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In mammals, sex chromosomes start to program autosomal gene expression and
epigenetic patterns very soon after fertilization. Yet whether the resulting sex differences
are perpetuated throughout development and how they connect to the sex-specific
expression patterns in adult tissues is not known. There is a dearth of information on the
timing and continuity of sex biases during development. It is also unclear whether sex-
specific selection operates during embryogenesis. On the other hand, there is mounting
evidence that all adult tissues exhibit sex-specific expression patterns, some of which
are independent of hormonal influence and due to intrinsic regulatory effects of the sex
chromosome constitution. There are many diseases with origins during embryogenesis
that also exhibit sex biases. Epigenetics has provided us with viable mechanisms to
explain how the genome stores the memory of developmental events. We propose that
some of these marks can be traced back to the sex chromosomes, which interact
with the autosomes and establish sex-specific epigenetic features soon after fertilization.
Sex-biased epigenetic marks that linger after reprograming may reveal themselves at the
transcriptional level at later developmental stages and possibly, throughout the lifespan.
Detailed molecular information on the ontogeny of sex biases would also elucidate
the sex-specific selective pressures operating on embryos and how compensatory
mechanisms evolved to resolve sexual conflict.
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INTRODUCTION

In the age of genomics, it has become ever more obvious that the long-known differences between
males and females in health, longevity, disease risk and presentation, and response to therapy
have genetic and epigenetic foundations (Yang et al., 2006; Isensee et al., 2008; Singmann et al.,
2015; Chen et al., 2016; Mayne et al., 2016; Gershoni and Pietrokovski, 2017; McCormick et al.,
2017). It is now clear that every adult somatic cell, to a greater or lesser degree, exhibits sex
biases in gene expression and epigenetic profile in human and non-human primates, rodents, and
bovines (Yang et al., 2006; Blekhman et al., 2010). There is also a growing realization that sex
differences are the result of complex interactions between the sex hormones, genetic variability,
and the environment, all of which operate on the background of the intrinsic effects of the sex
chromosome composition, i.e., XX for females and XY for males (Arnold, 2014; Engel, 2018;
Raznahan et al., 2018; Khramtsova et al., 2019).

Although the driver of sex differences in mammals has traditionally been considered to be the so-
called sex determination pathway, sex-specific transcriptional and epigenomic profiles are present
in the embryo very soon after fertilization in a range of mammals, i.e., well before the development
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of the gonads (Burgoyne et al., 1995; Bermejo-Alvarez et al.,
2010; Lowe et al., 2015; Hansen et al., 2016). Moreover,
male and female embryos exhibit different susceptibilities to
environmental factors during early gestation (Jenkins et al.,
2007; Gabory et al., 2012; Bale, 2016; Bansal et al., 2017). These
differences reflect the early sexual identity of the embryo (Hansen
et al., 2016) and of the placenta (Nugent et al., 2018), contrasting
sharply with the prevailing view of sex-neutral development
prior to gonadogenesis (Dewing et al., 2003). Long before
sex hormones appear, the primary sex-determining factor is
the imbalance in sex chromosome composition (Blecher and
Erickson, 2007; Arnold, 2012).

If sex differences at the molecular level begin at such an early
stage, the question is, do those differences matter and what are
their contributions to sex differences that become apparent later
in life? Do these sex biases matter more for some tissues than for
others? Do expression and epigenetic sex biases wax and wane
over the course of embryogenesis? How does the sex-specific
molecular skewing inform on compensatory mechanisms that
operate on males and females during embryogenesis from an
evolutionary standpoint? The goal of this article is to identify gaps
in our knowledge that impede us from answering these questions.

SEX BIASES IN PRE-IMPLANTATION
EMBRYOS

The Sex-Specific Regulatory
Environment in Early Embryogenesis
Two observations justify how sex-biased expression in pre-
implantation embryos could establish male and female-specific
transcriptional and epigenetic legacies that become apparent at
later stages in development. First, a number of dosage-dependent
regulatory factors are expressed in a sex-biased manner in pre-
implantation embryos, some of which are encoded on the X
and Y chromosomes. Many transcription factors (TFs) and
epigenetic regulators must be expressed at the appropriate levels
for proper activation or repression of their downstream target
genes. In fact, TFs are overrepresented in haploinsufficiency
disorders (McKusick, 2002; Seidman and Seidman, 2002)1, in
which mutations inactivating one allele produce a reduction by
half in the protein levels of the TF. Second, there are precedents
for epigenetic marks present after fertilization to persist after
implantation. For example, genomic imprints from each parental
genome are maintained throughout the genome-wide pre-
and post-implantation reprograming processes (Barlow and
Bartolomei, 2014; Engel, 2015).

In principle, variations in TF levels can change the response
of their target genes or alter their affinity to their cognate
sites (Chen et al., 2014), because in contrast to prokaryotes,
transcriptional activation in eukaryotes is not always an all-
or-none response. Promoters and enhancers are more or less
sensitive to TF concentrations depending on the number of
binding sites for specific TFs (Badis et al., 2009; Lambert et al.,
2018). In addition, TFs often act synergistically or in multimers,

1https://www.ncbi.nlm.nih.gov/omim

so higher or lower levels can result in changes in downstream
effects (Jolma et al., 2015).

Dosage also affects epigenetic factors (EFs), such as DNA-
methyltransferases and histone modification enzymes. Because
these usually act in large complexes, changes in the levels
of protein components of these complexes can alter their
stoichiometry and function (Veitia and Birchler, 2015; Ori
et al., 2016). In turn, some TFs are sensitive to the chromatin
environment (Blattler and Farnham, 2013; Inukai et al., 2017; Yin
et al., 2017), so male- and female-specific epigenetic differences
in binding sites can change their availability.

Unfortunately, there is a dearth of experimental data to
determine how dosage differences in TFs and EFs shift
transcriptomes, much less phenotypes, in mammalian model
systems. ChIP data showing that sex-biased TFs are distributed
differentially across the genome or that they activate their targets
differentially would go a long way toward understanding dosage
effects of regulatory factors. Making ChIP more quantitative
and more sensitive, and expanding the availability of ChIP-
grade antibodies for regulatory factors is a pre-requisite. Perhaps
technology that allows us to tag TFs by genetic engineering will
solve some of these issues (Savic et al., 2015). The ability to finely
tune the levels of TFs is also necessary to determine if subtle
variations have downstream consequences.

X Chromosome Inactivation (XCI) in
Female Embryos
One of the best-studied events distinguishing male and
female pre-implantation embryos is that females undergo X
chromosome inactivation (XCI). XCI in placental mammals
is a dosage compensation mechanism that transcriptionally
silences the majority of genes on one of the X chromosomes
in females. Because males have a single X chromosome,
this ensures dosage equivalence between males and females.
The long non-coding RNA Xist becomes highly expressed
on one X chromosome, coating the entire chromosome
and triggering the accumulation of DNA methylation and
condensing histone modifications, ultimately resulting
in heterochromatinization (Disteche and Berletch, 2015;
Sahakyan et al., 2018).

Two consequences result from this massive epigenetic
overhaul of an entire chromosome. First, female embryos are
developmentally delayed relative to male embryos until XCI is
complete (Thornhill and Burgoyne, 1993; Schulz et al., 2014). It is
well-established that XCI is intimately tied to cell differentiation,
at least in the mouse (Lessing et al., 2013; Payer and Lee, 2014),
and its failure is lethal (Takagi and Abe, 1990; Marahrens et al.,
1997). Thus, in addition to the effects of sex-biased expression of
TFs, the delay in XX embryos opens a window of opportunity for
TFs and EFs to act on the female genome in a sex-specific manner,
even if they are not expressed in a sex-biased manner. On the
other hand, the male genome may undergo specific modifications
as a consequence of not needing to inactivate an X chromosome.

Another consequence of XCI that has been hypothesized is
that the inactive X is a sink for epigenetic factors, altering their
relative concentrations between males and female, with possible
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consequences for autosomal regulation (Wijchers et al., 2010;
Arnold et al., 2012). The decrease in availability of EFs in females
would introduce differences in the chromatin status of regulatory
sequences. In turn, this would introduce a variation in how the
genome is read and regulated in the female embryo. Both of
these scenarios require experimental validation with sensitive
genomic and proteomic tools that allow interrogation of single
sexed embryos before and after XCI to determine whether females
are on a different developmental clock and whether specific
epigenetic factors are indeed substantially diminished relative
to male embryos.

The process of XCI is stochastic in the embryo and the choice
of the X chromosome to be inactivated is heritable. This means
that female placental mammals are mosaics because in some
cells the paternally inherited X chromosome is inactive whereas
in other cells it is the maternally inherited X which is inactive
(Migeon, 2007). As a result, expression of X-linked allelic variants
will vary in different cell lineages (Wu et al., 2014). If the alleles
exhibit variation in their expression levels, female cells in which
the maternal X is active can have expression levels of X-linked
genes that differ from those in male cells.

Although the majority of genes are silenced on the inactive
X chromosome, a number of genes escape XCI and remain
more highly expressed in female cells after implantation,
contributing to sex biases in gene expression throughout
the lifespan of the organism (Disteche and Berletch, 2015;
Balaton and Brown, 2016).

POST-IMPLANTATION EMBRYOGENESIS
AND BEYOND

Implantation signals a major reprograming of the genome,
concomitant with lineage determination. If sex-biased epigenetic
landscapes can weather the de novo DNA methylation and
chromatin re-structuring that ensues, it remains to be
determined which specific epigenetic marks identify the
cell as male or female. If, on the other hand, implantation
erases all sex biases between XX and XY embryos, there
are still genes encoded on the sex chromosomes that
are differentially expressed before the appearance of sex
hormones that could lead to sex-biased autosomal gene
expression. Such is the case of Y-linked genes, absent in
female cells, X-linked allelic variants and genes that escape
XCI altogether (Disteche and Berletch, 2015). It has been
reported that XCI “escapees” present some degree of tissue-
specificity in adult tissues (Berletch et al., 2015; Balaton and
Brown, 2016; Tukiainen et al., 2017). Therefore, we need
a detailed, lineage-specific catalog of what genes escape
XCI over the course of development and how they affect
transcriptional outcomes.

Studies in multiple non-mammalian models have revealed
sex-biased expression of many genes not necessarily related
to sexual function throughout embryogenesis (Mank et al.,
2010; Ma et al., 2018). Such detailed characterization of the
fluctuations in transcriptional and epigenetic sex biases during
development is lacking for mammals. Therefore, tissue-specific

developmental time-series data are needed to begin to answer
these questions experimentally.

ARE SEX DIFFERENCES DURING
EMBRYOGENESIS MEANINGFUL FROM
AN EVOLUTIONARY STANDPOINT?

Evolutionary conflict arises between the sexes when their fitness
interests diverge. Because males and females share most of their
genomes, genes common to both sexes encode many of their
shared traits (Cox and Calsbeek, 2009; Hosken et al., 2019).
Sexually antagonistic selection emerges when optimal fitness for
traits differs, leading to intra-locus sexual conflict. For example,
intra-locus conflict arises when expression of a gene is beneficial
in one sex but detrimental in the other. Contradictory selection
pressures can lead to sub-optimal expression levels for each
sex, with subsequent regulatory mechanisms evolving to offset
the less-than-optimal expression level. Thus, sex-biased gene
expression can be indicative of ongoing or resolved intra-locus
sexual conflict (Parsch and Ellegren, 2013; Rowe et al., 2018).

Forces generating expression differences are expected to
be maximal in the adults, because this is when reproductive
interests diverge. However, if we envision sexual differentiation
as a progressive developmental process, with independent and
combined contributions from the sex chromosomes and sex
hormones, it is possible that expression patterns of early embryos
are also under sex-specific selection pressures and that sex-biased
expression during development indicates sexual antagonism
(Ingleby et al., 2015). Because we lack detailed sex-stratified
data across the whole life cycle in mammals, we do not
know how sex-biased transcription contributes to the male and
female phenotypes, much less all of the genes involved. For
example, some sex biases may need to be expressed continuously
throughout development, while others may be transient, setting
the stage for later sexual dimorphism.

A different mechanism of uncoupling the genetic architecture
between males and females involves gene duplication and
the evolution of sex-specific regulatory mechanisms for each
duplicate (Wyman et al., 2012). Especially in the case of
mammals, with their greatly expanded families of TFs, it would
be interesting to investigate if different paralogs enable conflict
resolution by harboring divergent regulatory sequences that
direct sex-specific expression.

Although the majority of genes that contribute to sexually
dimorphic traits are autosomal and shared between the sexes,
the sex chromosomes are a separate solution to sexual conflict,
expanding the range of sexual differences at the level of
expression that can exist (Hosken et al., 2019; Wright et al.,
2019). The special nature of the sex chromosomes is related
to evolutionary forces that have driven their differentiation and
the compensatory mechanisms that allow male cells to tolerate
the presence of a single X chromosome (Skaletsky et al., 2003;
Graves, 2016; Arnold, 2019). These forces are independent,
but can interact with those related to the divergent niches of
males and females in reproduction. Offsetting the imbalance
in the sex chromosomes is necessary either because genes
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on the sex chromosomes participate in complex regulatory
networks or because they encode components of dosage-sensitive
protein complexes (Bellott et al., 2014; Veitia and Potier, 2015).
Compensation is partially achieved by XCI in female cells.
However, very little is known about the adjustments of the
autosomes to the imbalance of sex chromosomes in males
and females, which in principle could give rise to sex-biased
expression of autosomal genes at any point in development
(Veitia et al., 2015).

Detailed molecular information across all stages of
development for males and females would allow us to test
the major hypotheses on the ontogeny and evolutionary
significance of sex biases by integrating functional studies of
individual genes with systems-level analyses and identifying
similarities and differences across a range of species.

SYSTEMS BIOLOGY OF SEX BIASES

Some genes are expressed with less than a twofold difference
between the sexes (Arnold et al., 2009; Werner et al., 2017).
These differences may be considered trivial, but the systems
biology revolution has highlighted that genes are interconnected
in complex networks and that small differences in multiple genes
can shift transcriptional and phenotypic outcomes. Considering
that some sexually dimorphic traits are extremely complex, many
small-effect loci are likely to underlie these traits. Expression
variation quantitative trait locus (eQTL) mapping of sex-biased
expression in mice support this expectation (Yang et al., 2006; van
Nas et al., 2010).

A recent mandate from the NIH to include sex as a biological
variable in all studies has adrenalized the interest in sex
differences in disease risk and susceptibility (Clayton and Collins,

2014). Significant inroads have been made in characterizing sex
biases in gene expression and epigenetic features in a variety
of adult tissues. Modeling of regulatory networks in adult
human and mouse tissues have shown surprising differences
in regulatory architecture between males and females (Chen
et al., 2016; Gershoni and Pietrokovski, 2017; Karp et al., 2017;
Shen et al., 2017).

The range of continuously evolving analytical tools opens
the possibility of looking at the aggregate pattern of sex-
biased expression to reveal sex-specific modules within the
global networks that specify cellular types. There is a high
degree of plasticity in developmental pathways, with a variety of
intermediate states leading to the same phenotypic space (Briggs
et al., 2017; Figure 1). It is conceivable, then, that sex skews
some parts of a network encoding a cellular phenotype, while not
affecting others. It is also possible that some cell types may require
a greater degree of molecular convergence between the sexes than
others. Sex-stratified transcriptional and epigenetic data from
embryos would also allow a more complete understanding of how
the appearance of sex hormones affect developmental processes
beyond the reproductive system.

SPECULATIONS AND FUTURE
DIRECTIONS

We propose that genes encoded on the sex chromosomes
act on autosomal genes to generate a differential regulatory
and epigenetic landscape upon which later factors, such as
hormones, act to counter or compound sex biases. Because
the epigenome does not necessarily affect transcription until
stage-specific TFs appear, epigenetic sex biases established in
early development could persist and contribute to sex-specific

FIGURE 1 | Sex-specific transcriptional networks and phenotype maps. Schematic representation of the relationships between genotype, transcriptional networks,
and final phenotype during development. Male and female genotypes, represented as XY and XX produce distinct epigenotypes, with effects on and counter-effects
from the autosomes (A). Modifications of the epigenotype on the autosomes lead to transcriptional changes that in turn influence expression from the sex
chromosomes. Different transcription factor (TF) networks can either determine distinct phenotypes (space A) or converge to an equivalent phenotype (spaces B, C).
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FIGURE 2 | Schematic of our hypothesis. (A) Sex biases have different origins depending on the developmental stage of the organism. Before gonadogenesis, sex
chromosomes are the primary determinants of sex differences. Sex hormones influence the transcriptome and epigenome independently of and in combination with
sex chromosome effects. (B) Soon after fertilization, male and female cells have sex-specific transcriptomes, epigenomes, and phenotypes (for example, male
embryos grow faster than female embryos). At implantation, lineage determination begins and gene expression differences are reduced. Epigenetic marks, however,
are less constrained and some are maintained, affecting gene expression, and phenotype later in development. Once specific lineages are established, differences in
gene expression increase again due to environmental, hormonal and genetic factors, some of which act on sex-specific epigenetic features established prior to
differentiation.

phenotypes at later time points (Figure 2). Testing this hypothesis
will first require identifying the nature of sex-biased epigenetic
marks, with DNA methylation an obvious candidate. Then, we
must gather and integrate dynamic, sex-stratified epigenetic,
expression, and proteomic data throughout embryogenesis. The
degree to which molecular sex differences are compensated for
between the sexes are likely to be tissue-specific, with some cell
types requiring greater molecular convergence than others for
proper functionality. This can be revealed with detailed tissue-
specific analyses, a time-consuming but certainly worthwhile
effort. The role of sex hormones in these processes can then
be inferred and validated with in vivo manipulations in animal
models. This will pave the way for connecting sex biases during
development to adult phenotypes.

CONCLUDING REMARKS

There are many outstanding questions on the significance and
extent of sex biases in gene expression and the epigenome,
especially during mammalian embryogenesis. We have evidence
that the sex chromosomes and autosomes are engaged in
a regulatory dialogue very soon after fertilization, but the
implications for the specification of cell types and organogenesis
are unclear. Stratification by sex of existing and forthcoming

data, in combination with experimental validation, will allow
us to determine whether early sex biases have ramifications
across the lifespan. Translation of these insights into humans will
require incorporating studies on how genetic background and
environmental factors influence sex differences. These studies
have practical value in understanding how sex functions as a
variable in the developmental origins of disease (Barker, 2004).
If in fact there are sex-specific evolutionary pressures acting on
embryos, finding the specific genes involved and the networks
they are embedded in will inform us on the compensatory
mechanisms that allow males and females to develop into healthy
organisms. The coming years will undoubtedly be exciting times
in the field of sex differences.
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