'." frontiers

in Cell and Developmental Biology

MINI REVIEW
published: 28 May 2019
doi: 10.3389/fcell.2019.00090

OPEN ACCESS

Edited by:

Vania Braga,

Imperial College London,
United Kingdom

Reviewed by:

René-Marc Mege,

Centre National de la Recherche
Scientifique (CNRS), France
Simone Diestel,

University of Bonn, Germany

*Correspondence:

Selwin K. Wu
selwin_wu@mail.dfci.harvard.edu
Rashmi Priya
rashmi.priya@mpi-bn.mpg.de

Specialty section:

This article was submitted to

Cell Adhesion and Migration,

a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 04 December 2018
Accepted: 13 May 2019
Published: 28 May 2019

Citation:

Wu SK and Priya R (2019)
Spatio-Temporal Regulation

of RhoGTPases Signaling by Myosin
Il. Front. Cell Dev. Biol. 7:90.

doi: 10.3389/fcell.2019.00090

Check for
updates

Spatio-Temporal Regulation of
RhoGTPases Signaling by Myosin Il

Selwin K. Wu'2* and Rashmi Priya3*

" Department of Cell Biology, Harvard Medical School, Boston, MA, United States, 2 Department of Pediatric Oncology,
Dana-Farber Cancer Institute, Boston, MA, United States, ° Department of Developmental Genetics, Max Planck Institute for
Heart and Lung Research, Bad Nauheim, Germany

RhoGTPase activation of non-muscle myosin Il regulates cell division, extrusion,
adhesion, migration, and tissue morphogenesis. However, the regulation of myosin
II'and mechanotransduction is not straightforward. Increasingly, the role of myosin |l
on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin I
controls RhoGTPase signaling through multiple mechanisms, namely contractility driven
advection, scaffolding, and sequestration of signaling molecules. Here we discuss
these mechanisms by which myosin Il regulates RhoGTPase signaling in cell adhesion,
migration, and tissue morphogenesis.
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INTRODUCTION

Non-muscle myosin II is a major determinant of cell and tissue morphogenesis (Vicente-
Manzanares et al., 2009; Wu and Yap, 2013; Priya and Yap, 2015). Myosin II is best characterized
as a cytoskeletal motor-protein, which binds to filamentous actin and generates forces as an
actomyosin complex (Even-Ram et al., 2007; Conti and Adelstein, 2008; Vicente-Manzanares et al.,
2009; Lee et al., 2010; Gomez et al., 2011; Kuo et al., 2011; Shin et al., 2014; Priya et al., 2015). Myosin
IT regulates forces in cells by cross-linking the filamentous actin network across the cytoplasmic
cortex of a cell (Cai et al., 2006, 2010; Luo et al., 2013). In extension to the well-established pathway
of active Rho GTPase activating myosin II, strikingly, myosin II can also feedback to regulate Rho
GTP signaling by scaffolding signaling molecules and through generating contractile forces (Priya
etal., 2015; Munjal et al., 2015).

ACTOMYOSIN PULSATILITY FEEDBACKS TO RHO SIGNALING

Pulsatile behavior of the medipoapical actomyosin network regulates epithelial elongation changes
during morphogenesis (Munjal et al., 2015; Figure 1). Pulsatility of actomyosin network induced
by lateral cadherin clusters also promotes dissipation of local tensile stress at the junctions of
tightly packed cells limiting apical extrusion of cells out of the epithelia (Wu et al., 2014a,b,
2015; Figure 1). At the medial apical region of cells during intercalation, myosin II contractility
initially amplifies then dampens Rho GTPases signaling (Munjal et al., 2015). First, actomyosin
contraction locally concentrates (activators of myosin II) Rho and Rho kinase (Figure 1B).
Subsequently, this contractility dependent recruitment of actomyosin network and activators
then amplifies local RhoGTP activation and tension (Munjal et al, 2015). Second, many
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F-actin associated regulators, such as formins and coronin 1B,
can also organize actomyosin into tensile cortical networks
that are highly contractile and stiff (Priya et al, 2016;
Acharya et al, 2017). A stiff and tensile actomyosin network
would lead to immobilization of the cell cortex (Wu et al,
2014b; Munjal et al., 2015), slowing down the contractility
driven recruitment of Rho and Rho kinase. Thus, instead
of recruitment, there will be an overall higher rate of
dissociation of these actomyosin components. Consequently,
relaxation of the actomyosin network occurs (Munjal et al,
2015) (Figure 1B).

Similarly, contractile stress-induced disassembly of tensile
actomyosin cables can also relax the actomyosin network

(Wu et al., 2014a,b; Jodoin et al., 2015). Actomyosin pulsatility
observed at cell-cell junctions (Wu et al., 2014a,b) and medial
apical region of cells (Munjal et al.,, 2015) can be reproduced
with computer simulations that model actomyosin as an active
fluid, where both extremely dense and low density of simulated
actomyosin produces an immobile behavior (Moore et al.,
2014). Indeed, overexpression of formins or treatment of cells
with jasplakinolide, which increases the density of actomyosin,
immobilizes the cortex whereas inhibition of myosin II also
leads to an immobile cortex (Munjal et al., 2015; Wu et al.,
2014a,b). Only at the intermediate density, cyclical events of
contraction and relaxation of a pulsatile network is observed
(Moore et al., 2014).

¥ Medioapical

cortex

B i) F-actin polymerization and assembly
of myosin Il minifilaments

i) Actomyosin contractility induces
advection

A
!

iv) Contractile stress builds up within

the condensed actomyosin network,
inducing disassembly leading to network
relaxation

i) The condensed actomyosin network is stiff thus
slowing down advection, preventing further
coalescence of the actomyosin network

FIGURE 1 | (A) Localization of the medial apical cortex, zonula adherens and lateral adherens junction in epithelial tissues (left). A top down view of the organization
of actomyosin bundles at the zonula adherens in established epithelial monolayer (right). (B) Model for self-organization of the biomechanical cortical network at the
lateral adherens junction and the medial apical cortex of cells.
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MYOSIN Il PROMOTES STABILITY OF
ACTIVE RHOA AT THE ZONULA
ADHERENS

In addition, myosin II can scaffold signaling molecules to regulate
RhoGTPase activity (Conti and Adelstein, 2008). Myosin II has a
head domain that binds and exerts forces on F-actin, and also rod
domains which self-associate to form bipolar filaments of Myosin
molecules (Figure 2). Strikingly, myosin II can regulate signaling
via its rod domain. Indeed, we find that myosin II rod domain
plays an important role in preventing the inactivation of RhoA at
the zonula adherens. The zonula adherens is an apical cell-cell
contact zone of concentrated E-cadherin (Figures 1, 2) which
is linked to an enrichment of a variety of cytoskeletal proteins
(Smutny et al., 2010; Leerberg et al., 2014; Han et al., 2014).
We find that the rod domain of myosin II can further reinforce
RhoA GTPases activation by preventing the inactivation of RhoA
GTPase (Choi et al., 2008; Smutny et al., 2010; Ma et al., 2012;
Priya et al, 2015). How does the rod domain of myosin II
prevent the inactivation of RhoA GTPase? This is achieved via
myosin ITIA rod domain regulation of RhoA GAP signaling (Priya
et al., 2015; Figure 2). Rho GTPase is inhibited by GAP and
activated by Guanine Exchange Factors (GEFs) (McCormack
et al., 2013). In brief, the rod-domain of myosin II scaffolds
Rho kinase (ROCK-1) at the zonula adherens, where ROCK-1
phosphorylates Rnd3 GTPase rendering it inactive. Inactivating
Rnd3 GTPase is essential to maintain active RhoA because active
Rnd3 inhibits RhoA by recruiting and activating p190B Rho GAP
(Priya et al., 2015). Thus, myosin IIA recruitment of ROCK-1
supports RhoA signaling by inhibiting the cortical localization of
Rnd3-p190B GAP RhoA complex (Priya et al., 2015).

Myosin IIA supports RhoGTPase signaling by scaffolding
ROCK-1 independent of myosin IIB. This is consistent with
myosin ITA and myosin IIB responding to distinct upstream
signals at zonula adherens; myosin IIA is activated by the
RhoA pathway while myosin IIB is primarily regulated by Rapl
signaling (Smutny et al., 2010, 2011; Gomez et al., 2015). The
rod domain of myosin II exhibits greater dissimilarity in protein
sequence between different paralogs and thus, could potentially
explain why these myosin isoforms respond to distinct signaling
pathways (Conti and Adelstein, 2008; Vicente-Manzanares et al.,
2009; Heissler and Manstein, 2013). For example, the rod
domain of myosin IT harbors unique regulatory modifications like
phosphorylation sites (Rosenberg and Ravid, 2006).

MYOSIN Il REGULATES RAC AND
CDC42 GTPASES

Myosin II can also affect Rac GTPase signaling. The GEFs that
activates Rac-1 includes Tiam-1 and p-pix. GEFs including Tiam-
1 and B-pix activates Rac-1 by binding to the inactive Rac-1 GDP,
catalyzing the sequential release of GDP and binding of GTP,
to activate Rac-1. Rac GTPase signaling regulates cell migration,
by stimulating cellular protrusions through inducing Arp2/3
branched actin formation (Ridley, 2015). Interestingly, consistent

ROCK-1 Rnd3

RhoA
(GTP)

p190B
RhoGAP

FIGURE 2 | A non-muscle Myosin Il minifilament cross linking F-actin
filaments (left). ROCK1 binding to myosin Il regulates GTP-RhoA, ROCK1,
Rnd3, and p190B RhoGAP signaling at the zonula adherens (right). Arrows
and T-junctions represent stimulation and repression of junctional recruitment.

with the commonly reported antagonism between Racl and
RhoA, myosin II can activate RhoA but dampen Rac activation.
Indeed, myosin ITA was implicated as negative regulator of Rac
GTP dependent cell migration (Even-Ram et al., 2007). Inhibition
of myosin IIA stabilized microtubules which then recruited Rac
GEF Tiaml1 to activate Rac GTPase at the leading edge of cells.
Thus, active myosin II can retard cell migration by reducing
Tiam-1 mediated Rac activation. Alternatively, active myosin II
can also dampen Rac GTPase signaling by sequestering Racl-
GEF B-pix from RacGTPase (Kuo et al., 2011). Inhibiting myosin
II by blebbistatin or plating fibroblasts on a compliant substrate to
reduce cellular contractility stimulated the localization of Racl-
GEF B-pix to focal-adhesions thus activating Rac-1. Similarly,
the gain of function experiments in CHO epithelial cells, by
expressing myosin II phosphomimetic regulatory light chain
(RLD-DD) reduces the localization of Rac GEFs B-pix to cortical
Rac GTPase, thus dampening Rac GTPase activation (Vicente-
Manzanares et al., 2011). Taken together, myosin II can retard
cell-migration by preventing the colocalization of Racl activators
such as Tiam-1 and pB-pix to Rac GTPase.

Additionally, myosin II is reported to affect the Rho GTPase-
CDC42. Myosin II was found to regulate neuronal morphology
by modulating CDC42 signaling (Shin et al., 2014). In the growth
cone of hippocampal cells, blebbistatin mediated inhibition
of myosin II released the p-pix GEFs from myosin II-GEF
complex to associate with and activate CDC42. Thus, promoting
actin dependent protrusions and filopodia formation from
the neurite shaft.

Then, how does myosin II block the recruitment of these
activators to Rac and CDC42? Interestingly, myosin II was found
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to directly interact with various Dbl family of GEFs including
B-pix and Tiaml (Lee et al, 2010). The ATPase activity and
actomyosin filament assembly were necessary for this interaction.
Indeed, blebbistatin, ATPase-defective mutants or obliteration
of filamentous-actin from the lysates compromised myosin II
interaction with these GEFs. Myosin II perturbs the catalytic
activity of these bound GEFs. Thus, the contractile actomyosin
filament may suppress cell-migration by sequestering Dbl-family
of GEFs which activates Rac and CDC42.

In summary, myosin II regulates Rho GTPase signaling
in many developmental related processes including cell
adhesion, migration and morphogenesis. Since Rho GTPases
signaling are commonly misregulated in cancer (Lozano
et al., 2003), how myosin II-regulated signaling is regulated
in cellular processes related to cancer including cell-contact
inhibition of growth (Chiasson-MacKenzie et al, 2015) and
epithelial-to-mesenchymal transition (Thiery and Sleeman, 2006;
Mangold et al., 2011; Greenlees et al., 2015; Wu et al., 2015)
remains to be explored.
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