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Exocytic and endocytic compartments each have their own unique luminal ion and
pH environment that is important for their normal functioning. A failure to maintain this
environment – the loss of homeostasis – is not uncommon. In the worst case, all the
main Golgi functions, including glycosylation, membrane trafficking and protein sorting,
can be perturbed. Several factors contribute to Golgi homeostasis. These include not
only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide
(NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to
any one of these factors have consequences on Golgi functions, the nature of which
can be dissimilar or similar depending upon the defects themselves. For example,
altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation
and membrane trafficking are both affected, while altered Ca2+ homeostasis due to
the mutated SCPA1 gene in Hailey–Hailey disease, perturbs various protein sorting,
proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an
overview of the molecular machineries involved in the maintenance of Golgi ion, pH and
redox homeostasis, followed by a discussion of the organelle dysfunction and disease
that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs)
are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis.
Current evidence emphasizes that, rather than being mere supporting factors, Golgi
pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all
Golgi functions.
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WHAT IS GOLGI HOMEOSTASIS?

Compartmentalization is a key feature of eukaryotic cells, and it allows cells to complete various
tasks with amazing speed and specificity. One drawback to compartmentalization is its need for
the extra energy required to generate the unique luminal environments of each compartment.
Unlike the ER, the other secretory pathway compartments, such as the ERGIC, Golgi apparatus
and secretory vesicles, are all mildly acidic (Kim et al., 1996; Demaurex et al., 1998; Palokangas
et al., 1998; Schapiro and Grinstein, 2000; Wu et al., 2001; Paroutis et al., 2004). Each of them
has its own unique resting pH (pH set point) that facilitates their efficient functioning, be it
membrane trafficking, cargo selection, glycosylation, proteolysis, or protein sorting. Nevertheless,
these compartments also have common properties with the ER, with which they all communicate at
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least to some extent. The ER and the Golgi apparatus are the
most closely associated compartments, sharing several common
properties including high calcium concentration and oxidative
potential, as well as the ability to synthesize glycans. This review,
focusing on the Golgi apparatus, will discuss ER-related processes
for comparative purposes only.

In general, organelle acidity is driven by the ATP-mediated
proton pump, the V(vacuolar)-ATPase, which is counterbalanced
by anion influx or cation efflux, and proton leak back to
the cytoplasm via a “H+ leak channel” whose identity still
remains elusive (Paroutis et al., 2004). Many other energy
consuming pumps and leak channels, which are needed to
maintain balanced Cl−, Ca2+, Mn2+ and K+ levels, are also
present in the Golgi membranes. These include the Golgi pH
regulator (GPHR, a chloride channel), a mid-1-related chloride
channel (MClC) and voltage-gated chloride channels ClC-3B
in mammalian cells, and Gef-1 in yeast (Schwappach et al.,
1998; Jentsch et al., 1999; Nagasawa et al., 2001; Gentzsch
et al., 2003; Maeda et al., 2008). Golgi membranes also contain
two different isoforms of the Na+/H+ exchanger (NHE7 and
NHE8), of which NHE7 seems to mediate the influx of Na+
or K+ in exchange for H+ (Numata and Orlowski, 2001; Lin
et al., 2005). Although the exact physiological roles of many of
these transporters remain unclear, they are known to contribute
to Golgi resting pH, membrane potential, vesicular trafficking
and protein sorting in the organelle. The use of fluorescent
redox probes has recently revealed the Golgi redox state to
be important for Golgi homeostasis and functions. Samoylenko
et al. (2013) showed that the oxidative potential of the Golgi is
higher than that of the endoplasmic reticulum (ER), the main
site of disulfide bond formation in the cells. Indeed, earlier
observations had shown that disulfide bonds can also form “late,”
i.e., in the Golgi compartment, and facilitate disulfide bond-
mediated oligomerization of some secretory products before
their secretion to the extracellular space (Wagner, 1990; Walter
et al., 2009; Chiu and Hogg, 2019). Cellular oxygen levels also
regulate the level of Golgi nitric oxide (NO), a free radical
that has been shown to be important for maintaining Golgi
morphology and for ensuring continued membrane trafficking
to the cell surface (Galkin et al., 2007; Nakagomi et al.,
2008; Lee et al., 2011, 2013). Taken together, these examples
highlight the complexity of factors needed to maintain the
unique Golgi environment and the functions that depend on it.
The following paragraphs summarize the molecular machineries
involved, before focusing on why their failures result in organelle
dysfunction and disease.

REGULATION OF GOLGI pH, ION AND
REDOX HOMEOSTASIS

Transport of Protons and Golgi pH
Homeostasis
The acidity of the Golgi lumen was first demonstrated in 1983
by using electron microscopy and a compound (DAMP) that
accumulated in acidic cellular compartments (Glickman et al.,
1983). Currently, several different fluorescence-based approaches

have been used to identify proteins that contribute to Golgi
acidity and its resting pH (Glickman et al., 1983; Kim et al.,
1996, Kim et al., 1998; Demaurex et al., 1998; Llopis et al., 1998;
Miesenbock et al., 1998; Schapiro and Grinstein, 2000; Wu et al.,
2000, 2001; Machen et al., 2001; Paroutis et al., 2004). These
studies have shown that different Golgi sub-compartments have
distinct pH set points, decreasing along the cis–trans axis of
the Golgi stack from pH 6.7 (cis-Golgi) to pH 6.0 at the trans-
Golgi network (TGN). A pertinent question is how this pH
gradient is established and maintained along the Golgi stack,
given its dynamic nature resulting from the continuous flow of
incoming and leaving vesicular carriers. Another related issue
is whether a similar gradient also applies to other ions that are
uniquely concentrated in the Golgi lumen and thus contribute to
its ion homeostasis.

The resting pH of the Golgi lumen is now known to be
determined mainly by three different ion transport systems
that include the vacuolar (V)-ATPase-mediated proton pump,
counter ion (Cl−) transport, and proton “leak” across the Golgi
membranes back to the cytoplasm (Wu et al., 2001; Demaurex,
2002; Paroutis et al., 2004). In brief, the V-ATPase uses ATP as
an energy source to pump protons into the Golgi lumen. Due
to proton pumping, the membrane potential starts to increase
(inside positive) and must be counterbalanced by Cl− influx.
This very likely takes place via the GPHR Cl− channel (or a
cation efflux channel). Once the Golgi pH is sufficiently acidic
(pH < 6.3), proton efflux via an elusive “proton leak channel”
prevents further acidification of the Golgi lumen. The resting
pH, or the pH set point, is established once the rate of proton
pumping matches its leak rate across Golgi membranes. Because
of continuous H+ pumping by the V-ATPase, it is the rate of H+
leakage that dictates the resting pH of the organelle (Wu et al.,
2001). The authors showed that the rate of proton efflux decreases
between successive secretory compartments. They also suggested
that the higher density of H+ pumps in the later secretory
compartments may also contribute to their lower resting pH.
These two factors are likely responsible also for the decreasing
pH gradient along the cis- to trans-axis of the Golgi stacks, even
though direct proof for this does not yet exist.

The V-ATPase itself is a multi-subunit protein complex (Drory
and Nelson, 2006; Jefferies et al., 2008), whose composition
may vary between different compartments. For example, the
Golgi localized V-ATPase appears to possess a subunit a
different from that found in other V-ATPases (the Stv1p
instead of the Vph1p in yeast) (Jefferies et al., 2008). The
V-ATPase activity is also regulated by glucose or nutrient levels,
yet under normal conditions (i.e., at least when counter-ion
conductance is sufficient and, therefore, does not restrict proton
pumping), it is assumed to be constantly active (Schapiro
and Grinstein, 2000; Wu et al., 2001). In support of this,
the Golgi lumen in intact cells starts to alkalinize when the
V-ATPase activity is shut down by using concanamycin A
(Figure 1, green dots).

Cl− influx seems to be normally required to prevent
membrane potential increase due to proton pumping by the
V-ATPase (Glickman et al., 1983; Schapiro and Grinstein,
2000; Paroutis et al., 2004). Under normal conditions, it is
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FIGURE 1 | The figure shows short term (min) changes in the Golgi luminal pH
after treating intact cells with the pH gradient dissipating agents (red and blue
dots) and the V-ATPase inhibitor Concanamycin A (green dots). Note the
differential pH responses to these drugs, and the rate of H+ leakage across
the Golgi membranes after shutting down the V-ATPase by the inhibitor used.

considered to be high enough and mediated by the GPHR protein
channel termed the Golgi pH Regulator (Maeda et al., 2008).
Mutation of the protein was shown to increase Golgi resting
pH (by 0.4–0.5 pH units), alter glycosylation, delay transport
to the plasma membrane, and induce Golgi fragmentation.
These findings thus provide strong support for the view that
H+ pumping is dependent on Cl− influx and is needed to
maintain a constant membrane potential. The extent to which
other Golgi-localized chloride channels, such as the voltage-gated
chloride channels ClC-3B (Gentzsch et al., 2003) and Gef1p
in yeast (Schwappach et al., 1998) regulate Golgi resting pH
remains unclear.

Other studies have suggested that continuous H+ pumping
may be facilitated by passive K+ efflux rather than by Cl−
influx (Howell and Palade, 1982). This may relate to a high
permeability of the Golgi membranes to K+ ions (Schapiro
and Grinstein, 2000), and could perhaps be mediated by
Na+ and K+ conductive channels or transporters such as the
Na+/K+-ATPase (Poschet et al., 2001). In support of the latter
possibility, acetylstrophanthidin (an inhibitor of the Na+/K+-
ATPase) was proposed to increase luminal acidity by inhibiting
electrogenic Na+/K+ exchange (3 Na+ for 2 K+), thereby
reducing the accumulation of other cations (relative to H+)
in the Golgi lumen. Alternatively, the Na+/H+ exchanger
NH7 could also facilitate the acidification of the Golgi lumen
by transporting H+ into the Golgi lumen in exchange for
luminal K+ ions (Numata and Orlowski, 2001). However,
recent data indicates that NH7 does not transport K+ ions
(Milosavljevic et al., 2014), thus leaving open whether Na+ ions
may suffice for an acid loading function of this exchanger in the
Golgi compartment.

Proton Leak Across the Golgi
Membranes
Despite its importance, the identity of the “proton leak channel”
still remains elusive. It may involve exchange of luminal protons
for cytosolic cations via a proton conductive channel, or via
import of base equivalents. Physiological measurements indicate
that proton efflux in the TGN is voltage-sensitive and inhibited
by Zn2+, suggesting the involvement of a regulated channel
(Cherny and DeCoursey, 1999; Schapiro and Grinstein, 2000).
Other studies suggest that the molecular characteristics of a
putative H+ channel mimic those of the plasma membrane
H+ channels (Numata and Orlowski, 2001; Nakamura et al.,
2005). Therefore, the two ubiquitously expressed, Golgi-localized
Na+/H+ exchanger isoforms, NHE7 and NHE8, are good
candidates for this channel, because Na+/H+ exchange is
normally driven by existing ion gradients, and high amounts of
H+ in the Golgi lumen will drive influx of Na+. In support of this,
overexpression of both NHE7 and NHE8 were found to increase
Na+ and K+ influx to the Golgi lumen (Numata and Orlowski,
2001), and both also raised the Golgi resting pH (Nakamura et al.,
2005). However, changes in sodium concentration during Golgi
pH measurements did not markedly alter the Golgi resting pH
(Demaurex et al., 1998), leaving some doubts about the possible
roles of these NHEs in mediating proton leakage across Golgi
membranes. In accordance with this, Milosavljevic et al. (2014)
recently showed that NHE7, at least when expressed at the plasma
membrane, acts as an acid loader rather than as a “H+ leak”
pathway in the cells. The NHE8 isoform also seems to have
more pronounced effects on endosomes than it has on the Golgi
(Lawrence and Bowers, 2010). Therefore, further work is needed
to clarify the exact roles of the NHEs in the Golgi membranes.

Soluble buffering molecules may also be used for regulating
the Golgi resting pH. In support of this view, a homolog of
the erythrocyte anion exchanger 1 (Band 3, AE1, SLC4A1)
was identified as the AE2a isoform (SLC4A2a) of the SLC4A
gene family in the Golgi membranes in a number of cell types
(Kellokumpu et al., 1988; Holappa et al., 2001). All members
of this gene family are electroneutral HCO3

−/Cl− exchangers,
regulating cytosolic pH, chloride concentration and cell volume
through an obligatory one to one exchange of chloride for
bicarbonate (Romero et al., 2004; Alper, 2006). Our recent high-
throughput Golgi pH measurements indicate that it is involved
in Golgi pH regulation, as its overexpression increased, and
knockdown decreased, the Golgi resting pH (Khosrowabadi et al.,
unpublished). The potential involvement of various channels,
pumps and transporters in the maintenance of Golgi homeostasis
is summarized in Figure 2.

Transport of Ca2+ and Mn2+ Ions and
Golgi Homeostasis
Ca2+, Mg2+, or Mn2+ ions are present at high concentrations
in the Golgi lumen (Van Baelen et al., 2004; Pizzo et al.,
2010). Their presence is important for cargo concentration and
sorting (Chanat and Huttner, 1991) and glycosylation (Leach,
1971; Vanoevelen et al., 2007). Golgi membranes also possess
relevant pumps for Ca2+ and Mn2+ uptake (SERCA2, SPCA1/2),
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FIGURE 2 | A simplified summary of the Golgi-localized ion pumps, transporters and channels identified at the protein level, or based upon Golgi physiological
measurements. The question marks depict those for which direct proof for the presence of the protein in question needs to be verified. The arrows depict their
putative direction of functioning in ion transport. The elusive H+ leak channel is also marked by question mark to depict the lack of knowledge about its identity. For
additional details, see the text.

channels for Ca2+ release (IP3R, RyR) and luminal proteins
that bind Ca2+ with high affinity (Van Baelen et al., 2004; Brini
and Carafoli, 2009; Lin et al., 2009; Vangheluwe et al., 2009;
Zampese and Pizzo, 2012). Mn2+ ions are important cofactors for
Golgi-resident glycosyltransferases. The DXD motif conserved in
many glycosyltransferases appears to have a key role in Mn2+-
mediated donor substrate binding and catalytic activity (Breton
et al., 2006). Mn2+ ions also act as scavengers for reactive oxygen
species (ROS) (Coassin et al., 1992). Of these, SERCA and SPCA
type pumps are responsible for the maintenance of the low
cytosolic and high luminal Ca2+ concentrations typical of many
secretory pathway compartments. These two Ca2+ pumps seem
to contribute differentially to Ca2+ uptake into the Golgi, as
SERCA2 is enriched in the cis-Golgi, while SPCA1 is mainly
present in the trans-Golgi (Wong et al., 2013). The localization of
Ca2+ release channels, the inositol-1,3,5-trisphosphate receptor
(IP3Rs) and the ryanodine receptor (RyR), also seems to be
different, as IP3 did not release Ca2+ in the trans-Golgi, while
activation by caffeine did so (Vanoevelen et al., 2004; Lissandron
et al., 2010; Wong et al., 2013). Contrasting with SERCAs, SPCAs
are also engaged in Mn2+ transport, and thus can provide
this essential trace metal supply to Golgi glycosyltransferases
(Vangheluwe et al., 2009).

Recent evidence also suggests that mutations of TMEM165
cause a type II congenital disorder of glycosylation in humans by

interfering with Mn2+ and, perhaps, also Ca2+/H+ transport
(Foulquier et al., 2012; Dulary et al., 2017, 2018; Thines et al.,
2018) and, therefore, also with Golgi ion and pH homeostasis
and glycosylation. However, it is not yet fully clear what
role this multi-spanning membrane protein plays in Golgi ion
homeostasis. Recent evidence indicates that, unlike the Golgi-
localized SPCA1, the ER-associated SERCA pump 2b isoform
partially rescued TMEM165 KO-induced glycosylation defect
by Mn2+ (Houdou et al., 2019). Moreover, those authors also
recently showed that the TMEM165 KO can also be rescued by
galactose supplement in HEK293 cell culture media, or when
given to patients (Morelle et al., 2017). Further studies are needed
to reveal the exact role of the TMEM165 transporter in the
maintenance of Golgi ion homeostasis.

Another multi-spanning membrane protein capable of
transporting Ca2+ has been identified in the Golgi membranes.
This protein, named Golgi-associated anti-apoptotic protein
(GAAP), has recently gained increasing attention due to its role in
tumorigenesis (Rojas-Rivera and Hetz, 2015; Carrara et al., 2017).
It is a member of the Transmembrane Bax Inhibitor-1 Motif-
containing (TMBIM) protein family regulating Ca2+ levels and
fluxes in intracellular stores, confering resistance to a broad range
of apoptotic stimuli and promoting cell adhesion and migration
via the activation of store-operated Ca2+ entry (SOCE) (Saraiva
et al., 2013; Carrara et al., 2015).
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The Golgi lumen also harbors several Ca2+-binding proteins,
including Cab45, CALNUC, p54/NEFA and calumenin, all of
which, except for Cab45, are distinct from their ER counterparts.
Of these, the most abundant is CALNUC, an EF-hand, Ca2+-
binding protein resident in the CGN and cis-Golgi cisternae.
It plays a major role in Ca2+ buffering and secretion through
the Golgi (Lin et al., 1999, 2009). Recent studies of Cab45
have demonstrated its importance in Ca2+-mediated protein
sorting. Cab45 is the core component of this oligomerization-
driven sorting mechanism, also involving the cytoplasmic actin
cytoskeleton, and the Ca2+ ATPase SPCA1 (Pakdel and von
Blume, 2018). The system relies first on the local synthesis of
sphingomyelin at the TGN membrane enhancing Ca2+ import by
SPCA1, which then drives secretory protein sorting and export,
thereby coupling lipid synthesis to protein sorting and secretion
(Deng et al., 2018).

Golgi Redox Homeostasis
Genetically encoded and targeted fluorescent probes such as
roGFP and HyPer have been used to determine organelle redox
states (Meyer and Dick, 2010; Lukyanov and Belousov, 2014).
By using roGFP2 as a probe, we have previously shown that
mitochondria have a less oxidizing environment than that of the
ER (Samoylenko et al., 2013). Intriguingly, it was also found that
the Golgi lumen is more oxidizing than the ER despite being
considered as the most oxidizing compartment in eukaryotic
cells. One possibility for its higher oxidizing power is that
it serves for “late” disulfide bond formation, as indicated in
studies showing that the assembly of von Willebrand factor
oligomers to multimers, or other secretory products, requires
tail-to-tail disulfide bond formation in the Golgi (Wagner,
1990; Chiu and Hogg, 2019). Such disulfide bond formation
in the Golgi is likely assisted by members of the Quiescin-
Sulfhydryl Oxidase (QSOX) gene family (Codding et al., 2012)
that all display PDI-like thioredoxin (Trx) domains and ERV-
like oxidase domains. These domains allow QSOX proteins to
efficiently couple disulfide bond formation with the reduction
of molecular oxygen to hydrogen peroxide. QSOX1 is widely
expressed within the secretory pathway compartments, while one
of the splice variants, QSOX1a, mainly localizes to the Golgi
(Chakravarthi et al., 2007; Heckler et al., 2008). This suggests
its involvement in disulfide bond formation, possibly related
to the maturation of ECM components, or to the formation
of higher order structures in the Golgi. Other proteins that
can regulate Golgi redox homeostasis include the glutaredoxins
Grx6 and Grx7 (Mesecke et al., 2008). They both belong to
an ubiquitous family of proteins that catalyze the reduction
of disulfide bonds with the help of reduced glutathione. Grx6
and Grx7 represent the first glutaredoxins found in the cis-
Golgi in baker’s yeast (Mesecke et al., 2008). They both show
a high glutaredoxin activity in vitro, and yeast cells lacking
both proteins exhibit growth defects and a strongly increased
sensitivity toward oxidizing agents. Grx6 and Grx7 are probably
important for counteracting oxidation-driven disulfide bond
formation in the Golgi.

The availability of oxygen is also intimately linked to the Golgi
redox state. When low, it causes hypoxia, a condition that affects

multiple cellular compartments including mitochondria and
the ER. Recent evidence indicates that hypoxia also modulates
Golgi functions and, in particular, those related to membrane
trafficking and glycosylation events. Accordingly, hypoxia has
been shown to alter expression levels of both glycosyltransferase
and nucleotide sugar transporter genes, and to inhibit membrane
trafficking between the ER and the Golgi (Koike et al., 2004;
Shirato et al., 2011; Belo et al., 2015; Bensellam et al., 2016;
Taniguchi et al., 2016). We recently showed that hypoxia
modulates the Golgi redox state and glycosylation without
markedly affecting Golgi pH homeostasis (Hassinen et al., 2019;
see also below). Oxygen levels not only affect the redox state of the
Golgi lumen, but also the production of NO levels by modulating
the activity and expression of various NO synthase isoforms,
including neuronal nitric oxide synthase (nNOS), inducible NOS
(iNOS), and endothelial NOS (eNOS) (Jeffrey Man et al., 2014).
Of these, only eNOS is located to the Golgi membranes (Iwakiri
et al., 2006) via myristylation or palmitylation of its N-terminus.
NO is a lipophilic compound and can readily pass through
membranes. Both NO and superoxide (O2

−), another possible
product of eNOS activity, are highly reactive free radicals and
increase ROS load.

ALTERED GOLGI HOMEOSTASIS IN
GOLGI DYSFUNCTION AND DISEASE

Membrane Trafficking and Protein
Sorting Defects
Failure to maintain Golgi pH, ion, and redox homeostasis is
commonly associated with membrane trafficking and protein
sorting defects. Monensin, a Na+/H+ ionophore, was the first
compound shown to block intra-Golgi transport between the
medial- and trans-Golgi cisternae (Griffiths et al., 1983a,b).
Kuismanen et al. (1985) reported that intracellular transport
of the Uukuniemi virus membrane glycoproteins (G1 and
G2) was not inhibited by monensin. Whether this discrepant
behavior is cell or virus type-dependent remains unclear.
Protein sorting in the Golgi is also dependent upon existing
pH gradients. In line with these observations, Schaub et al.
(2006) showed that monensin induces the relocalization of
B4GalT1 galactosyltransferase (but not ST6Gal-I) and alpha-
1,3-fucosyltransferase 6 (Schaub et al., 2008) in swollen vesicles
derived from the TGN based on their colocalization with TGN46,
a specific TGN marker. This relocalization was also found to be
signal-mediated, involving a short sequence in its cytoplasmic
tail, which, when present in ST6Gal-I, was able to relocate the
latter into the TGN-derived swollen vesicles from the trans-Golgi
cisternae or the TGN. However, the signals were not needed
for the steady state localization of these enzymes in the trans-
Golgi cisternae.

A better example of pH-sensitive membrane trafficking steps
is the retrograde transport from the Golgi back to the ER. This
was demonstrated using bafilomycin A (a V-ATPase specific
inhibitor), which inhibited retrograde, but not anterograde,
transport from the intermediate compartment (IC)/cis-Golgi
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back to the ER (Palokangas et al., 1998). This preferential effect on
retrograde trafficking may relate to the more acidic environment
at the IC/cis-Golgi interface than that of the ER and to the pH-
dependent retrieval system mediated by the KDEL-receptor (see
below). Based on these observations, it seems that cargo selection
and membrane fission is more sensitive to a pH change than
membrane fusion is, thereby inhibiting or delaying transport
between successive secretory compartments., However, due to the
pH-sensitivity of viral protein-mediated membrane fusion events
with endosomal membranes (White and Whittaker, 2016; Desai
et al., 2017), this scenario needs further testing. Indeed, these viral
fusion events typically occur via “inside to outside” fusions with
organelle membranes and are therefore topologically opposite
from fusions that take place between vesicular carriers and their
target membranes.

Another well-characterized example of a pH-dependent
protein sorting step is the KDEL receptor, which returns
escaped ER resident proteins from the cis-Golgi back to
the ER. The receptor is a key component of a homeostatic
control system that regulates trafficking between the ER and
the Golgi compartments and within the Golgi itself (Lewis
and Pelham, 1992; Scheel and Pelham, 1996; Cancino et al.,
2014). The receptor binds the peptide sequence KDEL (or a
similar sequence motif), leading to interaction with two different
Golgi-associated heterotrimeric G-proteins, which regulate the
transport machineries via phosphorylation (Giannotta et al.,
2012; Cancino et al., 2014). Of notice here is that both cargo
binding and its release are regulated by the pH gradient between
the two organelles (see Brauer et al., 2019, and references
therein). In the more acidic environment of the cis-Golgi, the
receptor recognizes the motif and binds to it, while at the
neutral pH of the ER lumen, it releases the motif and the
associated cargo. Moreover, p58/ERGIC-53/LMAN1, a receptor
protein involved in the export of soluble glycoproteins from
the ER, employs a similar pH gradient for its oligomerization
and accessory protein-mediated binding with specific cargo
and its release in the low pH-high calcium environment
at the ER-Golgi interface (Appenzeller-Herzog et al., 2004;
Appenzeller-Herzog and Hauri, 2006).

A third well-known example is the mannose-6-phosphate
receptor, which binds lysosomal enzymes carrying the man-6-P
tag in the Golgi and releases them in the lower pH environment
of the endosomes (Ghosh et al., 2003). In line with this,
we showed that, in some cancer cell lines with problems in
lysosomal acidification, the ligand-bound receptor cannot unload
its ligand in lysosomes and accumulates in endosomal/lysosomal
compartments (Kokkonen et al., 2004). This suggested that
further lysosomal enzyme cargo sorting at the TGN is impossible
and can result in their aberrant secretion into the extracellular
space, a phenomenon that is often associated with tumorigenesis
and likely helps cancer cells to invade and metastasize to adjacent
tissues (Mohamed and Sloane, 2006; Gocheva and Joyce, 2007;
Kallunki et al., 2013).

Golgi pH homeostasis is also important for the sorting
of apical and basolateral proteins in polarized epithelial cells.
Caplan et al. (1987) showed that laminin and heparan sulfate
proteoglycan (HSPG) are normally actively sorted to the

basolateral surface of polarized canine renal tubule cells (MDCK)
in a pH-dependent manner. By increasing the pH of the Golgi
and other cellular compartments in MDCK cells with NH4Cl
(Figure 1, red dots), the authors were able to divert the two above-
mentioned secretory proteins to both the apical and basolateral
transport vesicles, with the outcome that roughly equal amounts
were sorted to both surfaces in the treated cells. Since the TGN is
the main sorting station for these two surface domains (Guo et al.,
2014), it is likely that the cargo recognition and sorting at the
TGN may not depend only on specific sorting signals but also on
the existence of an environment suitable for their recognition by
the sorting machinery in each case. We recently showed that the
apical targeting of the CEAMCAM5 (carcinoembryonic antigen,
CEA), a well-known follow-up marker for colorectal cancer, is
also a pH-sensitive process (Kokkonen et al., 2018). CEA is
a typical GPI-anchored apical protein present in gut epithelial
cells. For an unknown reason, CEA exhibits a non-polarized
distribution in cancer cells, such as in CaCo-2 cells. Guided by
the notion that the Golgi resting pH is ∼0.5 pH units higher
in CaCo-2 cells than in non-malignant cells, we treated MDCK
cells stably expressing CEA with various compounds, including
concanamycin A (CMA: a proton pump inhibitor, see Figure 1).
We showed that, in contrast to drugs affecting the redox state,
CMA attenuated apical targeting of CEA without affecting its
trafficking to the cell surface. In the presence of the drug, CEA
was delivered equally to apical and basolateral domains of MDCK
cells due to inhibition of its GPI anchor-mediated association
with lipids rafts.

Autosomal recessive Cutis Laxa type II is the first inherited
disease identified thus far that is tightly linked to altered Golgi
pH homeostasis. The skin of these patients shows excessive
wrinkling at an early age. It is caused by mutations in the
gene encoding the a2 subunit of the Golgi-localized V-ATPase
(ATP6V0A2) (Kornak et al., 2007). However, patients belonging
to a closely related disease group suffering from Wrinkly skin
syndrome are heterogeneous, in that only some patients carry
the same mutation and show no symptoms of elastin deficiency
(Morava et al., 2009). Although the Golgi resting pH has not
yet been directly measured, it is expected that this V-ATPase
defect perturbs Golgi pH homeostasis, because the patients’
cells exhibited glycosylation and membrane trafficking defects
(Morava et al., 2005; Kornak et al., 2007; Hucthagowder et al.,
2009). Further studies are still needed, as Golgi membranes also
seem to co-express another subunit, the “a1” isoform, of the
V-ATPase (see Kornak et al., 2007). Nevertheless, the “a2” subunit
mutations impair retrograde trafficking from the Golgi back to
the ER, but here again, the mechanistic details remain unclear.
One complicating factor in gaining an understanding of the
cutis laxa phenotype is the fact that the “a2” subunit appears to
localize also in early endosomes (Hurtado-Lorenzo et al., 2006),
suggesting that altered endosomal pH and dysfunction may also
contribute to the disease etiology.

Khayat et al. (2019) recently described a new pH homeostasis-
associated disease with multigenerational non-syndromic
intellectual disability (ID). The disease is caused by missense
mutations in the alkali cation/proton exchanger NHE7
(SLC9A7). The variant protein localized correctly in the
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TGN/post-Golgi vesicles, but its N-linked glycans were abnormal
likely due to less acidic pH of the TGN/post-Golgi compartments
in patient’s cells. Membrane trafficking, however, was unaffected.
These observations are consistent with a role for NHE7 in the
regulation of TGN/post-Golgi pH homeostasis and suggest
that abnormal Golgi pH homeostasis may be the cause of
neurodevelopmental defects associated with this disease.

Other luminal ions, and particularly Ca2+, also contribute
to membrane trafficking defects. The depletion of cellular Ca2+

stores in NRK cells using thapsigargin abolished KDEL receptor-
mediated retrieval of ER chaperones GRP94/endoplasmin and
GRP78/BiP, resulting in their appearance in the culture medium
(Ying et al., 2002). Accordingly, thapsigargin was found to inhibit
Brefeldin A-induced retrograde transport from the Golgi back to
the ER in HeLa cells (Ivessa et al., 1995). Calcium depletion also
selectively inhibited proteolytic cleavage of pro-somatostatin or
proinsulin, without affecting their secretion (Austin and Shields,
1996). It also interfered with the sorting of secretogranin II into
immature granules in semi-intact PC12 cells (Carnell and Moore,
1994), even though high Ca2+ and low pH have been reported
to facilitate the concentration of cargo proteins in regulated
secretory vesicles (Chanat and Huttner, 1991).

SPCA1 is a Golgi-localized Ca2+ ATPase that transports both
Ca2+ and Mn2+ into the Golgi lumen and, therefore, plays an
important role in Golgi cation homeostasis (Van Baelen et al.,
2004; Missiaen et al., 2007). In humans, allelic mutations of
the SPCA1 gene (Vanoevelen et al., 2007; Brini and Carafoli,
2009) are the cause of Hailey–Hailey disease, in which patients’
keratinocytes exhibit an increased cytosolic Ca2+ concentration,
and defects in protein sorting and Ca2+ signaling (Missiaen et al.,
2004; Ramos-Castaneda et al., 2005; Vanoevelen et al., 2007).
Lowered levels of Ca2+ and Mn2+ cations in the Golgi lumen
in patients’ cells lead to defects in protein folding, trafficking
and sorting or proteolytic cleavage of prohormones (Missiaen
et al., 2004; Grice et al., 2010). These defects could explain why
the affected patients are unable to maintain structurally intact
desmosomes and epidermis. The fact that Mn2+ is an important
cofactor for many glycosyltransferases (Kaufman et al., 1994)
suggests that glycosylation is altered in affected cells and may also
contribute to the disease etiology.

Golgi Ca2+ (and Mn2+) homeostasis is also dependent on
cellular oxygen levels. A good example of this is the fact that
intermittent hypoxia upregulates the expression of both SPCAs in
HCT116 cells (Jenkins et al., 2016), suggesting that Ca2+ and/or
Mn2+ transport from the cytosol to the Golgi lumen via SPCAs
likely increases in hypoxic cells. Oxygen also regulates nitrogen
oxide (NO) levels in the Golgi by modulating eNOS activity and
thus, NO production, thereby locally enhancing S-nitrosylation
of Golgi proteins, especially of the N-ethylmaleimide-sensitive
factor (NSF) (Iwakiri et al., 2006). Since NSF is involved
in membrane fusion events, this modification delays protein
transport from the ER to the plasma membrane and, thus,
can at least partially explain why hypoxia inhibits ER-Golgi
vesicular trafficking. On the other hand, compounds that can
scavenge NO (such as c-PTIO, N-acetylcysteine and hemoglobin)
induced Golgi fragmentation (Lee et al., 2011, 2013), which
was accompanied by the depletion of α-soluble NSF acceptor

protein (α-SNAP) from Golgi membranes, in accordance with the
observed delay in ER-Golgi trafficking.

Golgi pH Homeostasis and Glycosylation
Defects
Glycosylation is likely the most pH-sensitive process of
the Golgi functions. For example, monensin was shown
to prevent processing of Uukuniemi viral G proteins into
endo-H-resistant and under-sialylated species without affecting
membrane trafficking (Kuismanen et al., 1985). Campbell
et al. (2001) in turn were able induce the expression
of oncofetal Thomsen-Friedenreich (TF- or T-) antigen in
LS174T goblet-differentiated cells by increasing Golgi pH with
bafilomycin A and monensin. Axelsson et al. (2001) were
the first to provide a mechanistic link for these pH-induced
glycosylation changes by using prolonged NH4Cl treatment
in HeLa and LS 174T cells. They showed that inhibition
of O-glycan synthesis by NH4Cl was accompanied by mis-
localization of N-acetylgalactosaminyltransferase 2, b-1,2-N-
acetylglucosaminyltransferase I and b-1,4-galactosyltransferase 1
into endosomal compartments, while the drug had no effect on
Golgi morphology. However, because most of the enzymes that
elongate O-glycans were not addressed in the study, it remains
unclear whether enzyme re-localization is solely responsible for
the observed glycosylation defect(s). Later, by using increasing
concentrations of chloroquine, we (Rivinoja et al., 2006)
demonstrated that only a 0.2 pH unit increase in Golgi luminal
pH is needed to interfere with mucin type O-glycosylation and
terminal a-2,3-sialylation of N-linked glycans without causing
any changes to overall Golgi morphology. The latter defect
correlated well with the observed mislocalization of the relevant
sialyltransferase (ST3Gal-III) into endosomal compartments,
while no such redistribution was observed with ST6Gal-I (or
B4GalT-I), i.e., the enzyme that adds sialic acid to terminal
galactose residue via an a-2,6-linkage. Cutis laxa type II patients
also display defects in sialylation of both N-linked and O-linked
glycans (Morava et al., 2005; Wopereis et al., 2005; Kornak
et al., 2007). These observations indicate that glycosylation in
general is highly sensitive to changes in Golgi luminal pH and,
if altered, can be due to mislocalization of a selected set of
glycosyltransferases. Other known causes are changes in the
expression levels of the enzymes, yet these do not strictly correlate
with glycan profiles displayed by the cells.

Most glycosyltransferases show an intrinsic tendency to form
oligomeric complexes with each other. Typically, such complexes
include enzymes that successively add sugar residues to a
glycan chain (Kellokumpu et al., 2016). All enzymes also form
homomers in the ER (Hassinen and Kellokumpu, 2014), perhaps
facilitating their folding or transport to the Golgi, or both.
On the other hand, enzyme heteromers only form after the
enzymes arrive in the Golgi compartment. This switch from
enzyme homomers to enzyme heteromers is dependent on the pH
gradient or Golgi redox homeostasis (see section “Golgi Redox
Homeostasis and Altered Glycosylation” last paragraph) between
the ER and the Golgi. Thus, heteromer formation of N-glycan
processing enzymes B4GalT-I and ST3Gal-III, and of enzymes
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that synthesize mucin type O-glycan core structures (ppGalNacT-
6, C1GalT-1, C2/3GNT), is prevented by increasing Golgi pH
with chloroquine (Hassinen et al., 2011). Intriguingly, the same
enzymes (except B4GalT-I) were also found to mislocalize in
chloroquine treated cells (unpublished observations), suggesting
that heteromer formation may contribute to their retention
or retrieval in the Golgi membranes. However, in other cases
such as B4GalT-I and ST6Gal-I, heteromer formation was not
affected by an increase in Golgi luminal pH (Hassinen et al.,
2011), but rather by an altered Golgi redox state (Hassinen
et al., 2019; see also Section “Golgi Redox Homeostasis and
Altered Glycosylation” last paragraph). These observations point
to fundamental differences in the way enzyme heteromers form
in the Golgi lumen, and perhaps reflecting the high specificity
of the interactions needed to prevent irrational interactions that
could otherwise lead to the synthesis of mixed or irrelevant
glycan structures (Kellokumpu et al., 2016). The high specificity
for the interactions could also explain a failure to identify any
consensus Golgi retention motif(s) in Golgi enzymes, except
those needed for their retrieval from later compartments to
earlier ones via GOLPH3-mediated binding to the COPI complex
(Rabouille and Klumperman, 2005; Tu et al., 2008; Sechi et al.,
2015; Liu et al., 2018). Whether such Golgi retention motifs
involving relevant enzyme interactions in different Golgi sub-
compartments indeed exist remains to be tested. However, their
existence is supported by the pH-dependent mislocalization of
a set of glycosyltransferases (Rivinoja et al., 2009; unpublished
observations); otherwise, it would be difficult to understand how
luminal alkalization can interfere with the recognition of retrieval
motifs on the cytosolic side of the Golgi membranes. In addition,
oligomerization that inherently involves enzyme interactions, has
been considered to be important for the retention of resident
glycosyltransferases in the Golgi (Nilsson et al., 2009).

The loss of enzyme heteromers is generally accompanied
by changes in O- and N-linked glycosylation, but likely
concerns other glycosylation pathways as well. One reason
for these changes is that heteromer formation significantly
increases the activity of the complex constituents (Kellokumpu
et al., 2016). For example, both enzyme activities of B4GalT-
I/ST6Gal-I heteromers were 2.5-fold higher than their respective
homodimers (Hassinen et al., 2011). How this activation
is achieved is currently unclear but may involve substrate
channeling or conformational changes brought about by the
interaction. In other words, the formation of the enzyme
heteromers from enzyme homomers in the Golgi could
simply serve to keep enzymes silent until they arrive in the
Golgi. Such a system would increase both the speed and
fidelity of glycan synthesis, as it would also prevent the
intervention of competing enzymes that can use the same
acceptor sugar as a substrate. This view is in line with the
pH-independent α-2,6-sialylation and formation of B4GalT-
I/ST6Gal-I heteromers (in contrast to α-2,3-sialylation and the
formation of ST3Gal-III/B4GalT-I heteromers; see Rivinoja et al.,
2009; Hassinen et al., 2011). The difference in pH-dependency
can also explain why the carcinoembryonic antigen (CEACAM5)
extracted from colon cancer tissue carries α-2,6-linked sialic
acid instead of the α-2,3-linked sialic acid found in normal

tissues (Yamashita et al., 1987; Kobata et al., 1995). The extent to
which the loss of enzyme heteromers contributes to glycosylation
remains to be determined when enzyme interaction mutants
become available.

Cancer-Associated Glycosylation
Changes
Altered glycosylation is one of the hallmarks of cancers. Such
alterations can involve changes in the elongation of O-glycans,
the branching of N-glycans, sulfation, O-acetylation of sialic
acid, fucosylation and the expression of blood group antigens
(Jass et al., 1994; Kuhns et al., 1995; Capon et al., 1997; Taylor-
Papadimitriou et al., 1999; Hakomori, 2002; Roth, 2002; Lau and
Dennis, 2008; Ungar, 2009; Reis et al., 2010; Radhakrishnan et al.,
2014; Vajaria and Patel, 2017; Rodrigues and Macauley, 2018).
Some of these changes are used as cancer markers, while others
also have verified roles in promoting tumorigenesis (Hakomori,
1991, 1996; Ono and Hakomori, 2004; Peixoto et al., 2016).
Based on existing data, several factors that can cooperatively
contribute to the above cancer-associated glycosylation changes
have been put forward. These include the altered expression of
glycosyltransferases or nucleotide sugar transporter genes (Yang
et al., 1994; Brockhausen et al., 1995; Hanisch et al., 1996; Lloyd
et al., 1996; Kumamoto et al., 2001), and perhaps also a loss of
activity of Cosmc, a specific molecular chaperone needed for the
folding and catalytic activation of C1GalT-I (Schietinger et al.,
2006). The C1GalT-I enzyme normally adds galactose to the Tn-
antigen (GalNAc-Ser), forming a mucin type O-glycan core 1
structure (the T-antigen). Thus, the loss of its activity may result
in an increased expression of the Tn-antigen in cancer cells.

Cancer-associated glycosylation changes can also result from
a more general defect related to altered Golgi ion or pH
homeostasis. The first observations suggesting this came from
studies in which the treatment of cells with pH gradient
dissipating drugs increased the expression of cancer-associated
Tn- and T-antigens (Thorens and Vassalli, 1986; Gawlitzek et al.,
2000; Axelsson et al., 2001; Campbell et al., 2001; Kellokumpu
et al., 2002). At high concentrations, these same compounds also
induced Golgi fragmentation typically seen also in cancer cells
(Kellokumpu et al., 2002). Direct Golgi pH measurements with
fluorescent probes in breast and colorectal cancer cells (MCF-
7, HT-29, SW-48) showed that the Golgi resting pH is indeed
more alkaline (∼0.2–0.4 pH units) than that of non-malignant
cells (Rivinoja et al., 2006). These early observations strongly
supported the view that abnormally high Golgi resting pH is
responsible for the increased expression of cancer-associated
glycan antigens.

An important question at the time was why abnormal Golgi
pH is detrimental to glycosylation. Although one still cannot
exclude possible effects on the synthesis or transport of nucleotide
sugars, we believe that either the loss of the O-glycosyltransferase
heteromers or enzyme mislocalization, or both, are the two main
reasons for the pH-dependent glycosylation changes seen in
cancer cells. These two factors might in fact also be interlinked,
given that oligomerization appears to be important for Golgi
retention (Nilsson et al., 1993, 1994, 2009). Thus, at elevated
Golgi resting pH, the enzymes responsible for synthetizing the
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O-glycan core structure are unable to form heteromers (Hassinen
et al., 2011). Their loss then abrogates their retention in the
Golgi, whereby they mislocalize to endosomal compartments
and are therefore unable to elongate the core GalNAc residue
with other sugar residues in the Golgi. In support of this
view, O-glycosyltransferases seem to have altered distribution in
cancer cells in vivo (Egea et al., 1993). Similar relocalization of
the initiating ppGalNAcT-1/2 to the ER was seen after growth
factor-induced activation of the src kinase, or by transfecting
cells with constitutively active src (Gill et al., 2010, 2011).
This relocalization was linked to a COP-I-dependent trafficking
event, as a dominant-negative Arf1 isoform, Arf1(Q71L), blocked
ppGalNacT redistribution. Note however, that the pH-induced
relocalization of the enzyme involved transport to the endosomal
compartments via bulk flow (Rivinoja et al., 2009), suggesting
that pH-induced relocalization of the enzymes is associated with
impaired Golgi retention, rather than with activated transport
from the Golgi to the ER.

Another issue related to organelle acidification defects in cells
is its association with the multidrug resistance (MDR). In certain
MDR cancer cell lines, chemotherapeutic drugs (often weak
bases) become protonated and sequestered in acidic organelles
(Schindler et al., 1996; Altan et al., 1998). Sequestration in
resistant cells allows the removal of cytotoxic drugs from the
cytoplasm via secretory and recycling pathways. In contrast,
drug-sensitive cells were shown to have defects in organelle
acidification, whereby a similar sequestration of the drugs does
not occur, exposing the cells to high concentrations of the
drugs. However, these acidification defects are not universal in
all MDR cells, suggesting that other mechanisms for MDR exist
(Simon, 1999).

Golgi Redox Homeostasis and Altered
Glycosylation
Reactive oxygen species and hypoxia (low oxygen environment)
are key modulators of the cellular redox state (Adler et al.,
1999). ROS and hypoxia also modulate Golgi-associated vesicular
trafficking, protein sorting and glycosylation events (Regoeczi
et al., 1991; Koike et al., 2004; Yin et al., 2006; Shirato et al., 2011;
Ermini et al., 2013; Lehnus et al., 2013; Belo et al., 2015). Most
often, this is thought to be mediated mainly by hypoxia-inducible
factors (HIF-1-3) that regulate the expression of hundreds of
genes, including a variety of proteins involved in glycosylation.
Specifically, hypoxia has been shown to down- or up-regulate
enzymes that synthetize nucleotide sugars in the cytoplasm,
Golgi-localized glycosyltransferases (Mgat2, Mgat-3 and Mgat5
and 5b, fucosyltransferases 1, 2 and 7, sialyltransferases ST3Gal-
I and ST6Gal-1) and transporters of UDP-Galactose, CMP-sialic
acid (Sialin) and UDP-N-acetylglycosamine (UGT1) (Koike et al.,
2004; Shirato et al., 2011; Belo et al., 2015; Taniguchi et al.,
2016). Some of these are involved in the synthesis of cancer-
associated sialyl Lewis A/X carbohydrate epitopes typically found
in selectins on O-linked glycans and glycolipids (Kumamoto
et al., 2001; Shirato et al., 2011). HIF-1α in the Pa-Tu-8988S and
Pa-Tu-8988T pancreatic cancer cell lines have also been shown
to suppress the expression of the UDP-glucuronosyltransferase

(Kato et al., 2016), cytosolic O-GlcNAc transferase (OGT) (Liu
et al., 2014) and glucosylceramide synthase (GCS) (Zhao et al.,
2003). Finally, Jenkins et al. (2016) showed that expression of
the SPCA2 Ca2+ pump in HCT116 colon cancer cells was
upregulated by hypoxia, and by reactive oxygen and nitrogen
species. The authors suggested that this upregulation is associated
with Mn2+-dependent cell cycle arrest, but whether these
changes relate to increased Ca2+ or Mn2+ transport to the
Golgi lumen, Ca2+-mediated protein sorting, glycosylation, or
detoxification from excess Mn2+, remains unclear.

Based on the above observations, Taniguchi et al. introduced
the term “Glyco-redox” to link altered glycosylation with
oxidative stress generated by hypoxia or ROS (Taniguchi
et al., 2016), and to emphasize their close association with
Parkinson disease, Alzheimer’s disease, amyotrophic lateral
sclerosis (ALS), and chronic obstructive pulmonary disease
(COPD). These changes may also partly involve cleavage of
cell surface glycosaminoglycans and N-linked glycans, thereby
affecting interactions of cells with the extracellular matrix (Eguchi
et al., 2002; Eguchi et al., 2005), as has been observed using
hypoxia-mimicking agents such as CoCl2 (Taniguchi et al.,
2016). Oxidative stress also provides a link between altered
glycosylation, high-fat diet and the onset of type II diabetes
(Ohtsubo and Marth, 2006; Ohtsubo, 2010; Ohtsubo et al.,
2011). High levels of free fatty acids were shown to inhibit
the activity of two transcription factors (Foxa2 and Hnf1a)
that normally positively regulate the expression of Mgat4a,
a glycosyltransferase needed for β1,4-GlcNAc branching of
N-glycans. This modification is needed for insulin-stimulated
transport of the GLUT-4 transporter to the cell surface, whereby
it is able to bind and import glucose for further use by the
pancreatic β-cells. In the absence of β1,4-GlcNAc branching,
the GLUT-4 transporter remains intracellular, leading to an
accumulation of glucose in the blood.

We have recently shown that hypoxia also modulates
glycosylation in a HIF-independent manner by reducing Golgi
redox state (Hassinen et al., 2019). Specifically, we demonstrated
that even moderate hypoxia (5% O2) lowers the Golgi oxidizing
potential to the level found in the ER of normoxic cells,
consistent with possible problems in disulfide bond formation.
Based on lectin microarray glycan profiling, this decrease was
accompanied by an attenuated sialylation of N-glycans, an
elongation of O-linked glycans, the loss of pH-independent
interaction between the B4GalT-I and ST6Gal-I, and the loss
of ST6Gal-I activity in hypoxic cells. These findings can
explain the reduced a-2,6-sialylation in hypoxic cells. Given that
sialylation was not the only change in glycosylation, we expect
that other enzymes are similarly affected by a lowered Golgi
oxidizing potential.

CONCLUDING REMARKS

The above examples highlight the critical roles of Golgi pH, ion
and redox homeostasis in the maintenance of Golgi functions and
its unique architecture. The existing data also emphasizes that
Golgi acidity, high cation concentrations and redox state are not
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just background components in the Golgi, but rather, they emerge
as the key players in orchestrating various membrane trafficking
events, keeping the Golgi resident enzymes correctly localized
and active, and facilitating their cooperative interactions in
glycosylation. In addition, they are important for cargo selection
by post-Golgi vesicular carriers and for protein sorting to the
apical surface in polarized epithelial cells. Further support of their
importance is provided by several human diseases, including
Cutis Laxa, Hailey–Hailey disease and congenital disorder of
glycosylation 2K (CDG2K), which all are caused by altered
ion homeostasis in the Golgi lumen. Other Golgi homeostasis-
associated diseases are certainly waiting to be identified.

Although many mechanistic details remain incompletely
understood, the current evidence indicates that each of the Golgi
pH, ion or redox (oxygen) regulatory systems can perturb all
Golgi functions simultaneously or may specifically impair only
one of them. For example, a small increase in Golgi luminal pH
(0.2 pH units) will perturb glycosylation with no detectable effect
on other Golgi functions. A failure to maintain Golgi oxidative
potential causes defects in both membrane trafficking and
glycosylation, with no detectable changes in enzyme localization
in the Golgi. High Ca2+ concentrations seem to contribute to
membrane trafficking and protein sorting events at the Golgi,
but also to glycosylation, since many enzymes need Mn2+ ions
to remain catalytically active.

The above examples highlight the complexity and mutual
interplay of the regulatory systems needed to establish
and maintain Golgi homeostasis and the many different
cellular phenotypes encountered by manipulating homeostatic

machineries with drugs or mutations. For example, it is well
known that perturbed membrane trafficking often results in
changes in Golgi architecture and glycosylation. The inter-
dependence of these phenomena is probably the biggest
obstacle for better understanding the role of each of these
regulatory systems in the Golgi. Nevertheless, such studies
are needed to provide us with new insights into how the
various Golgi tasks are executed and to identify the molecular
machineries that act in the background to keep these tasks
ongoing. These studies will eventually unveil how the Golgi
compartment functions as an organelle and what purpose(s)
its unique architecture with stacked and flattened cisternae
actually serves for.
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