are required to maintain proteostasis, and proper protein folding, in turn, is
required to maintain this membrane integrity (Hou and Taubert, 2014).

Under normal circumstances, proteins destined for the secretory pathway are translated directly
into the ER via ribosomes embedded in the ER membrane, bound by chaperone proteins, folded,
and then packaged into vesicles for secretion (Novick et al., 1981). This includes proteins destined
for the plasma membrane, such as membrane-linked receptors, or secreted factors released into
the extracellular environment. In some cases, however, this pathway can go awry; proteins may
become misfolded or unfolded in the ER, and unable to be recovered by the protein quality control
machinery. In this instance, the improperly folded protein is targeted for degradation, exported
into the cytosol, and degraded by a proteasome (Werner et al., 1996). Again, however, this process is
imperfect. Some environmental, cellular, or molecular factors can cause disruptions in this pathway,
preventing the proper turnover of misfolded or unfolded proteins, potentially leading to their
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accumulation and aggregation. This generates a cellular
condition known as ER stress (Friedlander et al., 2000; Walter
and Ron, 2011; Karagöz et al., 2019).

Endoplasmic reticulum stress and the failure to correctly fold
proteins are associated with loss of protein function and cell
death (Zinszner et al., 1998; Hetz et al., 2006; Upton et al., 2012).
To avoid this, the cell resolves misfolded protein stress via two
major stress response pathways: the heat shock response (HSR)
(Verghese et al., 2012), which handles misfolded proteins in the
cytoplasm, and the unfolded protein response (UPR), which takes
place in the ER (Kohno et al., 1993; Cox and Walter, 1996; Liu
and Chang, 2008). These protein quality control mechanisms
are essential for maintaining the function and integrity of
cellular processes. When perturbed, they can lead to whole-
cell dysfunction and toxicity (Ruis and Schüller, 1995; Voellmy,
2004). Under normal conditions, both lead to resolution of the
cellular stress caused by the presence of misfolded proteins.
In some cases, such as in several misfolded protein-associated
diseases (Yoshida, 2007; Torres et al., 2015), these stress response
pathways themselves can become impaired. This leads to further
accumulation of misfolded proteins, which in turn causes further
UPR or HSR impairment (Delépine et al., 2000; Zhang et al.,
2002). Misfolded protein aggregates have also been shown
to bind and sequester machinery important for degrading
misfolded proteins via ER-associated degradation (ERAD), a
protein quality-control mechanism which recognizes unfolded or
misfolded proteins synthesized in the ER (Lippincott-Schwartz
et al., 1988; McCracken and Brodsky, 1996). This ERAD
impairment induces further stress in the ER and causes induction
of the UPR. Proteostatic dysfunction essentially leads to a vicious
cycle of increasing ER stress, protein accumulation, and stress
response impairment.

The UPR is a complicated signaling pathway which works
to resolve ER stress and allow protein synthesis and folding to
continue and has been shown to interact with multiple cellular
pathways and processes to do so, including (but not limited to)
those occurring in the ER (Welihinda et al., 1999; Travers et al.,
2000; Walter and Ron, 2011; Snapp, 2012). It has also been shown
to be impacted by several seemingly unrelated external influences,
including aging and lipid metabolism, and dysfunction in this
pathway has been linked with shortened cellular lifespan and
cell death (Jazwinski, 2002; Hou et al., 2014; Labunskyy et al.,
2014). Because of this, the study of the molecular mechanisms
behind ER stress and the UPR is essential to the understanding of
how protein homeostasis impacts the entire cell and its processes,
including response to stressors, aging, and cell death.

ACTIVATION OF THE UNFOLDED
PROTEIN RESPONSE

As previously mentioned, the UPR is a stress response pathway
specifically activated in response to ER stress, which is a condition
that can be generated by things such as small molecules,
environmental factors, or the accumulation of misfolded proteins
in the ER (Welihinda et al., 1999). The UPR is activated when ER
stress sensors embedded in the ER membrane detect the stressors

and respond. Interestingly, the ultimate function of the UPR
depends on the degree of activation and the length of time before
the stress is resolved (Rutkowski et al., 2006; Rutkowski and
Kaufman, 2007; Vidal and Hetz, 2012). It is primarily an adaptive
response, which rescues cells from ER stress, but prolonged ER
stress or high amplitude of UPR signaling causes the response
to become maladaptive. In these circumstances, the UPR can
activate alternate signaling pathways that result in apoptosis
(Hetz et al., 2006; Rutkowski et al., 2006; Lin et al., 2007; Upton
et al., 2012; Lu et al., 2014; Hetz and Papa, 2018).

In mammals, three distinct ER stress sensors exist: inositol
requiring kinase 1 (IRE1) (Sidrauski and Walter, 1997; Yoshida
et al., 2001; Calfon et al., 2002), double-stranded RNA-activated
protein kinase like endoplasmic reticulum kinase (PERK)
(Harding et al., 2000), and activating transcription factor 6
(ATF6) (Yoshida et al., 1998). When the UPR is activated, ER
chaperone proteins (such as BIP) dissociate from these sensors,
allowing their activation which in turn activates downstream
signaling pathways (Welihinda et al., 1999; Shen et al., 2002;
Ma and Hendershot, 2004; Pincus et al., 2010). Effector proteins
from each of the three pathways bind to UPR response element
(UPRE) sequences in gene promoters. A cell may activate over
400 UPR target genes involved in responding to ER stress, such as
chaperone proteins, ribosome biogenesis genes, ERAD effectors,
and genes to expand the ER lumen (Welihinda et al., 1999; Ma
and Hendershot, 2004; Aragón et al., 2009). Upregulation of such
genes contributes to adapt the ER folding environment to the new
misfolded protein burden.

Despite its name, the UPR can be activated by stresses
unrelated to misfolded or unfolded proteins. In addition to
increased misfolded protein burden, ER stress can be induced by
environmental factors; glucose deprivation/caloric restriction, for
example, has been shown to mildly induce ER stress (Kaeberlein
et al., 2005; Goldberg et al., 2009). Lipid concentration and
composition in cells or in the extracellular environment have also
been shown to significantly impact ER stress and UPR induction
(Pineau et al., 2009; Promlek et al., 2011; Thibault et al., 2012).
There is evidence to suggest that the UPR sensors IRE1 and PERK
can detect perturbations of ER membrane lipid composition,
independently of their luminal sensing domains, through their
transmembrane domain (Promlek et al., 2011; Volmer et al.,
2013; Kono et al., 2017). Other studies have also shown that the
UPR is highly involved in responding to perturbation of lipid
homeostasis (Thibault et al., 2012) and controls lipid synthesis
and ER membrane proliferation in response to various cell
stresses (Bernales et al., 2006; Schuck et al., 2009). Thus, UPR
activation in the absence of unfolded proteins, via perturbation
in the lipid composition of ER membrane, represents another
regulatory mechanism (Promlek et al., 2011; Lajoie et al., 2012;
Snapp, 2012; Volmer et al., 2013; Volmer and Ron, 2015)
which may be important for UPR activation in ER stress-
associated diseases.

Macroautophagy (henceforth, “autophagy”) is another protein
quality control process which relies heavily upon functional
membrane dynamics and proper membrane lipid composition.
It is a non-specific maintenance process by which protein
aggregates and damaged, defective, or aging cellular contents
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and organelles are transported to the lysosome for degradation
(Klionsky and Emr, 2000; Mizushima, 2007; Glick et al., 2010).
The membrane around the cargo destined for degradation
by autophagy, the autophagosome, is derived from the ER
membrane [with apparent contributions from the mitochondrial
and plasma membranes (Nascimbeni et al., 2017)], wherein
autophagic cargo are degraded by lysosomal hydrolases (Dunn,
1990). Autophagy occurs at a basal level in cells, but can be
strongly induced by nutrient deprivation due to autophagy’s role
in nutrient conservation and starvation adaptation, using bulk
degradation to replenish amino acid availability for other cellular
functions (Munafó and Colombo, 2001; Mizushima, 2007). ER
stress has been shown to trigger autophagy, indicating parallel
proteostatic responses to ER stress in the form of the UPR and
autophagy (Bernales et al., 2006; Yorimitsu et al., 2006; Vidal and
Hetz, 2012; Hou and Taubert, 2014). Importantly, activation of
autophagy has been shown to be important for maintenance of
proteostasis and lifespan regulation in multiple organisms and
experimental models (Meléndez et al., 2003; Alvers et al., 2009a;
Lee et al., 2012; Carroll et al., 2013).

ER STRESS AND AGING

Aging has been shown to modulate some of the factors leading
to ER stress. It is an important modifier of the proteostasis
network, meaning that aging cells may have altered capacity to
properly carry out protein transcription, translation, folding, and
degradation (Naidoo, 2009; Brown and Naidoo, 2012; Figure 1).
Aging cells have been shown to have decreased total levels of
a number of ER proteins, including protein chaperones (such
as PDI, BIP, etc.) which normally supervise and ensure proper
protein folding, and assist in targeting misfolded proteins for
degradation (Paz Gavilán et al., 2006; Hussain and Ramaiah,
2007; Naidoo et al., 2008). This usually prevents the accumulation
and aggregation of misfolded proteins and prevents them
from having toxic effects on the cell. In addition, the limited
chaperones that are still present in the aging ER appear to be
impaired. This is possibly due to an increased rate of oxidation
of these chaperones in aged cells, leading to structural changes
and consequently decreased function (van der Vlies et al., 2003;
Snapp et al., 2006; Naidoo et al., 2008). For example, both BIP
ATPase activity and PDI enzymatic function have been shown
to be significantly decreased in aged mouse livers (Nuss et al.,
2008), and similar results have been seen in a number of other
models as well, such as aged mouse cerebral cortex (Naidoo et al.,
2008). Other components of UPR signaling have also shown to
be reduced during aging. PERK mRNA, for example, has been
shown to be reduced in aged rat hippocampi, indicating less
efficient UPR signaling (Paz Gavilán et al., 2006).

Aging also appears to alter the threshold at which the
UPR switches from the adaptive pathway to the apoptotic
pathway, which is perhaps related to the changes to proteostasis
previously mentioned. When PERK signaling is decreased
during aging, for example, there is evidence of an increase
in GADD34 expression, which helps remove the translational
block that occurs through PERK phosphorylating eIF2. This

allows the expression of pro-apoptotic proteins, such as
CHOP (Brown and Naidoo, 2012). CHOP has been shown
to be increased with stress during aging and at baseline in
aged muscular tissue in rats (Hussain and Ramaiah, 2007;
Naidoo et al., 2008; Baehr et al., 2016); caspase-12 is also
increased with stress in aged cells, but not during stress
in younger cells (Paz Gavilán et al., 2006). The apoptotic
protein JNK (which is activated by IRE1 during prolonged
UPR signaling) is also upregulated during aging, as are JNK
kinases that phosphorylate other apoptotic transcription factors
such as ATF-2 and c-Jun (Hussain and Ramaiah, 2007; Brown
and Naidoo, 2012). Calcium-mediated cell death pathways
are also altered during aging. Aging has been linked to
increased calcium flux between the ER and mitochondria, and
consequently increased exposure to reactive oxygen species
and sensitivity to cell death in the case of mitochondrial
calcium overload (Fernandez-Sanz et al., 2014; Calvo-Rodríguez
et al., 2016; Madreiter-Sokolowski et al., 2019). These factors,
in turn, lead to a decreased threshold for the activation
of calcium-mediated apoptosis. This aging-related decrease in
adaptive UPR signaling and increase in apoptotic signaling
may account for the apparent sensitivity of aged cells to
ER stress, and the increased rate of cell death amongst
stressed cells when aged (Rutkowski et al., 2006; Lu et al.,
2014; Tay et al., 2014). Autophagy has also been shown
to become less efficient at clearing damaged organelles and
misfolded proteins during aging in yeast (as well as other
models), and lifespan extension has been demonstrated when
autophagy is heavily induced (Zhang and Cuervo, 2008; Alvers
et al., 2009b; Caramés et al., 2010; Koga and Cuervo, 2011;
Martinez-Lopez et al., 2015).

ER STRESS AND AGE-DEPENDENT
HUMAN DISEASES

Aging is a common risk factor for a number of protein misfolding
diseases, including several neurodegenerative diseases (Martínez
et al., 2017), a number of which have links to UPR function as
described in the previous section. While not all aging-related
diseases are directly linked to breakdown of UPR signaling, this
breakdown may still contribute to disease pathogeneses. For
example, type 2 diabetes is known to develop more frequently due
to both obesity and aging, with the two factors often coexisting in
patients (Ozcan et al., 2004). As aging has also been linked to the
decreases in UPR effector proteins associated with diabetes and
insulin resistance, these results suggest that aging-related UPR
defects may be linked to these diseases as well. Obesity and insulin
resistance are also linked to heart disease and atherosclerosis,
both of which increase in prevalence with age and have also been
linked to ER stress and the UPR (Han et al., 2006). Huntington’s
disease (HD), Parkinson’s disease, and Alzheimer’s disease have
been clearly and repeatedly linked to UPR dysfunction which
increases with age, thus increasing disease severity (Vidal and
Hetz, 2012; Carroll et al., 2013). Though the three diseases
have different causative genes, they all share misfolded protein
accumulation and aggregation as part of their pathology, leading
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FIGURE 1 | Proteostatic changes in aged vs. young cells. When faced with misfolded proteins, young cells demonstrate relatively low ER stress, high chaperone
efficiency and stress tolerance, and primarily adaptive UPR signaling. This generally leads to a resolution of the misfolded proteins and therefore, ER stress. In
contrast, aged cells are more likely to accumulate these misfolded proteins (partially due to loss of chaperone protein efficiency), leading to a state of ER stress, which
they are less able to resolve. Their lower stress tolerance eventually leads to a relative increase in apoptotic UPR signaling over adaptive, ultimately causing cell death.

to impaired proteostasis and ER stress responses, and then
cellular toxicity.

In Alzheimer’s disease, for example, tau neurofibrillary tangles
and amyloid-β plaques accumulate in neurons and lead to
neurodegeneration (Lee et al., 2010). Studies have shown that
cells with these protein aggregates have high UPR induction
identified through high levels of phosphorylated eIF2α, PERK,
and IRE1 (Hoozemans et al., 2005, 2009; Gerakis and Hetz,
2018a,b). This has been identified in early stages of protein
accumulation and linked to later stage neurodegeneration,
suggesting an early beneficial role for the UPR that may
later become maladaptive (Hoozemans et al., 2009). Indeed,
as cells age, the UPR’s capacity to cope with the misfolded
protein load decreases in an fly model of Alzheimer’s disease;
decreased signaling through the IRE1 branch of the UPR has
been identified in this model, leading to decreased misfolded
protein clearance (Marcora et al., 2017). Similar findings have
also been reported in spinal cord tissue from patients with
sporadic Amyotrophic Lateral Sclerosis (ALS) (Atkin et al.,
2008). Enhancing UPR signaling and/or reducing ER stress
through genetic and pharmacological modulation of UPR
effectors such as eIF2α, PERK, XBP1, ATF4, and heat shock
proteins have all been shown to have positive effects on
various models of ALS (Hetz et al., 2009; Saxena et al., 2009;
Castillo et al., 2013; Matus et al., 2013; Saxena et al., 2013;
Jiang et al., 2014; Wang et al., 2014a,b; Das et al., 2015;
Vieira et al., 2015; Nagy et al., 2016). Huntington’s disease
is another neurodegenerative disease which is characterized
by the accumulation of misfolded huntingtin protein, which
undergoes abnormal expansion of a segment of polyQ repeats

(Penney et al., 1997). Longer polyQ tracts are associated with
earlier onset and more severe symptoms (Macdonald, 1993),
and are also more prone to aggregation and are associated
with a higher degree of UPR induction but a lower degree
of HSR induction (Martindale et al., 1998; Chafekar and
Duennwald, 2012). These aggregates have also been shown to
cause ER stress and impaired ERAD due to sequestration of
ERAD machinery, leading to UPR hyperactivation (Duennwald
and Lindquist, 2008; Lajoie and Snapp, 2011; Leitman et al.,
2013; Jiang et al., 2016). In agreement with dysregulated UPR
in HD, restoration of “normal” XBP1 and PERK activity
has been shown to improve disease phenotypes in both cell
and animal models (Vidal et al., 2011, 2012; Leitman et al.,
2014; Rivas et al., 2015). Importantly, activation of ER stress
pathways has been detected in post-mortem patient samples
(Carnemolla et al., 2009). Similarly, UPR has been associated
with the onset of Parkinson’s disease (Mercado et al., 2016).
Accumulation of α-synuclein has been shown to block ER to
Golgi trafficking and consequently activate the UPR in both
yeast and humans (Cooper et al., 2006; Heman-Ackah et al.,
2017). PERK inhibition showed positive effects in a mouse model
of Parkinson’s disease (Celardo et al., 2016; Mercado et al.,
2018). In Parkinson’s disease, misfolded proteins accumulate
in the substantia nigra region of the brain, leading to loss of
dopaminergic neurons in this region. Similar to the studies
performed on Alzheimer’s disease, it has been shown that the
UPR is highly activated in these areas and that this UPR
activation may be causally linked to the neurodegeneration seen
in this disease (Hoozemans et al., 2007). ER stress is therefore
a common determinant of multiple neurodegenerative diseases.
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Thus, targeting the UPR has emerged as an attractive
therapeutic approach these disorders (Rivas et al., 2015;
Valenzuela et al., 2016).

CONCLUSION

As more connections are drawn between ER proteostasis and
aging, it becomes clear that these interactions reach much
further than previously thought – from neurodegeneration to
temperature adaptation, and from simple model organisms like
yeast up to higher mammals. Future research on these fields
(individually and as a whole) will hopefully address some
yet-unanswered questions on how and why these connections
exist. For example, could age-related changes in membrane
composition and fluidity explain age-related increases in UPR
signaling? What advantage would be conferred to the cell by
UPR stress-sensing proteins responding to changes in membrane
lipids as well as ER stress? What other cellular functions and
pathways intersect with these processes, in both baseline and
stressed/aged states? In all likelihood, there is not one single
cause for the breakdown of ER homeostasis during aging,
but instead a combination of factors contributes to overall
increased sensitivity to ER stress. Increased misfolded protein
accumulation, decreased effectiveness of the adaptive UPR, and

an altered threshold for apoptotic UPR signaling likely all play
a role (Naidoo et al., 2008; Brown and Naidoo, 2012; Madreiter-
Sokolowski et al., 2019). Finally, ER stress sensitivity is not only
dictated by the amplitude of the UPR response but also by
upregulation of a specific set of target genes required to adapt
the ER folding environment for a given stress-causing situation
(Thibault et al., 2011). Therefore, the question of what categories
of UPR target genes define the aging UPR is a crucial one that
needs to be addressed. As technology and research methods
advance and our understanding of these areas improves, this
future research will likely have important implications for basic
science and therapeutic approaches to human diseases.
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