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Our understanding of the molecular basis of aging has greatly increased over the past few

decades. In this review, we provide an overview of the key signaling pathways associated

with aging, and whosemodulation has been shown to extend lifespan in a range of model

organisms. We also describe how these pathways converge onto autophagy, a catabolic

process that functions to recycle dysfunctional cellular material and maintains energy

homeostasis. Finally, we consider various approaches of therapeutically modulating these

longevity pathways, highlighting exercise as a potent geroprotector.
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INTRODUCTION

In the past two decades, the molecular signatures of aging have been started to be uncovered. A
remarkable conservation of these cell signaling pathways has been shown across various
invertebrate and vertebrate species (Kenyon, 2010). Autophagy is a cellular process that has
emerged as a nexus at which these various pathways have been shown to converge. Autophagy
is the catabolic process by which the cell eliminates unnecessary cellular components to
maintain energy homeostasis and prevent the build-up of toxic material. There are three forms
of autophagy—macroautophagy, microautophagy, and chaperone-mediated autophagy. In this
review, we will only discuss macroautophagy (which we will henceforth refer to simply as
“autophagy”). This review will provide an overview of the cell signaling pathways that are
associated with longevity, and discuss how they all converge onto autophagy. We will also discuss
how established anti-aging approaches including exercise, caloric restriction, and pharmaceutical
therapeutics affect these pathways to regulate autophagy in ways that are geroprotective and
possibly longevity-enhancing.

EVIDENCE THAT AUTOPHAGY IS ASSOCIATED WITH AND
NECESSARY FOR LONGEVITY

Autophagic activity has been shown to decline with age in various animal models. For example,
body-wide quantification of autophagic flux in Caenorhabditis elegans revealed a general decline
in activity in various tissues, including the intestine and neurons (Chang et al., 2017). A similar
decline in function has been observed in mammals. For example, electron microscopy analysis of
aged mouse livers revealed a depression in the rate of autophagic vesicle formation (Terman, 1995).

Various groups have identified a necessary role of autophagy in mediating the effects of
longevity-enhancing mutations. The Levine group was the first to demonstrate that inhibiting
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autophagy in a long-lived mutant model nullifies the longevity-
promoting effects of the mutation. C. elegans worms that carry
a loss-of-function mutation in their daf-2 gene [which encodes
for a common single insulin/Insulin-like Growth Factor (IGF)-
1 Receptor in this organism] live significantly longer than their
wild-type counterparts. They demonstrated that RNAi-mediated
knockdown of the autophagy gene bec-1 significantly reduced the
lifespan of the daf-2 mutants, clearly identifying autophagy as a
process that is required for the increased longevity of this mutant
(Melendez et al., 2003).

To demonstrate a causal relationship between autophagy
and longevity, some groups have evaluated the effects of
overexpressing autophagy genes. A positive relationship between
autophagic activity and lifespan was first demonstrated
in Drosophila. Neuron-specific overexpression of the
Atg8a gene resulted both in an increase in lifespan and a
reduction in the accumulation of toxic protein aggregates
in neurons (Simonsen et al., 2008). Similarly, body-wide
overexpression of Atg5 resulted in a significant increase in
lifespan in mice (Pyo et al., 2013). Increase in autophagy
via disruption of the beclin1-BCL2 complex has been
shown to promote both healthspan and lifespan in mice
(Fernandez et al., 2018).

AUTOPHAGY AND THE HALLMARKS
OF AGING

Guido Kroemer and colleagues have recently published an
excellent overview of the molecular underpinnings of aging,
in which they enumerate the following nine hallmarks of
aging—genomic instability, telomere shortening, epigenetic
alterations, loss of proteostasis, dysregulated nutrient sensing,
mitochondrial dysfunction, cell senescence, stem cell loss, and
altered intercellular communication (Lopez-Otin et al., 2013).
Remarkably, autophagy has been shown to be intimately involved
in nearly all of these processes. Autophagy can mitigate the
effects of genomic instability by reducing the production of
DNA-damaging reactive oxygen species (ROS) production, and
by promoting the recycling of DNA repair proteins (Vessoni
et al., 2013). Although autophagy is unable to revert or
stall telomere attrition, recent work has shown that telomere
dysfunction directly stimulates autophagy to promote the death
of precancerous cells (Nassour et al., 2019). While autophagy
is not thought to have a direct relationship with epigenetic
alterations, it has canonical roles in maintaining proteostasis
(Kern and Behl, 2019), nutrient sensing (Dagon et al., 2015), and
mitochondrial health viamitophagy (Palikaras et al., 2018).While
the relationship between autophagy and senescence is complex
and requires further disentangling, autophagy has been shown to
play an essential role in the maintenance of stem cells (Boya et al.,
2018). Finally, autophagy maintains proper immune function (a
key component of intercellular communication) by preserving
phagocytic activity and controlling levels of inflammation
(Cuervo and Macian, 2014). In summary, autophagy has been
shown to counter the effects of the majority of the presented
hallmarks of aging.

LONGEVITY PATHWAYS AND AUTOPHAGY

Four well-studied pathways that are known to regulate aging, and
whose modulation has been shown to influence the rate of aging
are Insulin/IGF-1, mechanistic target of rapamycin (mTOR),
AMP-activating protein kinase (AMPK), and Sirtuin pathways
(Kenyon, 2010). In this section, we will discuss the relationship
between each of these pathways and longevity, their effects
on autophagy, and the effects of aging and exercise on these
pathways with respect to autophagy. Figure 1 illustrates how
these various pathways converge onto, and activate, autophagy.

INSULIN/IGF-1 SIGNALING (IIS)

IIS and Longevity
The insulin/IGF-1 (IIS) pathway was the first pathway to be
shown to affect aging (Kenyon et al., 1993).C. elegansworms with
a loss-of-function mutation in their daf-2 gene experienced a>2-
fold extension in lifespan compared to wild-type. Inhibition of
this pathway in vertebrate models has also been shown to extend
lifespan, but to a lesser degree and in amore inconsistent manner.
Female 129/SvPas mice heterozygous for the IGF-1 receptor
null allele (Igf1r+/−) have been shown to live significantly
longer (33%) than wild-type females, while male mutant mice
demonstrated no such lifespan enhancing benefits (Holzenberger
et al., 2003). Subsequent work has demonstrated that these
benefits are strain dependent, as female C57BL/6J Igf1r+/−

mice experienced a more modest (albeit significant) increase
in lifespan compared to wild-type controls (Xu et al., 2014).
In contrast, both male and female fat-specific insulin receptor
knockout (FIRKO) mice showed a significant increase in lifespan
(Bluher et al., 2003), possibly indicating that insulin signaling is
more relevant to longevity than IGF-1 signaling. Alternatively,
perhaps these differences between C. elegans and mice can be
attributed to the fact that daf-2 encodes for a receptor that shows
significant homology to both the IGF-1 receptor and the insulin
receptor (Kimura et al., 1997), suggesting that dual knockout
(or knockdown) of these receptors is necessary to achieve
enhanced lifespan extension. In support of this supposition is
the finding that both male and female mice that are null for the
insulin receptor substrate protein 1 (Irs1) experienced significant
extensions in lifespan (Selman et al., 2011). Irs1 is an adaptor
protein that mediates the actions of both insulin and IGF-1.

Effects of IIS on Autophagy
The C. elegans daf-2 mutants exhibit a pronounced increase in
autophagic activity compared to wild-type worms, indicating
that the IIS pathway suppresses autophagy (Hansen et al.,
2008). Indeed, activation of the IIS pathway is known to inhibit
autophagy via the activation of mTORC1 and inhibition of
FoxO signaling. FoxO proteins are transcription factors whose
translocation to the nucleus is blocked via phosphorylation of
Akt, which is a key kinase in the IIS pathway (Sandri et al.,
2004). Under conditions of nutrient deprivation (and suppressed
IIS), FoxO3 upregulates autophagy by promoting the expression
of autophagy-related genes, including LC3, Bnip3, and Beclin1
(Mammucari et al., 2007; Zhao et al., 2007).
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FIGURE 1 | The influence of exercise on cell signaling pathways that regulate autophagy. This figure shows how various pathways associated with longevity converge

onto autophagy, and how exercise influences these pathways. Also indicated are the nodes upon which Metformin, Rapamycin, and Resveratrol are thought to act.

Please see text for details.

Effects of Age on IIS
As people age they enter a stage known as somatopause, during
which they experience a decline in circulating growth hormone
(GH) and IGF-1 levels (Junnila et al., 2013). Somatopause has also
been detected in other mammals (Bartke, 2008). Paradoxically,
centenarians have been shown to have significantly lower levels
of circulating IGF-1 (Bonafe et al., 2003). Additionally, the
offspring of centenarians have been shown to have both lower
levels of circulating IGF-1 and lower IGF-1 activity compared to
controls whose parents both died relatively young (Vitale et al.,
2012). Perhaps the potential negative effects of lower GH/IGF-
1 levels (e.g., lower levels of anabolism) are offset by a less
pronounced decline in systemic autophagic activity. In support
of this idea, healthy centenarians have been shown to have
significantly higher levels of circulating beclin-1 compared to
both young patients who have experienced an acute myocardial
infarction and healthy young controls (Emanuele et al., 2014).
This observation has been independently confirmed in a recent
study that also showed a general increase in the expression of
genes in the autophagy-lysosomal pathway in centenarians (Xiao
et al., 2018).

Unlike IGF-1, circulating insulin levels generally increase
with age. Aging is associated with hyperinsulinemia and insulin

resistance that are caused by greater secretion of insulin in
response to the same stimulus compared to younger individuals

(Gumbiner et al., 1989). In contrast, centenarians have been

shown to exhibit both a lower degree of insulin resistance and
preserved β-cell function (Paolisso et al., 2001). Additionally,
increased insulin sensitivity and lower mean fasting insulin levels
have been observed in the offspring of nonagenarians compared
to their partners (Rozing et al., 2010). A causal relationship
between higher circulating insulin levels and decreased hepatic
autophagy has been demonstrated in mice (Liu et al., 2009).

In summary, aging is associated with decreasing levels of
autophagic activity that are partially the result of dysregulated
IIS. Healthy centenarians, who do not experience the typical
effects of normal aging, display both enhanced autophagy and
better-preserved and regulated IIS.

Effects of Exercise on IIS
There is strong evidence to suggest that exercise promotes both
healthspan and lifespan in worms (Chuang et al., 2016), flies
(Piazza et al., 2009), and mammals (Cartee et al., 2016). In
association, there is extensive evidence that indicates that exercise
effectively suppresses insulin resistance and hyperinsulinemia
(Ryan, 2000). Various population studies have shown inverse
associations between physical activity and the incidence of type 2
diabetesmellitus, and both regular aerobic and resistance exercise
have been recommended by the American Diabetes Association,
especially for patients with type 2 diabetes (Colberg et al., 2016).
Vigorous endurance exercise has been shown to decrease plasma
insulin concentration and increase insulin sensitivity in subjects
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in their 60 s (Kirwan et al., 1993). A recent study has shown that
a more gentle exercise regimen involving 20min of resistance
band exercise and 30min of walking three times a week for 12
weeks is sufficient to improve insulin resistance in elderly women
aged 70–80 years (Ha and Son, 2018). Mechanistically, one of the
ways in which exercise is thought to increase insulin sensitivity
is via contraction-stimulated glucose uptake, which involves the
activation of AMPK. Importantly, exercise has also been shown
to promote systemic autophagy (He et al., 2012). Perhaps acute
exercise counteracts the autophagy-suppressing effects of IIS
via the activation of autophagy promoters (such as AMPK),
and regular exercise maintains long-term autophagic activity via
preservation of insulin sensitivity and the consequent reduction
in circulating insulin levels. Finally, the insulin sensitizing role of
exercise-regulated myokines is discussed in a later section.

MTOR

mTOR and Longevity
As with the IIS pathway, inhibition of mTOR results in increased
longevity. C. elegans deficient in TOR, like the previously-
described daf-2 mutants, also displayed a doubling in lifespan
(Vellai et al., 2003). Suppression of mTOR to ∼25% of wild-
type levels in mice carrying two hypomorphic mTOR alleles
has also been shown to significantly extend median lifespan
in both male and female mice (Wu et al., 2013). However,
these mice experience lifespan extension of only ∼20%, which
approximately mirrors the lifespan extension seen in mice with
suppressed IIS, as previously noted.

Effects of mTOR on Autophagy
As in the case of the daf-2mutants, inactivation of TOR signaling
in C. elegans also resulted in increased levels of autophagy,
and suppression of autophagy resulted in the reversal of these
lifespan-increasing effects (Hansen et al., 2008). Mechanistically,
mTOR (while in the mTORC1 complex) has been shown to
inhibit autophagy in two ways—via direct phosphorylation and
inhibition of the autophagy-initiating kinase Ulk1 (Kim et al.,
2011), and by phosphorylating transcription factor EB (TFEB) to
prevent it from entering the nucleus where it can promote the
expression of various autophagy and lysosomal genes (Martina
et al., 2012).

Effects of Age on mTOR
Full activation of mTORC1 requires both growth factors (such as
insulin or IGF-1) and a supply of amino acids (such as leucine,
methionine, and arginine) (Saxton and Sabatini, 2017). As
discussed previously, aging is associated with hyperinsulinemia,
suggesting that mTORC1 activity also increases with age.
Additionally, recent work has shown that the methionine
metabolite, homocysteine, can also activate mTORC1 (Khayati
et al., 2017). Homocysteine has been shown by various groups to
accumulate with age (Selhub, 1999; Tucker et al., 2005; Smith and
Refsum, 2016; Antikainen et al., 2017), also indicating a positive
correlation between aging and mTORC1 activity. Increased
mTORC1 activity would therefore serve as another reason for the
general decline in autophagic activity seen with age.

Effects of Exercise on mTOR
Exercise has been shown to inhibit the mTORC1 pathway by
reversing the phosphorylation of TFEB (Medina et al., 2015).
It does so by promoting the release of Ca2+ from lysosomes
via MCOLN1 resulting in local activation of calcineurin, which
in turn dephosphorylates TFEB to promote its entry into the
nucleus where it binds to and activates the promoters of various
autophagic and lysosomal genes. Therefore, perhaps some of the
lifespan-extending effects of exercise can be attributed to its effect
on TFEB nuclear localization.

AMPK

AMPK and Longevity
A positive correlation between AMPK activity and longevity has
been demonstrated in both invertebrate and vertebrate models.
C. elegans worms that lack AMPK experienced a 12% reduction
in lifespan compared to wild-type worms, whereas, AMPK
overexpression resulted in a 13% increase in lifespan (Apfeld
et al., 2004). Female mice chronically treated with Metformin, an
anti-diabetic drug that activates AMPK, experienced maximum
lifespan increase of ∼10% compared to control mice (Anisimov
et al., 2008).

Effects of AMPK on Autophagy
AMPK is a potent promoter of autophagy. Under conditions
of stress, AMPK has been shown to promote autophagy via
phosphorylation and subsequent stabilization of the cyclin-
dependent kinase inhibitor p27Kip1 (Liang et al., 2007).
During glucose starvation, AMPK promotes autophagy by
phosphorylating and activating the autophagy-initiating kinase
Ulk1 (Kim et al., 2011). AMPK also promotes autophagy by
directly and indirectly inhibiting mTORC1. AMPK directly
phosphorylates raptor (which is a member of the mTORC1
complex) resulting in a suppression of mTORC1 kinase activity
(Gwinn et al., 2008). AMPK indirectly suppresses mTORC1
by phosphorylating tuberous sclerosis complex 2 (TSC2) which
enhances its GAP activity (Inoki et al., 2003).

Effects of Age on AMPK
Aging has a potent inhibitory effect on AMPK activity. Although
baseline AMPK activity was comparable between young and old
rats, old rats displayed a severely compromised ability to respond
to activators of AMPK. Acute stimulation of AMPK via either
administration of the AMPK activator AICAR or exercise was
severely blunted in skeletal muscle of old rats compared to young
(Reznick et al., 2007).

Effects of Exercise on AMPK
Various studies have demonstrated the ability of exercise to
promote AMPK activation (Kjobsted et al., 2018). One of the
ways in which it does so is by increasing the intracellular ratios of
AMP:ATP and ADP:ATP (Gowans and Hardie, 2014). However,
it should be noted that exercise has been shown to be unable to
activate AMPK in aged tissue (Reznick et al., 2007). Therefore,
perhaps in order for exercise to have an effect on autophagy
via this pathway, it must be initiated early in life. Additionally,
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Reznick et al. subjected their rats to only 5 days of treadmill
exercise. Perhaps a longer term exercise regimen would be able
to overcome this inability to activate AMPK.

SIRTUINS

Sirtuins and Longevity
Sirtuins are NAD+-dependent protein deacetylases whose
increased activity has been linked to lifespan extension in both
invertebrates and vertebrates. Increased gene dosage of sir-2.1
in C. elegans resulted in up to a 50% increase in lifespan
(Tissenbaum and Guarente, 2001). Brain-specific overexpression
of the mammalian ortholog of Sirt2—Sirt1—resulted in a
significant increase in median lifespan (∼16% for female mice,
and ∼9% for male mice) compared to wild-type controls (Satoh
et al., 2013).

Effects of Sirtuins on Autophagy
Sirt1 has been shown to play a role in the regulation
of autophagy via direct interaction with participants in the
autophagic pathway, including Atg5, Atg7, and Atg8 (Lee
et al., 2008). Sirt1−/− fibroblasts show suppressed autophagy
in the context of starvation and a marked elevation of
acetylation of key autophagy proteins. Therefore, Sirt1 promotes
autophagy via the deacetylation of proteins involved in the
autophagy pathway.

Effects of Age on Sirtuins
A general decline in sirtuin function with age has been
observed. Reduced Sirt1 activity has been observed in the
liver, heart, kidney, and lung of aged rats compared to young
controls (Braidy et al., 2011). This decline in activity has been
attributed to lower levels of NAD+. Similarly, a decrease in Sirt1
expression has been detected in the arteries of both mice and
humans (Donato et al., 2011).

Effects of Exercise on Sirtuins
Exercise has been shown to be a potent activator of sirtuins. Old
rats subjected to an 8-week long regimen of treadmill exercise
experienced a significant increase in Sirt1 deacetylase activity
compared to both young and sedentary old rats (Ferrara et al.,
2008). Similarly, both old and young human subjects experienced
a significant increase in skeletal muscle Sirt1 expression after just
one bout of intense treadmill exercise (Bori et al., 2012).

DOES EXERCISE REGULATE AUTOPHAGY
VIA THE REGULATION OF MYOKINE
SECRETION?

There is emerging evidence that skeletal muscle can regulate
both systemic physiology and aging via the release of so-
called “myokines” (Demontis et al., 2013). As mentioned before,
exercise has the effect of promoting insulin sensitivity, and there
is evidence to suggest that this effect is partially mediated by
the regulation of myokine secretion. One of the most extensively
studied myokines is myostatin, which belongs to the TGF-
β superfamily of ligands and is a potent inhibitor of muscle
mass. Myostatin has also been suggested to be a promoter

of insulin resistance, and aerobic exercise has the effect of
suppressing circulating levels of myostatin (Hittel et al., 2010).
Conversely, exercise has been shown to promote the secretion
of the myokines IL-6, IL-15, Irisin, Metrnl, and myonectin, all
of which have been associated with improved insulin sensitivity
(Ellingsgaard et al., 2011; Barra et al., 2012; Bostrom et al., 2012;
Rao et al., 2014; Gizaw et al., 2017; Jung et al., 2018; Pourranjbar
et al., 2018). Myokines Metrnl (Jung et al., 2018), Irisin (Li
et al., 2018, 2019), and IL-15 (Nadeau et al., 2019) activate
AMPK in skeletal muscle and cardiac tissue suggesting a possible
mechanism to induce autophagy throughout muscle and possibly
non-muscle tissue. The role of myokines in exercise-induced
autophagy has not been extensively studied. Given the emerging
importance of myokines in mediating the insulin sensitizing
effects of exercise, we propose that this possible role is worthy
of further examination.

PHARMACOLOGICAL AGENTS,
EXERCISE, OR DIET?

Various drug candidates have been identified that can modulate
each of the above pathways described. These autophagy-
promoting pharmacological agents have been discussed
elsewhere (Vakifahmetoglu-Norberg et al., 2015). While these
agents have shown varying success in preclinical settings, certain
caveats associated with them must be noted, including that they
typically target just one protein or pathway, and their potentially
negative side-effects have not been thoroughly examined,
particularly in the setting of human biology. Alternatively,
non-pharmacological approaches such as exercise and dietary
interventions (such as calorie restriction) have been shown to
be potent autophagy activators that effectively target all of the
previously described longevity pathways. Additionally, exercise
(especially moderate exercise) has few, if any, adverse side effects.

Among the best-studied autophagy promoting agents are
Metformin, Rapamycin, and Resveratrol. Metformin is a drug
that is used to treat type 2 diabetes. It has been shown to
promote autophagy via activation of both AMPK and Sirt1
(Zhou et al., 2001; Song et al., 2015), however it is also
known to have various off-target effects such as inhibition of
respiratory complex I. Similarly, Resveratrol has also been shown
to activate AMPK and Sirt1 (Borra et al., 2005; Vingtdeux
et al., 2010). However, trials in clinical settings have produced
murky and sometimes contradictory findings, as described in
Bitterman and Chung (2015). Rapamycin indirectly activates
autophagy by inhibiting mTORC1. It is currently being tested
in clinical trials as a therapy for amyotrophic lateral sclerosis
(ClinicalTrials.gov Identifier: NCT03359538). Although a potent
promoter of autophagy, Rapamycin treatment is associated
with various negative side-effects, including immunosuppression
and the potential induction of insulin resistance via off-target
inhibition of mTORC2 (Saxton and Sabatini, 2017).

In summary, although these and various other drugs have
been shown to positively modulate autophagy and even have life-
extending effects (Howitz et al., 2003; Harrison et al., 2009) in
animal models, there are many concerns about their potential
translation to a human setting.
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Calorie restriction (CR) is another intervention that has also
been shown to promote longevity and beneficially modulate
the previously described longevity pathways (Kenyon, 2010).
Although CR holds much promise as a promoter of healthspan
and lifespan, there are limited long-term studies on the effects of
CR in humans. Additionally, it is not an advisable intervention
for subjects wanting to maintain lean mass, such as patients
with cancer-associated cachexia and elderly individuals with
symptoms of sarcopenia (Galluzzi et al., 2017). Finally, life-
long adherence to a CR diet, notwithstanding its potentially
life-extending effects, is unlikely to be an attractive option for
most people. However, in light of the therapeutic promise that
CR holds, it is worth exploring alternative and more feasible
ways in which it could be exploited. To that end, time-restricted
feeding, which entails food consumption within a certain time
window and is seen as a more easily adoptable alternative
to CR, has been shown to impede the development of high
fat-induced metabolic disorders such as obesity, dyslipidemia,
and glucose intolerance (Chaix et al., 2019). Finally, recent
studies have revealed an additive effect of exercise and CR
in promoting mitochondrial health and increasing insulin
sensitivity (Sharma et al., 2015; Kitaoka et al., 2016).

FUTURE DIRECTIONS

An important future research direction is a thorough assessment
of the relative contribution of each of the pathways discussed
in this review to autophagy regulation in individual organs
and tissue systems. Significant effort has been made to show
that organ-specific blockade of autophagy has deleterious effects,

including skeletal muscle (Carnio et al., 2014), brain (Komatsu
et al., 2007), and liver (Inami et al., 2011). However, few studies
have evaluated the effects of this organ-specific inhibition on
lifespan. Finally, it would be of equal importance to determine the
effects of organ-specific induction of autophagy on organismal
health and longevity.

CONCLUSION

In summary, autophagy has convincingly been shown to
play a pivotal role in healthspan and lifespan extension.
In this review, we have discussed various cell signaling
pathways whose modulation has been shown to have beneficial
effects on longevity, and how autophagy is a necessary
mediator of these effects. We have also presented current
pharmaceutical therapies, exercise and dietary restriction as
effective ways to modulate many of these pathways to
increase or preserve autophagic activity, thereby acting as a
potent geroprotector.
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