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A large body of literature supports the idea that nuclear factor kappa B (NF-κB)
signaling contributes to not only immunity, but also inflammation, cancer, and nervous
system function. However, studies on NF-κB activity in mitochondrial function are much
more limited and scattered throughout the literature. For example, in 2001 it was first
published that NF-κB subunits were found in the mitochondria, including not only IkBα

and NF-κB p65 subunits, but also NF-κB pathway proteins such as IKKα, IKKβ, and
IKKγ, but not much follow-up work has been done to date. Upon further thought the lack
of studies on NF-κB activity in mitochondrial function is surprising given the importance
and the evolutionary history of both NF-κB and the mitochondrion. Both are ancient
in their appearance in our biological record where both contribute substantially to cell
survival, cell death, and the regulation of function and/or disease. Studies also show
NF-κB can influence mitochondrial function from outside the mitochondria. Therefore,
it is essential to understand the complexity of these roles both inside and out of
this organelle. In this review, an attempt is made to understand how NF-κB activity
contributes to overall mitochondrial function – both inside and out. The discussion
at times is speculative and perhaps even provocative to some, since NF-κB does
not yet have defined mitochondrial targeting sequences for some nuclear-encoded
mitochondrial genes and mechanisms of mitochondrial import for NF-κB are not yet
entirely understood. Also, the data associated with the mitochondrial localization of
proteins must be yet further proved with additional experiments.
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INTRODUCTION

Nuclear factor kappa B (NF-κB) is an ancient protein transcription factor (Salminen et al., 2008)
and considered a regulator of innate immunity (Baltimore, 2009). The NF-κB signaling pathway
links pathogenic signals and cellular danger signals thus organizing cellular resistance to invading
pathogens. In fact, a plethora of studies have shown NF-κB is a network hub responsible for
complex biological signaling (Albensi and Mattson, 2000; Kaltschmidt and Kaltschmidt, 2009;
Karin, 2009). To this end, NF-κB has been hypothesized to be a master regulator of evolutionarily
conserved biochemical cascades (Mattson et al., 2000). Other factors are also translocated into the
mitochondria and are involved in modulating expression (Barshad et al., 2018a), but are not the
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focus of this review. The purpose of this review is to
attempt to understand how NF-κB activity contributes to
mitochondrial function. It is assumed the reader already has an
understanding of basic mitochondrial biology. In the case of
further study, the reader is referred to many excellent studies
and reviews on mitochondrial structure and function (Hall,
1979; Fox, 1982; Roger and Silberman, 2002; Henze and Martin,
2003; Conradt, 2006; Ettema, 2016; Wang and Youle, 2016;
Barshad et al., 2018b).

NF-κB ACTIVATION

Nuclear factor kappa B subunits, comprising the NF-κB complex,
are expressed in both neurons and glia. The NF-κB complex exists
in an inactive state in the cytoplasm (Ghosh et al., 1998; Aggarwal
et al., 2004; Hayden and Ghosh, 2004) where the activation of
NF-κB has been well described (Li and Karin, 2000; Baud and
Jacque, 2008; Israel, 2010). When stimulated by molecules such
as TNFα, or other cell stressors, TNFα binds to TNF receptors
(Figure 1). This binding, via several intermediate steps, leads
to an interaction with the IκB kinase (IKK) complex, which
then leads to the phosphorylation of IκB, and subsequently
results in IκB ubiquitination and degradation. Once degraded,
the remaining NF-κB dimer (e.g., p65/p50 subunits) translocates
to the nucleus, where it binds to the DNA consensus sequence
of various target genes. The selectivity of the NF-κB response
is based on several factors (Sen and Smale, 2010) including
dimer composition, timing, and cell type. NF-κB’s influence on
cell survival is also complex and can be neuroprotective or
proinflammatory, depending on cell type, developmental stage,
and pathological state (Qin et al., 2007).

Organizationally, NF-κB is a Rel family transcription factor
and is associated with five genes, NF-κB1, NF-κB2, RELA, RELB,
and REL (Chen and Greene, 2004); these genes encode several
proteins, NF-κB1, NF-κB2, RelA, RelB, and c-Rel, respectively,
where two of these proteins are large precursor proteins known
as p105 and p100 that undergo proteolysis to become p50
and p52, respectively. These proteins contain REL-homology
domains (RHD) at their amino-terminal region; the RHD region
is composed of 2 separate, but adjoining domains. The sequence
most distant from the carboxy-terminal region allows the protein
to bind to DNA. A more interior sequence allows the Rel family
proteins to dimerize (homo- or heterodimers) for the suppression
of expression via the binding of their corresponding family of
inhibitors, the IκB proteins (Chen and Greene, 2004). The latter
sequence includes the nuclear-localization sequence (NLS) that
becomes unmasked when IκB is unbound by degradation. The
NLS has the job of guiding or tagging active proteins for import
into the cell nucleus (Chen and Greene, 2004; Karin et al., 2004;
Barger et al., 2005).

Three of these proteins (RelA, RelB, and c-REL) also encode
a transactivation domain (TADs) in their carboxy-terminal
region. The TADs allow these proteins to interact with the basal
transcription apparatus, known as the TATA binding protein
(TBP), Transcription Factor IIB, as well as the p300 and cAMP
response element (CREB) binding protein (CBP) transcriptional

co-activators (Chen and Greene, 2004). Only these three proteins
are able to induce transcription of their DNA-coding regions
while the other proteins, the p50 and p52 homodimers, are able
to occupy the DNA binding sites without initiating transcription.
Given this, the later 2 homodimers proteins of p50 and p52 act as
transcriptional repressors (Chen and Greene, 2004).

The p105 and p100 homodimers occupy DNA binding sites
thus blocking transcription via transcription factors that do
possess TADs (Barger et al., 2005). A third form of transcriptional
repression is due to IκB proteins. These proteins have several
ankyrin repeats as their core domain and function by binding to
the RHD that mask the NLS (Karin et al., 2004). Without an active
NLS, the NF-κB proteins are restricted to the cytoplasm and are
unable to migrate into the nucleus and so transcription is blocked.

NF-κB IS FOUND IN THE
MITOCHONDRIA

In 2001, a study by Bottero et al. (2001) found IκBα and the NF-
κB p65 subunit in subcellular fractions and purified mitochondria
from Jurkat cells. Jurkat cells are an immortalized cell line of
human T lymphocyte cells that are used to study leukemia.
In Bottero’s study, it was determined that IκBα and NF-κB
p65 were localized in the mitochondrial intermembrane space.
The mitochondrial intermembrane space is the space that exists
between the inner mitochondrial membrane (IMM) and the
outer mitochondrial membrane (OMM).

Subsequently, Cogswell et al. (2003) also showed that NF-κB
subunits, p50 and p65, and IκBα, were found in the mitochondria.
To determine this, several methods were used to provide
evidence, including electron microscopy of sections of U937 cells.
U937 cells were first isolated from the lymphoma of a middle-
aged male patient to study the behavior and differentiation of
monocytes. Here Cogswell et al. (2003) was able to visualize
NF-κB p50 and p65 subunits and IκBα in the inner matrix
of the mitochondria. Rat liver cells were also examined in
this study and the p50 subunit and IκBα subunit were also
identified. Additionally, U937 cells were stimulated for 1 h with
TNFα, a known trigger of the NF-κB signaling pathway. In
this experiment, Western blot analyses in mitochondrial and
cytoplasmic fractions found that TNFα treatment caused a loss
of IκBα in both mitochondrial and cytoplasmic compartments
by 30 min following treatment suggesting that IκBα was
degraded. EMSA analysis, an in vitro assay that detects NF-
κB activation and non-specific binding to DNA sequences,
was also conducted on protein taken from nuclear extracts
from mitochondria isolated from U937 cells stimulated with
TNFα. Here they determined TNFα signaling led to increased
DNA binding activity of NF-κB p50, in protein taken from
the mitochondria.

Other studies have also detected NF-κB in the mitochondria.
These include studies (Guseva et al., 2004; Zamora et al.,
2004) in human fibroblast HT1080 cell lines, human prostate
LNCaP and PC3 cell lines, and HeLa cells. In LNCaP cells,
mitochondria NF-κB p50 and p65 subunits were found
bound to mitochondrial DNA (mtDNA). Taken together,
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FIGURE 1 | Pathways for Nuclear factor κ B (NF-κB) signaling in the cytoplasm and the mitochondrion. The NF-κB tri-subunt complex (e.g., p65, p50, IκB – one
possible combination) exists in an inactive state in the cytoplasm. NF-κB activation is initiated when molecules such as TNFα bind to TNF receptors (different types
exist). Other external or internal stimuli can also activate NF-κB. A complicated signal transduction process then begins once TNF receptors are activated; IκB kinase
(IKK) is ultimately triggered and leads to the phosphorylation of IκB, which results in IκB ubiquitination and degradation. Once IκB is degraded, the remaining NF-κB
dimer (e.g., p65/p50 or p50/p50 subunit combinations are possible) translocates to the nucleus, where it binds to a DNA consensus sequence of target genes. By
processes not well understood, the NF-κB complex or NF-κB subunits can also migrate into the mitochondrion, where evidence suggests it/they occupies the
intermembrane space. Once inside the mitochondria, NF-κB is thought to interact with OXPHOS genes (mitochondrial mtDNA) that leads to the expression of
proteins involved in various functions, including mitochondrial dynamics and COX III regulation (component of Complex IV). Evidence also suggests, NF-κB can
function as a switch in the mitochondria and control the balance between the utilization of cytoplasmic glycolysis and mitochondrial respiration in normal cells and in
cancer. Finally, data also point to intrinsic apoptotic pathway stimulation, where NF-κB activation in the mitochondria leads to cytochrome c release, thus triggering
caspase cascades and programed cell death.

these studies show evidence for NF-κB signaling in the
mitochondria and that NF-κB regulates mitochondrial
mRNA expression (see NF-κB and mitochondrial gene
expression section below).

NF-κB CONTROLS MITOCHONDRIAL
DYNAMICS

There are several proteins involved in the dynamics (fission
and fusion) and morphology of the mitochondria (Karbowski
and Youle, 2003; Olichon et al., 2006; Brooks and Dong, 2007;
Song et al., 2008; Autret and Martin, 2010; Silva et al., 2013;
Sinha and Manoj, 2019). One of these is the optic atrophy
1 protein (OPA1) (Olichon et al., 2006; Garcia et al., 2018;

Lee and Yoon, 2018). Studies have suggested that OPA1 is a
regulator of mitochondrial inner membrane fusion and also
mitochondrial cristae remodeling (Cipolat et al., 2006). Recently
Laforge et al. (2016) showed that the absence of IKKα had
an impact on OPA1 expression in the mitochondria and on
mitochondrial morphology.

Surprisingly, in a recent study by Nan et al. (2017),
TNFα receptor 2 (TNFR2) stimulation was found to promote
mitochondrial fusion via the NF-κB-dependent activation of
OPA1 expression in cardiac myocytes. Importantly, TNFR2
activation in this study protected cardiac myocytes against
stress by upregulating OPA1 expression. By administering low
concentrations of exogenous TNFα (0.5 ng/mL) before ischemia-
reperfusion appeared to enhance cell survival, whereas higher
concentrations (10–20 ng/mL) led to toxic effects in cells.
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NF-κB AND APOPTOSIS IN THE
MITOCHONDRIA

Mitochondria’s role in programed cell death, or
apoptosis has been known for quite some time
(Green and Reed, 1998; Wang and Chen, 2015). The most
important role for the mitochondria is the generation of
ATP; however, the second most important function for the
mitochondria is probably in controlling cell death. How does the
mitochondrion do this? If the mitochondrion fails at triggering
cell death, cancer is often the consequence. So, in order to
regulate cell death, mitochondria integrate signals from a
variety of sources, which are known as intrinsic pathways of
apoptosis. Components of NF-κB activity appear to be one of
these signals, although TNFα, an activator of NF-κB, is part of
an extrinsic pathway of apoptosis. Extrinsic pathways (death
receptor mediated) are initiated outside of the cell, whereas
intrinsic pathways of apoptosis are mediated and triggered in
the mitochondria.

In a recent study by Pazarentzos et al. (2014), IκBα was
found to exert pro-apoptotic activity as it inhibited the anti-
apoptotic NF-κB. In most cells, the activation of NF-κB leads
to downstream target gene expression that triggers cell death
resistance (Luo et al., 2005). In this study, it was shown that
a novel apoptosis function was due to IκBα, the subunit that
inhibits NF-κB’s activation. Pazarentzos et al. (2014) found that
IκBα localizes to the OMM where it interacts with a voltage
dependent anion channel (VDAC) and mitochondrial hexokinase
II (HKII) to stabilize this complex and prevent Bax-mediated
cytochrome c release for apoptosis. Bax is a member of the Bcl-
2 family of proteins, which have been shown to be regulators of
programed cell death (Karbowski et al., 2006).

Other studies have also hinted at NF-κB’s role in more directly
regulating apoptosis in the mitochondrion. In a study by Liu et al.
(2004), inhibition of NF-κB alone in macrophages resulted in the
release of cytochrome c. Recall that cytochrome c is responsible
for shuttling electrons from Complex III to Complex IV and that
the release of cytochrome c into the cytoplasm, an activator of
caspases, is a key step in triggering apoptosis.

NF-κB AND MITOCHONDRIAL
RESPIRATION

Nuclear factor kappa B has been shown in many studies to
promote tumorigenesis. How this occurs was not exactly clear. In
a groundbreaking study by Mauro et al. (2011), NF-κB was found
to upregulate mitochondrial respiration in colon carcinoma cells.
Here they established that this function of NF-κB suppresses the
Warburg effect. Recall that the Warburg effect (Vander Heiden
et al., 2009) describes the observation that cancer cells tend to
favor metabolism by glycolysis rather than by the more efficient
oxidative phosphorylation pathway. So in this study the authors
determined that NF-κB organizes networks of energy metabolism
by controlling the balance between glycolysis utilization and
mitochondrial respiration. Interestingly, they found a role for
NF-κB in metabolic adaptation in normal cells and in cancer.

Their results further suggested that suppressing mitochondrial
metabolism in established cancer cells by inhibition of NF-κB and
metformin decreases tumorigenesis.

NF-κB AND MITOCHONDRIAL GENE
EXPRESSION

Nuclear factor kappa B is a known regulator of gene
expression – both negatively and positively (Mattson et al.,
2000). However, how NF-κB regulates or influences nuclear-
encoded mitochondrial gene expression is less understood.
Human mtDNA possess 37 genes that encode for 13 polypeptides.
It has been shown that mtDNA genes code for many of the
subunits of all 5 complexes of the electron transport chain (ETC),
2 rRNAs, and 22 tRNAs. Albeit, most ETC subunits are coded
by nuclear DNA, which could be influenced by NF-κB activity
(Calvo et al., 2016).

For example, it has been claimed (Cogswell et al., 2003) that
the NF-κB pathway can negatively regulate mitochondrial gene
expression associated with the COX III subunit. The COX III
subunit is encoded by mtDNA and is a component of Complex
IV in the mitochondrial ETC. It functions as a catalytic subunit in
Complex IV, which is the complex associated with mitochondrial
oxygen consumption. In a study by Cogswell et al. (2003),
modulation of NF-κB activation resulted in the loss of expression
of both COX III and cytochrome b mRNA. Other studies support
a role for NF-κB regulating additional mitochondrial genes, such
as COX I, and Cytb (Psarra and Sekeris, 2008, 2009; Barshad
et al., 2018b). Additionally, NF-κB p65 subunit reduced levels of
mtDNA-encoded CytB mRNA, possibly by binding to the D-loop
in human cells in the absence of p53 (Johnson et al., 2011).
Overall, these results suggest that NF-κB signaling can influence
the enzymatic activity of respiratory ETC complexes.

NF-κB MEDIATES Aβ-INDUCED
DYSFUNCTION IN THE MITOCHONDRIA

Alzheimer’s disease (AD) is associated with the build-up of Aβ

plaques and/or the appearance of neurofibrillary tangles (NFTs)
in certain brain regions (Duyckaerts et al., 2009). However,
controversy exists around whether Aβ is a causative agent of
AD or if Aβ is simply correlated with aging. Accumulating
evidence (Aliev et al., 2009; Correia et al., 2012; Cadonic
et al., 2016; Cardoso et al., 2017; Djordjevic et al., 2017)
also now points to changes in brain metabolism driven by
mitochondrial dysfunction as a process central to many age-
related neurodegenerative disorders including AD. Adding to
this evidence, there are also impairments in enzymatic activity of
the protein complexes of the ETC and alterations in antioxidant
enzymatic activity (Kolosova et al., 2017) in AD. In particular,
Complex IV activity has been shown to be negatively affected in
AD (Mutisya et al., 1994).

In a recent study by Shi et al. (2014), it was found that Aβ

impaired mitochondrial function via NF-κB signaling. Moreover,
Shi et al. (2014) showed here that Aβ decreased the expression
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of the COX III subunit via a NF-κB pathway. Importantly, to
eliminate the possibility that IκBα was phosphorylated by Aβ

in the cytoplasm (and then transported into the mitochondria),
isolated mitochondria were incubated with Aβ in the presence
(or absence) of a NF-κB blocker, namely BAY11-7082. Here they
found Aβ induced phosphorylation and degradation of IκBα in
isolated mitochondria.

These findings also have important implications for AD
treatment as demonstrated by recent studies by Snow et al.
(2018) and as shown in other related studies (Djordjevic et al.,
2017; Adlimoghaddam et al., 2019) that suggest targeting NF-κB
signaling in the mitochondria may have therapeutic value. For
example, in Snow et al.’s study, creatine – a known modulator of
mitochondrial function (Tarnopolsky and Beal, 2001), was shown
to increase and positively alter protein levels of CaMKII, PSD-95,
and Complex 1 subunits in creatine fed mice, whereas the NF-κB
inhibitory IκB subunit was decreased. For additional reading on
creatine’s potential therapeutic effect on mitochondrial function
and in mitochondrial disorders or other neurological disorders
see studies and reviews by Matthews et al. (1998), Klivenyi
et al. (1999), Tarnopolsky and Beal (2001), Hersch et al. (2006),
Rodriguez et al. (2007) and Beal (2011).

NF-κB’s ROLE IN INFLAMMATION AND
MITOCHONDRIAL METABOLISM

Increasing data (Lamas et al., 2003; Mauro et al., 2011; Moretti
et al., 2012) are suggesting that NF-κB signaling, which is
a mediator of inflammatory processes, is also functioning
as a regulator and integrator with energy metabolism. In a
recent study by Zhong et al. (2016), NF-κB was shown to
restrict inflammasome activation via elimination of damaged
mitochondria. Surprisingly, NF-κB appeared to both prime
the NLRP-3 inflammasome for activation and also prevented
excessive inflammation and restrained NLRP-3 inflammasome
activation; although the mechanism for restraint was poorly
defined. Here it was speculated that in addition to NF-κB being
an activator of inflammatory genes, it also functioned in this
study by limiting NLRP3 inflammasome activation and IL-1β

production. Moreover, it was found that p62 induction was
responsible for the inflammasome inhibitory activity by NF-
κB. It appears that NF-κB can restrain its own inflammation in
macrophages by promoting p62 mediated removal of damaged
mitochondria (mitophagy) after macrophages interact with
different NLRP3 inflammasome activators.

CONCLUSION

Over 10 years ago, NF-κB was detected in the mitochondria.
Surprisingly, for such an important transcription factor, little
progress has been made in uncovering specific roles for NF-κB
affecting the mitochondrion. Some studies, as described above,
do provide evidence for NF-κB in mitochondrial dynamics,
apoptosis, respiratory control, gene expression, and mechanisms
of disease (Figure 1). However, duplication of these results and

overall validation is still necessary by other laboratories. Some
additional insight may be gleaned from the fact that other
transcription factors having effects on nuclear genes, such as
AP-1, p53, CREB, c-Myc, Wnt13, Dok-4, HMGA1, and c-Src
have also been detected in the mitochondria (Psarra and Sekeris,
2008). Interestingly, binding sites in the mitochondrial genome
(homologous to their binding sites in the nuclear DNA) for
some of these factors have been determined (Psarra and Sekeris,
2008) where roles for mitochondrial transcription and apoptosis
are suspected and show some overall patterns of activity. For
example, an argument can be made that some of these factors
(NF-κB, CREB, and AP-1) bind to mitochondrial genomes
and mostly attenuate mitochondrial gene expression (Blumberg
et al., 2014), while having stimulatory effects on nuclear gene
transcription. However, clearly more work is needed to not only
find precise roles of activity, but also to determine if overall
patterns of activity truly exist.

After surveying this literature, it also becomes apparent that
NF-κB’s role in the regulation of mitochondrial respiration has
profound implications and demonstrates a level of complexity
not previously appreciated. For instance, Mauro et al. (2011) data
establish a role for NF-κB in metabolic adaptation in normal cells
and in cancer, and also suggest consequences for other disease
states such as AD. Furthermore, given that NF-κB can restrain
its own inflammation as shown by Zhong et al. (2016), not only
is surprising, but further exemplifies the complexity of NF-κB
signaling in mitochondrial function.

In this review, studies were surveyed on NF-κB’s role in
mitochondrial function, and it appears that research in this area
is increasing. Complicating the results though is the observation
that multiple factors are playing similar roles in mitochondrial
function and so detailed studies specific to each factor are
necessary. In conclusion, we can re-ask the question – What is
NF-κB doing in and to the mitochondrion? The immediate and
abbreviated reply would be – a lot!
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