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The term lipophagy is used to describe the autophagic degradation of lipid droplets,
the main lipid storage organelles of eukaryotic cells. Ever since its discovery in 2009,
lipophagy has emerged as a significant component of lipid metabolism with important
implications for organismal health. This review aims to provide a brief summary of our
current knowledge on the mechanisms that are responsible for regulating lipophagy and
the impact the process has under physiological and pathological conditions.
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INTRODUCTION

Autophagy at a Glance
The term autophagy is used to describe the lysosomal degradation of cytosolic material,
a highly conserved process. It encompasses three distinct but related types: macroautophagy,
microautophagy and chaperone-mediated autophagy (CMA). Macroautophagy involves the
sequestration of cytoplasmic components (including organelles) into a double-membrane structure
known as autophagosome, which eventually fuses with late endosomes and lysosomes for
subsequent breakdown of its cargo. Microautophagy involves the direct engulfment of cellular
components by invaginations of the lysosomes. Finally, CMA involves the recognition and
capture of cytosolic components by Hsc70 chaperones and the subsequent translocation of these
components into the lysosomal lumen (Mizushima et al., 2011; Rogov et al., 2014).

Autophagy can act as a means for the cell to redistribute valuable nutrients in conditions of
starvation; this is the case of bulk autophagy, which generally targets random parts of the cytosol.
It can also act as a means to dispose of excessive or damaged organelles or invading microbes;
this is the case of selective autophagy that involves the degradation of specific organelles such as
the nucleus, mitochondria, peroxisomes, and often relies on specialized receptors and regulatory
pathways to achieve that specificity (Rogov et al., 2014).

Lipophagy as a Subset of Autophagy
Lipid droplets (LDs) are eukaryotic organelles responsible for the storage of lipids in the forms
of triacylglycerols (TAGs), cholesteryl esters and retinyl esters surrounded by a phospholipid
monolayer. The surface of the droplets is also coated with proteins, such as the perilipins; these
are a family of five proteins that contribute to lipid droplet packing and regulate interactions
with other organelles, droplet size, and accessibility to lipolytic mechanisms. Other LD proteins
include enzymes involved in triacylglycerol and phospholipid synthesis or lipid transporters.
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The size of LDs can be quite varied, ranging from 1 µm
in the majority of cell types to 100 µm in white adipocytes
(Moore et al., 2005; Marcinkiewicz et al., 2006; Reue, 2011;
Kimmel and Sztalryd, 2016).

Lipid droplets allow for the storage of lipids that can be utilized
for energy production as well as the synthesis of membrane
components, signaling ligands and other special macromolecules.
Such lipid storage protects the cells from exposure to excessive
amounts of free fatty acids (FFAs) and sterols that can be
damaging to cellular membrane composition, signaling pathways
and metabolic homeostasis (Reue, 2011; Kimmel and Sztalryd,
2016). The lipids can be accessed when needed through the
process of lipolysis, which involves the breakdown of TAGs
and esters by cytosolic lipases, such as Adipose Triglyceride
Lipase (ATGL) (Zimmermann et al., 2004; Ong et al., 2011;
Obrowsky et al., 2013).

In addition to lipolysis, lipid stores can also be accessed via
lipophagy, a specific subset of selective autophagy that targets
LDs and catabolizes their components into FFAs and glycerol. It
was discovered in 2009 in a study that demonstrated clear co-
localization of autophagic and LD markers, in conjunction with a
necessity of autophagy for LD and triglyceride (TG) clearance in
hepatocytes, both in vitro and in vivo (Singh et al., 2009).

In this review, we provide a brief summary of the existing
knowledge on the mechanisms and regulation of lipophagy, as
well as its functional importance in normal aging and disease.

Mechanisms and Regulation of
Lipophagy
Lipophagy, as any form of selective autophagy, primarily begins
with the recognition of the cargo by the autophagosomal
membrane through interaction with microtubule- associated
protein 1 light chain 3 (MAP1LC3), which is a mammalian
homolog of yeast Atg8 and a core component of the phagophore)
(Maus et al., 2017). This typically involves the assistance of
one or more cargo adaptors such as p62, Optineurin, NBR1
and NDP52 that connect the organelle membrane with LC3,
and may require polyubiquitination of proteins on the organelle
surface as a recruiting signal (Rogov et al., 2014). The exact
proteins facilitating these steps of LD recognition are not entirely
known, but some clues exist: Huntingtin has been shown to
be necessary for lipophagy under stress conditions, and seems
to act by connecting p62 with LC3-II as well as releasing the
pro-autophagic kinase ULK-1 from mTOR inhibition (Rui et al.,
2015). Ancient Ubiquitous Protein 1 (AUP1) is a factor that
localizes to LDs and acts as a recruiter for the E2 ubiquitin
conjugase G2 (Spandl et al., 2011). Proteins of the Rab molecular
switch family may also play a part in this process, as many of them
have been detected on LDs (Kiss and Nilsson, 2014) and some
have been associated with autophagy regulation; in particular,
Rab7 (Schroeder et al., 2015), Rab10 (Li et al., 2016), and Rab25
(Zhang et al., 2017) have been shown to be indispensable for
lipophagy in hepatocytes under certain conditions. The cytosolic
lipolysis associated lipase ATGL, (also known as PNPLA2) has
been shown to be a necessary and sufficient positive regulator
of lipophagy induction in mice livers (acting through the

deacetylase SIRT1), suggesting tight co-ordination between two
lipolytic pathways. ATGL cannot facilitate LD catabolism without
lipophagy and possesses LIR motifs (LC3-II interaction motifs)
that are needed for its recruitment on LDs and the initiation
of lipolysis (Martinez-Lopez et al., 2016; Sathyanarayan et al.,
2017). Another lipase of the same family, PNPLA8, can also
interact with LC3 and induce lipophagy as part of a SREBP-
2 response in a high fat diet mouse model (Kim et al., 2016).
PNPLA3 is needed for lipophagy in starved human hepatocytes
(Negoita et al., 2019). PNPLA5 has also been shown to contribute
to the autophagy of LDs as well as autophagic proteolysis and
mitophagy (Dupont et al., 2014). In addition to their potential
role in LD recognition, all these lipases might contribute to
lipophagy initiation by directly contributing to autophagosome
formation via the mobilization of triglycerides and steryl esters
(Shpilka et al., 2015; Ward et al., 2016).

Depending on their size, LDs can be targeted either by
macroautophagy, in which an entire small LD is trapped in
an autophagosome and consumed as a whole, or by the so-
called piecemeal microautophagy, in which the autophagosomes
sequester only parts of a large droplet, which then pinches
off as a double-membrane vesicle enriched in LC3 for gradual
consumption (Singh et al., 2009). Either way, upon lysosomal
engulfment, the contents of the LD are broken down by special
lipases known as lysosomal acid lipases (LALs) that are capable of
catabolizing triacylglycerides, diacylglycerides, cholesteryl esters
and retinyl esters (Warner et al., 1981; Sheriff et al., 1995;
Grumet et al., 2016; Schulze et al., 2017b). These lipases are
notably different from their cytosolic counterparts because of
their ability to function in an acidic (pH = 4, 5-5) rather
than neutral (pH = ∼7) environment (Zechner et al., 2017).
It is worth noting that since, as mentioned previously, LDs
are coated with perilipins, these proteins need to be removed
before LD degradation by autophagy or even cytosolic lipases can
occur. There is evidence indicating that this happens through
chaperone-mediated autophagy of the perilipins themselves
(Kaushik and Cuervo, 2015), a process regulated by AMPK
signaling (Kaushik and Cuervo, 2016).

At the highest level, lipophagy (and general autophagy) is
regulated by systems that sense and respond to the nutrient status
of the cell, such as the nuclear receptors farnesoid X receptor
(FXR) and peroxisome proliferator-activated receptor alpha
(PPARα), the transcriptional activator cAMP response element-
binding protein (CREB) (Lee et al., 2014; Seok et al., 2014), mTOR
(Lapierre et al., 2011; Lin et al., 2013; Zhang H. et al., 2018) and
AMPK (Seo et al., 2017; Li et al., 2019). These systems control
downstream factors in order to ensure that the levels of FFAs
in the cells match their energy requirements. Generally, nutrient
abundance inhibits lipophagy, while deprivation promotes it
(Figure 1). Conditions that demand higher energy expenditure,
such as the deregulation of RNA polymerase III, can also
have an inducing effect (Bonhoure et al., 2015; Willis et al.,
2018). Lipophagy can also act as a defensive mechanism against
lipotoxicity. For instance, it is upregulated in models of SOCE
(Store-Operated Calcium Entry) deficiency that exhibit reduced
levels of cytosolic lipolysis. In this case, lipophagy is indispensible
for cell survival (Maus et al., 2017).
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FIGURE 1 | Under normal conditions, lipophagy is regulated by the nutrient
status of the cell. Nutrient abundance inhibits lipophagy, since cells have no
need for free fatty acids (FFAs) as an energy source. During periods of nutrient
deprivation, on the other hand, lipophagy is activated to allow cells to tap into
their fat reserves. The dashed line denotes reduced pathway functionality due
to upstream inhibition.

Expression of lipophagy-associated genes is primarily
controlled by the master regulator of lysosomal biogenesis
transcription factor EB (TFEB)/helix-loop-helix (HLH) -30;
this factor has been shown to directly induce lysosomal lipase
expression under starvation conditions in Caenorhabditis elegans
and mice hepatocytes (O’Rourke and Ruvkun, 2013) and it
is required for LD clearance in multiple systems (O’Rourke
and Ruvkun, 2013; Settembre et al., 2013). Other factors that
have been linked to lipophagy regulation are TFE3, which
can induce lipophagy in hepatocytes (Xiong et al., 2016) and
the forkhead homeobox transcription factor FOXO1, which
is involved in lysosomal lipase and lipophagy induction in
murine adipocytes under nutrient restricted conditions (Lettieri
Barbato et al., 2013). FOXO1 is also needed for lipophagy
in hepatocytes, in conjunction with FOXO3 and FOXO4
(Xiong et al., 2012).

THE SIGNIFICANCE OF LIPOPHAGY

Lipophagy and Aging
Experiments in C. elegans have shown that HLH-30/TFEB-
mediated autophagy is a critical component of long lived
phenotypes (Lapierre et al., 2013) and that the induction of
lysosomal lipases can have a positive effect on organismal
lifespan (O’Rourke and Ruvkun, 2013). LIPL-4, in particular, is a
lipase that is necessary for longevity in germline-less worms,
and whose overexpression extends lifespan in an autophagy
dependent fashion (Lapierre et al., 2011). It seems that it does not
actively participate in lipophagy, but may induce it by causing
an enrichment of ω-3/6 polyunsaturated fatty acids (O’Rourke
et al., 2013). Downstream of LIPL-4 lies a signaling cascade
in which a free fatty acid, oleoylethanolamide (OEA), activates
nuclear receptors NHR-49 and NHR-80 to promote longevity
(Folick et al., 2015).

Lipophagy and Disease
Alcoholic Fatty Liver Disease
Alcoholic fatty liver disease (AFLD) refers to the damage
caused to the liver by excessive consumption of alcohol. The
symptoms include oxidative stress, lipid droplet accumulation
in the cytoplasm of hepatocytes, mitochondrial damage and
cell death (Ding et al., 2011b). In particular, steatosis (excessive
LD deposition) is an extremely common symptom of alcohol
abuse (O’Shea et al., 2010). There are very few options for
treatment of this disease and, despite the excessive research
done to understand its pathophysiology, there is no therapy
available and the treatment remains almost the same as 50 years
ago (Singh et al., 2017). AFLD is a multifactorial disease that
involves interactions between lipid metabolism, the immune
system and oxidative stress (Livero and Acco, 2016). Alcohol
oxidation in the liver induces lipid accumulation by shifting the
cells redox potential from fatty acid β-oxidation to reductive
synthesis. It also transcriptionally induces lipogenic enzyme
expression and promotes import from fatty acid transporters
(You and Arteel, 2019). It has been found that, upon short-
term supplementation, ethanol induces mitophagy and lipophagy
in hepatocytes, which likely act as repair mechanisms against
damage caused to mitochondria and steatosis (Ding et al., 2011a).
Ethanol-mediated mitochondrial damage leads to an increase in
intracellular ROS, which can induce autophagy through Beclin-
1 as a means to combat oxidative damage (Tang et al., 2016).
Nonetheless, chronic alcohol exposure causes an impairment
of autophagy and lipophagy (Donohue et al., 1994, Donohue
et al., 2007; Ding et al., 2011a,b; Schulze et al., 2017a; Chao
et al., 2018). This impairment is most likely caused by activation
of mTOR signaling and a reduction of lysosomal biogenesis in
mice hepatocytes. Administration of the mTOR inhibitor Torin-
1 to these mice restores lysosomal biogenesis and decreases
steatosis and liver damage (Chao et al., 2018). Induction of
autophagy with resveratrol in mice or HepG2 cell lines was
similarly beneficial (Tang et al., 2016). In conclusion, lipophagy
acts as a defensive mechanism against AFLD but cannot exert its
protective activity for long as it is inhibited by chronic alcohol
consumption (Figure 2).

Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term
used for numerous liver- related conditions characterized by
the accumulation of triglycerides in hepatocytes that is caused
by an upregulation of free fatty acid levels and lipogenesis
(Alkhouri et al., 2009). NAFLD generally involves insulin
resistance and the redirection of glucose from glycogen synthesis
to lipogenesis (Samuel et al., 2004; Irimia et al., 2017). It has
been associated with mutations in various lipid metabolism
genes, such as patatin-like phospholipase domain-containing-3
(PNPLA3) (Romeo et al., 2008), transmembrane 6 superfamily
member 2 (TM6SF2) (Mahdessian et al., 2014), membrane bound
O-acyltransferase domain containing 7 (MBOAT7) (Luukkonen
et al., 2016) and multiple apolipoprotein C3 (ApoC3) gene
variants (Petersen et al., 2010; Peter et al., 2012; Zhang R.-N. et al.,
2016). It has also been associated with mutations in autophagy-
related genes. One such case is a deletion in the immunity-related
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FIGURE 2 | The role of lipophagy in AFLD. Under acute ethanol (EtOH) exposure, lipophagy acts as a defense mechanism against lipid peroxidation, protecting
hepatocytes. Under chronic exposure however, lipophagy is inhibited by mTOR and can no longer provide this protection. See text for more details. Dashed lines
denote reduced pathway functionality due to upstream inhibition.

GTPase family M (IRGM) gene that inhibits autophagic flux
and increases LD availability in HepG2 and PLC/PRF/5 cells.
This phenotype can be rescued via treatment with the autophagy
inducer rapamycin (Lin et al., 2016). Superoxide dismutase
1 (SOD1) knock out mice exhibit low visceral fat and an
increase of liver LDs during fasting that results in liver damage.
Lipophagy is impaired in this model, with p62 accumulating
on LDs but failing to complete the process (Kurahashi et al.,
2015). Sterol regulatory element-binding protein 2 (SREBP-2) is
observed to be activated unconventionally to promote excessive
cholesterol accumulation in NAFLD. Inhibition of SREBP-2
activity in cell and mouse models of NAFLD upregulated
expression of autophagic markers, ultimately reducing lipid
deposition (Deng et al., 2017). Induction of autophagy by
FGF21 supplementation was successful in treating the NAFLD
phenotype in fat-loaded HepG2 cells (Zhu et al., 2016). Knock
down of Rubicon, an autophagy suppressor that is increased in
NAFLD patients, via siRNA in HepG2 cells, BNL-CL2 cells, and
murine primary hepatocytes attenuated autophagy impairment
and reduced endoplasmic reticulum stress, apoptosis and lipid
accumulation in NAFLD inducing conditions. These positive
effects were replicated in Rubicon KO mice (Tanaka et al.,
2016). Recently, it was shown that serum methionine levels
were abnormally increased in human NAFLD patients. Moreover,
autophagy and lipophagy were impaired in hepatocytes from
glycine N-methyltransferase (GNMT) -KO mice. Interestingly,
a methionine deficient diet could rescue liver steatosis and
restore autophagy levels to normal in GNMT-KO mice (Zubiete-
Franco et al., 2016). All in all, the majority of studies indicate
that lipophagy counteracts the progression of NAFLD, but is
abnormally inhibited in some instances of the disease. However,

it is worth noting that there is one study suggesting otherwise,
as it showed that suppression of autophagy through inhibition of
c-Jun N-terminal Kinase (JNK) attenuates insulin resistance in a
NAFLD rat model (Yan et al., 2017).

Liver Fibrosis
The term liver fibrosis is used to describe the common
pathways of chronic or iterative damage that can be afflicted
onto the liver by toxic factors, viral infections, autoimmune
conditions, or metabolic and aging aspects (Campana and
Iredale, 2017). Progression of the disease leads to the emergence
of liver fiber nodules and the disruption of liver structure
and function by excessive deposition of extracellular matrix
(ECM) components (Zhang Z. et al., 2018). Hepatic stellate
cell (HSC) activation plays a pivotal role in this process by
secreting fibrogenic factors that promote the production of
collagen and the propagation of fibrosis (Zhang C.-Y. et al., 2016).
Contrary to the previously mentioned diseases, evidence shows
that lipophagy fuels fibrosis in the liver and potentially other
tissues. Characteristic marks of HSC activation include the release
of extracellular lipid droplet contents, endoplasmic reticulum
stress, oxidative stress, overexpression of G proteins and
accumulation of p62. Interestingly, lipid droplet accumulation
or inhibition of mitochondrial fatty acid β-oxidation inhibits
fibrosis (Hernandez-Gea et al., 2012, 2013; Kim et al., 2018).
Blockage of autophagy through RNA interference or bafilomycin
A1 reduced fibrogenesis and ECM accumulation in mouse
and human HSC lines (Thoen et al., 2011; Hernandez-Gea
et al., 2012). Lipophagy in HSCs has been shown to be
partially mediated through Rab25in a ROS dependent manner.
Antioxidants, such as glutathione and N-acetyl cysteine, were
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effective in halting autophagy, suggesting a potential therapeutic
approach (Zhang et al., 2017).

Lipophagy and Cancer
Tumors grow in a unique microenvironment with insufficient
supply of oxygen and nutrients. Survival in such an environment
requires metabolic reprogramming. A significant part of this
reprogramming involves changes in lipid metabolism, with
aggressive tumors exhibiting increased acquisition, production
and storage of lipids and lipoproteins. Fatty acid β-oxidation
provides a significant source of energy for tumors and is
the dominant bioenergetic pathway for non-glycolytic tumors
(Beloribi-Djefaflia et al., 2016). Autophagy has been shown to
have both pro-and anti-cancer roles. For instance, it can be
anti-oncogenic by inhibiting inflammation or pro-oncogenic by
protecting tumor cells from ROS damage due to hypoxic stress
and preventing necrotic cell death (Degenhardt et al., 2006;
Yazdani et al., 2019).

Similarly, lipophagy can also have a dual role in cancer growth.
On the one hand, lipophagy contributes to the mobilization of
stored lipid content, allowing tumor cells to access a supply
of energy that can be critical to their growth (Gomez de
Cedron and Ramirez de Molina, 2016). CCAAT enhancer
binding protein α (C/EBPα), a protein that is upregulated in
hepatocellular carcinoma (HCC) patients, promotes resistance
to energy starvation and carcinogenesis through lipophagy (Lu
et al., 2015). On the other hand, lipophagy has been shown
to act against tumorigenesis. Lysosomal acid lipase (LAL), the
lipase that facilitates lipophagy, has been found to exhibit tumor
suppressor activity, as its deficiency permits cancer growth and
metastasis through the mTOR dependent activation of myeloid-
derived suppressor cells (Zhao et al., 2015). Hepatocyte specific
expression of human LAL in otherwise LAL deficient mice was
sufficient to inhibit B16 melanoma metastasis in the liver and
lung (Du et al., 2015). Lipophagy has also been shown to cause
apoptosis in HeLa cells through the induction of endoplasmic
reticulum and mitochondrial stress (Mukhopadhyay et al., 2017).
Rab7, already mentioned as a lipophagy regulator, has been
shown to have potential tumor suppressive properties and inhibit
prostate tumor growth and invasion (Steffan et al., 2014).

Lipophagy in Obesity
A concrete link between lipophagy and obesity has still to
be identified, although there are many indicators for such a
relationship. Autophagy is generally downregulated in high
fat diet models (Koga et al., 2010; Rodriguez-Navarro et al.,
2012). Defective hepatic autophagy in obese mice induces insulin

resistance through the promotion of endoplasmic reticulum
stress. Restitution of autophagy through overexpression of Atg7
in these mice can restore insulin levels back to normal and
improved glucose tolerance (Yang et al., 2010). In addition,
deficiency of Bif-1, a membrane curvature promoting protein,
can lead to the expansion of adipose mass, reduce the basal
rate of adipose tissue lipolysis and induce obesity in mice. Bif-1
deficiency also reduces the abundance of autophagic-lysosomal
proteins Atg9 and Lamp1 (Liu et al., 2016).

CONCLUSION

The field of lipophagy has yet to fully develop. Despite its infancy,
it has already managed to provide significant new insights
on lipid metabolism and energy homeostasis and represents a
promising path forward to advance our understanding of lipid-
associated disorders. Further research on the exact mechanisms
of lipophagy regulation is certain to reveal valuable new targets
for therapeutic approaches and improve our available toolset
against obesity, liver disease and cancer.
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