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Secreted proteins (SPs) play important roles in diverse important biological processes;
however, a comprehensive and high-quality list of human SPs is still lacking. Here
we identified 6,943 high-confidence human SPs (3,522 of them are novel) based on
330,427 human proteins derived from databases of UniProt, Ensembl, AceView, and
RefSeq. Notably, 6,267 of 6,943 (90.3%) SPs have the supporting evidences from a
large amount of mass spectrometry (MS) and RNA-seq data. We found that the SPs
were broadly expressed in diverse tissues as well as human body fluid, and a significant
portion of them exhibited tissue-specific expression. Moreover, 14 cancer-specific SPs
that their expression levels were significantly associated with the patients’ survival of
eight different tumors were identified, which could be potential prognostic biomarkers.
Strikingly, 89.21% of 6,943 SPs (2,927 novel SPs) contain known protein domains.
Those novel SPs we mainly enriched with the known domains regarding immunity, such
as Immunoglobulin V-set and C1-set domain. Specifically, we constructed a user-friendly
and freely accessible database, SPRomeDB (www.unimd.org/SPRomeDB), to catalog
those SPs. Our comprehensive SP identification and characterization gain insights into
human secretome and provide valuable resource for future researches.

Keywords: secreted proteins, proteome, transcriptome, RNA-seq, human secretome

INTRODUCTION

The secretome of an organism represents the proteins released by all types of cells/tissues of
this organism (Chua et al., 2012). Secretory Proteins (SPs) are crucial for maintaining cell-cell
communication, proliferation, metabolism (Zhang et al., 2014), and immune functions (Bauer et al.,
2006). Notably, many SPs have been identified as important biomarkers for diverse cancers, and
some of them could be therapeutic targets (Schaaij-Visser et al., 2013). Therefore, human secretome
provides a valuable resource for diagnosis, prognosis, and treatment of diverse diseases especially
cancers (Brown et al., 2013).
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The strategies for identifying SPs can be mainly grouped
into two different categories: proteomic identification and
genome-based computational prediction (Hathout, 2007). The
improvement of high-throughput liquid chromatography-
coupled tandem mass spectrometry (LC-MS/MS) has allowed
the identification of over 1000 proteins in a single experiment
(Schaaij-Visser et al., 2013; Ichibangase and Imai, 2014; Li
et al., 2017; Zhang et al., 2018), which empowers proteomic
approach to be the mainstay in SP identification. However, only
a small fraction of the potential SPs has been experimentally
validated (Brown et al., 2013; Schaaij-Visser et al., 2013), due to
the complexity of SP isolation and identification. For example,
proteomic analysis of serum or plasma has been restricted by the
fact that highly abundant proteins (such as albumin) represent
up to 80% of the total proteins (Georgiou et al., 2001), making the
majority of proteins with low abundance difficult to be detected.
By contrast, genome-based computational prediction of SP is
based on the hypothesis that most of SPs have an N-terminal
signal peptide sequence which helps proteins to transport the
endoplasmic reticulum (ER) lumen (Rapoport, 2007). Genome-
based prediction has been widely used to decipher the secretome
in many species such as human, pufferfish, and pig (Klee et al.,
2004). Although previous studies tried to explore the human
SPs (Clark et al., 2003; Chen et al., 2005), a large number of SPs
remains to be identified and validated. Moreover, the exploration
of human secretome at both transcriptome and proteome levels
is still lacking, and the functions of SPs are also largely unknown.

Here we systematically explored human SPs based on the
comprehensive protein set derived from UniProt (The UniProt C,
2017), Ensembl (Aken et al., 2016), AceView (Thierry-Mieg and
Thierry-Mieg, 2006), and RefSeq (Pruitt et al., 2014) databases.
A total of 6,943 high-quality SPs were identified and 3,522 of them
are novel. We further validated and characterized SPs using a
large amount of MS data and RNA-seq data collected from public
databases. Most of our identified SPs have supporting evidence at
protein and/or transcript levels. We also found that a significant
fraction of SPs were detected in plasma, urine, cerebrospinal
fluid, saliva, and pancreatic juice. Furthermore, we investigated
the functional domains of human SPs using both known and
de novo domain prediction approaches, and assigned protein
domains to SPs. Importantly, we constructed a user-friendly
database named SPRomeDB to catalog the diverse information
of identified SPs, which provides a valuable resource for studying
human secretome.

MATERIALS AND METHODS

Collection and Integration of Human
Core Protein Sequences
Human protein sequences derived from four main public
resources were integrated: (Chua et al., 2012) The AceView
human transcriptome and putative protein sequence database
(Version 2010) provided 179,606 non-redundant protein
sequences; (Zhang et al., 2014) the UniProt database (Version
2016_04) provided 42,103 (Swiss-Prot), and 117,522 (TrEMBL)
non-redundant human sequences in FASTA, divided into

canonical and isoform sequences; (Bauer et al., 2006) the RefSeq
database provided 74,180 non-redundant protein sequences
with gene annotations downloaded from NCBI (Release 75);
(Schaaij-Visser et al., 2013) the Ensembl database provided
83,992 non-redundant protein sequences. In total, 330,427 non-
redundant proteins were obtained as the core human protein
sequences for further analysis.

Prediction of the Secretome From Core
Protein Sequences
Secretory proteins were identified by our tunneled analysis
pipeline. Firstly, the secretory protein sequence set was predicted
by using SignalP (Version 4.1) (Nielsen, 2017) that incorporates
a prediction of cleavage sites and a signal peptide/non-signal
peptide prediction based on a combination of several artificial
neural networks. 330,427 core human protein sequences were
used as input for SignalP and D cutoff ≥0.8 as a score of high
quality level to select candidates for SPs. Secondly, putative SPs
by SignalP were scanned by MitoFates (Fukasawa et al., 2015)
(Version 1.1), TargetP (Emanuelsson et al., 2000) (Version 1.1),
and MitoCarta (Calvo et al., 2016) (Version 2.0), together. All
mitochondrial proteins are omitted out from the set of predicted
secreted proteins (SPs) by SignalP. Thirdly, NucPred (Brameier
et al., 2007) (Version 1.1), and PredictNLS (Cokol et al., 2000)
(Version 1.0.20) were used to remove nuclear proteins. Fourthly,
mitochondrial and nuclear proteins defined by WoLF PSORT
(Horton et al., 2007) (Version 0.2) as took the first place in the
prediction ranks were eliminated. Finally, TMHMM (Version
2.0c) and PredGPI (Pierleoni et al., 2008) (Web server) were
utilized to predict transmembrane proteins and GPI-anchored
proteins. Proteins that have no transmembrane helices or have
one transmembrane helix located in non-N-term signal region
and no anchoring signals are considered asSPs. The remaining
predicted SPs were defined as SPs or the SPRome (also named
as the secretome).

The Genes Encode Secreted Proteins
The coding genes of SPs were searched according to the
annotation information from UniProt, RefSeq, Ensembl, and
AceView databases. First, all SPs were tried to map Ensembl
genes. SPs were not mapped to Ensembl genes were annotated
to RefSeq genes next. Finally, SPs were not annotated to both
Ensembl and RefSeq genes were searched AceView genes.

Gold Standard Secreted Proteins and
Gold Standard Non-secreted Proteins
Proteins from Swiss-Prot database satisfying the following
seven conditions were defined as gold standard secreted
proteins (GSSPs): (1) annotated by the gene ontology (GO)
terms GO:0005578 (extracellular matrix) and GO:0005615
(extracellular space) as well as their child terms; (2) exiting
evidence at protein level; (3) has signal peptide; (4) no transit
peptide; (5) no intramembrane region; (6) no transmembrane
region; and (7) match “secreted” in “Subcellular location”
term. Conversely, 1,110 unique protein sequences were
selected as GSSPs.
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Gold standard non-secreted proteins (GSNPs) were gained
through querying “Subcellular location” term from UniProt
database using keywords “cytoplasm” and “nucleus.” Finally,
9,778 unique protein sequences were defined as GSNPs.

Identification of Novel Secreted Proteins
We defined SPs existing in at least one of four resources, including
SPDI (Clark et al., 2003), SPD (Chen et al., 2005), MetazSecKB
(Meinken et al., 2015), and the study by Diehn et al. (2000),
as known SPs. The remaining SPs we considered as novel
SPs. Detailed criteria of SP selection for these four resources
are as bellow:

We downloaded secreted protein sequences from SPD and
extracted human secreted protein sequences through matching
species information.

MetazSecKB SPs are divided into four categories: Curated
secreted - (querying “Subcellular location” term from the Swiss-
Prot using “secreted” and “extracellular”), Highly likely secreted
- (predicted by at least 3 out of 4 predictors), Likely secreted -
(predicted by 2 out of 4 predictors), and Weakly likely secreted
- (predicted by 1 out of 4 predictors). From this database, we
selected curated and highly likely secreted protein sequences.

SPDI and the study by Diehn et al. (2000) identified
membrane-associated/secreted genes, we selected secreted and
transmembrane genes, and then obtained protein sequences
by querying the UniProt database. Proteins without a signal
peptide (annotated in UniProt database) and proteins with
more than two transmembrane helices or one transmembrane
helix not located in non-N-term signal region (predicted by
TMHMM) were discarded.

MS Data Resources Used as Proteomics
Evidences of SPs
Various sources of MS data were integrated and used for
evaluating each predicted secretory protein’s existence at protein
level. The NCBI MS raw data were obtained from NCBI
Peptidome. EBI MS raw data were downloaded from EBI
PRIDE. NIST in-house raw data were provided by NIST.
ProteomicsDB MS raw data were gained from ProteomicsDB
(project ID: PRDB000042)1. Human cell lines MS raw data
were achieved from ProteomicsDB (see text footnote 1, project
ID: PRDB000035).

To handle such massive and diverse MS/MS experimental
data, we built up an automatic analysis platform by integrating
TPP (Deutsch et al., 2010) and OPENMS (Bertsch et al., 2011).
Also two prevalent proteomics libraries, ProteoWizard (Kessner
et al., 2008) and the PRIDE-tool, suite were employed to develop
our own tools to harmonize the pipeline. Three well-optimized
open source database search engines including X!Tandem-native,
X!Tandem-Kscore, and OMSSA were applied. Single experiment
searching results were validated by PeptideProphet at peptide-
spectrum matches (PSMs) level, then by ProteinProhet at protein
identification level. Overall false discovery rate was estimated by
equal-sized decoy protein database searching.

1https://www.proteomicsdb.org

As the first step, mass spectrometer output files were
converted to mzXML using the related tools: OPENMS:
FileConverter, ProteoWizard:Msconvert. Secondly, these files
were run under three search engines and the results were
converted to the pepXML file format. Thirdly, PeptideProphet
was used to validate the search engine results and to model
correct vs. incorrect PSMs. Fourthly, the datasets were
validated at the peptide-identification level with iProphet.
Finally, protein-level validation and protein inference were
performed with ProteinProphet. Every experiment was
computed by those steps.

Supporting Evidences at Protein and/or
Transcript Levels
Protein-level evidences came from MS data, neXtProt
knowledgebase, UniProt, and the Human Protein Atlas (HPA)
databases. MS data were processed as above mentioned; In
neXtProt and UniProt databases, protein sequences with protein
existence “Evidence at protein level” were chosen; From HPA
database, we gained gene names with “Evidence at protein level”
in “HPA evidence” term and then obtained protein sequences
from UniProt database.

Transcript-level evidences were derived from RNA-seq data
of ProteomicsDB, neXtProt knowledgebase, UniProt, HPA,
and AceView databases. According to the central dogma of
molecular biology, proteins exist protein-level evidences will also
have transcript-level evidences. So, we selected proteins with
protein existence “Evidence at protein/transcript level” form
neXtProt, UniProt, and HPA databases using the same method
above-mentioned. AceView database provides experimental
information regarding the range of biological occurrence for each
transcript, such as tissues, cell types or diseases. We extracted
proteins coded by AceView cDNA transcripts expressed in at
least one tissue resource/condition. Moreover, we downloaded
RNA-seq data of Human BodyMap from ArrayExpress (accession
no. E-MTAB-513). Before processing RNA-seq data, we built
a merged human reference genome annotation file by filling
genes annotated in AceView or RefSeq but not in Ensembl into
intergenic and intronic regions of Ensembl provided reference
genome. Then the downloaded data generated from 16 human
tissues (thyroid, testes, ovary, white blood cells, skeletal muscle,
prostate, lymph node, lung, adipose, adrenal, brain, breast, colon,
kidney, heart, and liver) were separately aligned to Ensembl
reference genome using STAR (Dobin et al., 2013) (version
2.5.2a). Next, we estimated the expression levels of the transcript
with the program “rsem-calculate-expression” in RSEM (Li and
Dewey, 2011) software (version 1.2.31) using the merged genome
annotation file and transcripts whose TPM value more than 0.1
were thought to be expressed.

Identification of Expression-Enriched
Transcripts
For detecting expression characteristic of secretome at
transcriptional level, we analyzed RNA-seq data from human
early embryos and expression data from GTEx. Embryos data
were downloaded from ArrayExpress (Parkinson et al., 2007)
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(accession no. E-MTAB-3929) and processed using aforesaid
method. TPM value 0.1 was also the off of expressed or not.

Based on the expression data of embryos and GTEx, we
performed expression-enriched analysis. We applied ANOVA
analysis followed by Tukey’s range test (Tukey’s honest
significance differences) for each transcript to assess significance
of differences (fold change ≥ 4 and FDR < 0.01) among different
embryo stages and different normal tissues.

Differential Expression Analysis in
Diverse Human Cancers
Raw counts of all genes in 13 different cancers of TCGA (The
Cancer Genome Atlas) (number of normal samples ≥ 20) were
downloaded from Genomic Data Commons (Grossman et al.,
2016) (GDC)2. Differential expression analysis was performed by
R package DESeq2 (Love et al., 2014).

Gene Ontology and Pathway Enrichment
Analysis
All GO enrichment analysis and KEGG pathway analysis in this
article were carried out using WebGestalt (Wang et al., 2013).
Only those GO terms and pathways with an adjusted P < 0.05
were considered statistically significant.

De novo Domain Boundary Prediction
For SPs without known domains, we used a neural network
method, PPRODO, to predict domain boundaries, with
the position-specific scoring matrix (PSSM) generated
from PSI-BLAST. The prediction accuracy of the method
is about 70% when we used 0.25 as the cutoff for
boundary score.

RESULTS

Identifying “High-Quality” Human SPs
From Human Proteome
By integrating the human proteins of UniProt (Swiss-Prot
and TrEMBL), Ensembl, AceView, and RefSeq databases, a
total of 330,427 non-redundant proteins were obtained for SP
identification (Figure 1A). We first constructed a computational
pipeline to identify the human SPs. The pipeline contained three
main steps: (i) SP prediction (Supplementary Figure 1A); (ii)
SP validation based on LC-MS/MS and RNA-Seq datasets from
diverse tissues and cell lines; and (iii) functional annotation of
SPs, including domain and family prediction as well as pathway
enrichment analysis.

Considering that SPs generally possess a short peptide chain
with a segment of hydrophobic sequences on the N-terminus
of the nascent protein (Walter et al., 1984), we employed
SignalP4.1 (Nielsen, 2017) to predict the potential SPs from
330,427 non-redundant proteins. In total, 31,332 SP candidates
passed the default threshold D-score of 0.45, and 11,132 of
them had D-score ≥0.8. We did not consider candidates

2https://gdc.cancer.gov/

with D-score <0.8 as SPs to increase the accuracy. Moreover,
to minimize the false positives, 310 and 153 nuclear and
mitochondrial proteins were excluded, respectively (see section
“Materials and Methods”). Additionally, 3,231 proteins predicted
as transmembrane proteins by TMHMM (Krogh et al., 2001)
were also removed. Finally, 6,943 high-quality SPs were remained
and 159 of them shared among Swiss-Prot, TrEMBL, Ensembl,
AceView, and RefSeq (Figure 1B). Among those 6,943 SPs, 6,472
of them were encoded by 1,700 Ensembl, 1,244 RefSeq, and 177
AceView genes, while the rest of 471 SPs (13 SPs from Swiss-
Prot and 458 SPs from TrEMBL) could not be mapped to known
genes (see section “Materials and Methods”). Gene functional
enrichment analysis showed that these SPs are mainly involved
in the pathways of ECM-receptor interaction, Complement and
coagulation cascades, Hematopoietic cell lineage, and Lysosome
(Supplementary Figure 1B).

Our Identified SPs Are With High
Accuracy
To evaluate the accuracy and coverage of identified human SPs,
we generated positive and negative protein datasets of human
SPs. The GSSPs are the 1,110 known SPs derived from Swiss-
Prot after a series of filtering (Supplementary Table 1). In
contrast, 9,778 proteins defined as nuclear or cytosolic proteins,
not secreted outside the cells, were used as the negative group
(GSNPs, Supplementary Table 2). Strikingly, 95% of the GSSPs
passed the default threshold of SignalP (D-score ≥0.45), whereas
98.8% of GSNPs were with D-score <0.45 (Figure 1C). To
minimize false positives, we used a more stringent criteria
of D-score >0.8, and removed nuclear, mitochondrial, and
transmembrane proteins resulting in a list of high-quality SPs
in aforementioned analyses. 6,943 high-quality SPs contain 579
GSSPs and only 8 of them (0.1%) were overlapped with the
GSNPs (Figure 1D). Although we may miss a fraction of SPs,
our criteria largely decreased the false positives. Some of the
proteins annotated by Swiss-Prot as not secreted outside the cell
may also be SPs, but current annotation methods are not able to
effectively identify them. Accordingly, these SPs identified by us
are with high-confidence.

We compared our SPs with published human SPs in other
datasets, including SPDI (Clark et al., 2003), SPD (Chen et al.,
2005), MetazSecKB (Meinken et al., 2015), and SPs identified by
Diehn et al. (2000). Interestingly, half of our SPs were found in
at least one of the four SP datasets (Figure 1E). Each of those
SP sets contains a significant number of specific SPs and only
5 SPs were common among all SP sets (Figure 1E). Notably,
only a small portion of proteins in those SP datasets had SignalP
D-scores ≥0.8 (Figure 1F), indicating the lower quality of those
SP datasets. Although MetazSecKB has relatively more human
SPs than our SP set, the criteria used for SP identification in
MetazSecKB is much looser. 3,522 SPs identified by us are novel,
suggesting that the human SPs in previously existing databases
are far from complete. These novel SPs are mainly enriched
in the pathways of Complement and coagulation cascades,
Hematopoietic cell lineage, Cell adhesion molecules (CAMs), and
Lysosome (Supplementary Figure 1C). Accordingly, we largely
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FIGURE 1 | Identification and evaluation of SPs based on comprehensive human protein set. (A) Venn graph of human proteins used for SP identification in different
databases. A total of 330,427 non-redundant proteins were integrated from Swiss-Prot, TrEMBL, RefSeq, Ensembl, and AceView databases. (B) The distribution of
SPs identified in Swiss-Prot (1,635), TrEMBL (3,234), RefSeq (2,058), Ensembl (2,947), and AceView (2,934) databases. (C) The percentages of proteins passed and
not passed the default SignalP cutoff (D-score >0.45) in GSSP and GSNP. (D) Comparison of our identified SPs with GSSP and GSNP. (E) Comparison of our
identified SPs with other four known SP sets. (F) Distribution of SignalP D-scores in our identified SPs and other four SP sets.
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FIGURE 2 | Protein level evidences of SPs supported by MS data. (A) Heatmap of SP presence in different tissues and/or cell lines based on the MS data of
ProteomicsDB, NCI-60 cell lines, and EBI/NCBI/NIST database. Red represents the presence of SP, whereas white represents not. (B) Number distribution of
detected SPs in distinct tissues and cells of ProteomicsDB project. The counts of unique and non-unique SPs were shown respectively. (C) Heatmap of shared SPs
between each two different tissues or cells of ProteomicsDB project. (D) Clustering of different tissues and cells of ProteomicsDB project based on SP presence.
Red stands for the presence of SP, whereas white represents not.

extended the current human SP repository and increased the
coverage of human SPs.

Most of Our Identified SPs Have Protein
and/or Transcriptional Evidences
Since a large portion of SPs cataloged in public databases were
derived from computational prediction without experimental
validation, we used MS data collected from EBI (PRIDE) (Jones
and Martens, 2010), NCBI (Ji et al., 2010) and NIST databases as
well as the studies of ProteomicsDB (Wilhelm et al., 2014) and
NCI-60 cell lines (Gholami et al., 2013) to confirm our SPs at the
protein level (Figure 2A). Mass spectra from 28,251 experiments

of over 40 different experimental conditions including diverse
tissues and cell types were analyzed (Supplementary Table 3).
We found that 2,461 (1,117 novel) and 1,616 (730 novel) SPs were
separately matched with at least one and two unique mass spectra
(FDR < 0.05) (Supplementary Figure 2A). The quantity of SPs
detected in NCI-60 cancer cell lines were much less than those in
tissues and cells of ProteomicsDB (Figure 2A). We also observed
that 1,368 (1,107 of them have at least two supported unique
peptides) and 1,591 (915 of them have ≥2 supported unique
peptides) SPs could be detected with more than one unique
peptide in the data sets of ProteomicsDB and EBI/NCBI/NIST,
respectively (Supplementary Table 4). On average, 321 SPs were
identified in each type of tissue or cells of ProteomicsDB and
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75 SPs were detected in each condition of EBI/NCBI/NIST.
Moreover, 932 of those 1,368 SPs were identified in at least
two tissues of ProteomicsDB, while 757 of 1,591 were detected
in more than one conditions of EBI/NCBI/NIST. Interestingly,
testis, prostate, ovary, pancreas, and rectum are the top five
tissues with the largest number of identified SPs, whereas the least
number of SPs was detected in CD4T (Figure 2B). Specifically, we
detected tissue-specific SPs based on MS data of ProteomicsDB,
where the numbers ranged from 3 to 21 (Figure 2B). For example,
we found that ACRBP, WNT5B, SERPINH1, MMP2, and CD4
are tissue-specific SPs for testis, prostate, ovary, pancreas, and
CD4T. ACRBP is testis-specific SP, previous study has shown that
ACRBP could be used to monitor the normal spermatogenesis
of testes or in vitro development of germ cells (Kim et al.,
2015). Analysis of circulating tumor cells (CTC) revealed that
WNT5B is closely associated with prostate cancer (Chung et al.,
2019). SERPINH1 has crucial function in collagen biosynthesis
and is correlated with ovary development (Sato et al., 2002). It
has been shown that MMP2 is associated with the progression
of pancreatic cancer and could be a therapeutic target (Chen
et al., 2019). CD4 is essential to initiate the early phase of T-cell
activation. Moreover, prostate, testis, and ovary shared the largest
number of SPs (Figure 2C). Notably, tissues can be grouped into
different categories according to their SP presences, and neural
tissues and genital tissues showed distinct SP expression patterns
compared with other tissues (Figure 2D).

We then compared SPs with 37,089 proteins that have the
protein level evidence curated from the publications in neXtProt
knowledgebase (Gaudet et al., 2015). 1,503 of SPs (417 novel)
have protein evidences. Furthermore, 1,935 SPs (532 novel)
and 3,464 SPs (1,021 novel) are also annotated with protein
evidence in the UniProt and the (Uhlen et al., 2015) HPA
databases (Figure 3A). In total, 4,839 (1,902 novel) of 6,943
SPs have supporting evidences at the protein level. Considering
the low detection rate of current MS technologies, we further
checked the transcriptional evidence of SPs based on the RNA-
seq data of human BodyMap, and the transcriptional evidences
in neXtProt, UniProt, HPA, and AceView databases. Remarkably,
5,962 of those 6,943 SPs have the evidence at transcriptome
level (Figure 3B). In total, 6,267 out of 6,943 (90.3%) of SPs
have supporting evidence at protein and/or transcript levels, in
which 1,902 and 2,659 novel SPs have the evidence at the protein
and transcript levels, respectively. Therefore, the great majority
of our identified SPs are supported by transcriptomics and/or
proteomics data.

A Large Portion of Our Identified SPs Are
Detected in Body Fluids
Plasma is the body fluid commonly used in clinical diagnostics
since it harbors proteins secreted from almost all tissues, and
many plasma or serum proteins have been identified as potential
biomarkers for diverse diseases including cardiovascular,
autoimmune, infectious, and neurological disorders (Berhane
et al., 2005; Agranoff et al., 2006). We found that 1,281 (332
novel) and 810 (72 novel) SPs are overlapped with the proteins in
Plasma Proteome Database (Nanjappa et al., 2014) and Human

Plasma Proteome Reference Set (Farrah et al., 2011) In addition,
121 (5 novel) SPs are in the urinary protein biomarker database
(Shao, 2015). Moreover, 487, 434, 381, and 548 SPs were also
detected the human urinary proteome described by other four
publications (Adachi et al., 2006; Li et al., 2010; Marimuthu
et al., 2011; Zheng et al., 2013), respectively. In cerebrospinal
fluid, 309 and 624 SPs were detected by Kroksveen et al. (2011)
and Schutzer et al. (2010), respectively. We also separately
detected 302, 293, and 40 SPs using the data from three saliva
related studies of Sivadasan et al. (2015), Sanguansermsri et al.
(2018) and Zhao et al. (2018). Additionally, 149 and 34 SPs
were identified based on the data of two pancreatic studies of
Marchegiani et al. (2015) and Doyle et al. (2012).

In total, 1,532 (359 novel), 779 (226 novel), 654 (233
novel), 392 (71 novel), and 154 (31 novel) SPs identified by
us were separately overlapped with the proteins detected in
previous studies of plasma, urine, cerebrospinal fluid, saliva,
and pancreatic juice (Figure 3C), resulting in a total of
1,732 SPs (486 novel). Therefore, the results indicate that our
SPs can provide a valuable resource for clinical biomarker
identification and diagnosis.

The SPs Are Broadly Expressed in Early
Embryos and Diverse Tissues at
Transcriptional Level
To examine the transcriptional profiles of SPs, we investigated the
expression patterns of SPs using the single-cell RNA-seq data of
human early embryos. Because integrating the genes/transcripts
annotated by different databases is challenging (Chen et al.,
2013), we only combined genes from RefSeq and AceView
databases that are located in the intergenic or intronic regions
with Ensembl annotations. Excluding SPs that could not be
accurately added into Ensembl annotation, 3,053 SPs (875 novel)
were used for examining transcriptional expression profiling
based on RNA-seq data. Using 0.1 TPM as cutoff, 2,753 (753
novel) of 3,053 SPs (90.17%) were detected in at least one
stage of human early embryos at transcriptional level. Strikingly,
the number of SPs detected in human early embryos was
gradually increased from E3 (1,722 SPs) to E7 stages (2,350 SPs)
(Figure 4A). However, expression enrichment analysis revealed
that E3 stage has the largest number of SPs with enriched
expression compared with other stages, whereas only three SPs
(the least) showed enriched expression in E6 (Figure 4B, fold
change ≥ 4 and adjusted P < 0.01). Intriguingly, functional
enrichment analysis indicates that the enriched SPs identified in
each stage were largely matched with the development features of
early embryos (Figure 4C). The enriched GO terms and pathways
are mainly related to the extracellular functional molecular, such
as cytokines, chemokines, and extracellular matrix receptors,
which are highly correlated with the development characteristics
of human early embryos. For example, the enriched GO term
of cytokine-cytokine receptor interaction is in line with the fact
that embryonic cells of E4 stage start differentiation and cytokine
is essential for cell differentiation. E7 embryonic cells prepare
for implantation, thus the SPs with enriched expression in E7
stage were enriched in “ECM-receptor interaction” pathway.
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FIGURE 3 | Supporting evidences of SPs at protein and transcript levels. (A) Pie chart shows the number and proportion of SPs that have supporting evidence at
protein level, while Venn graph shows the distribution of protein level evidences for SPs in databases of neXtProt (2,461), UniProt (1,503), and HPA (1,935), as well as
the MS data (3,464 SPs). (B) Pie chart shows the number and percentage of SPs that have supporting evidence at transcript level, while Venn graph shows the
distribution of transcript level evidences for SPs in Human BodyMap project (2,407) and databases of UniProt (2,928), neXtProt (1,503), HPA (3,669), and AceView
(2,674). (C) Pie chart shows the number and proportion of SPs that detected in human body fluids, while Venn graph shows the number of SPs detected in plasma
(1,532), urine (779), cerebrospinal fluid (654), saliva (392), and pancreatic juice (154).
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FIGURE 4 | Transcriptional profiles of SPs in early embryos and different tissues. (A) Number distribution of detected SPs in each embryonic stage (0.1 TPM as
cutoff). (B) Principal Component Analysis (PCA) of the samples different embryonic stages based on the SPs with enriched expression in each stage. (C) The SP
genes that with enriched expression in each embryonic stage. (D) Functional enrichment analysis (GO and pathway) of expression enriched SP genes in different
embryo stage. Green, blue, orange, purple and red separately represent stages from E3 to E7. (E) Expression enriched SP genes in different tissues of GETx project.
(F) Functional enrichment analysis (GO and pathway) of expression enriched SP genes in different tissues.
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Notably, the cells of different embryonic stages could be clearly
distinguished in PCA, and ordered by the developmental stages
based on enriched SPs of each stage (Figure 4D). Consequently,
the result suggests that SP genes are actively expressed in
human early embryos.

To further explore the transcriptional expression profile of
SPs in diverse tissues, 2,774 SPs (667 novel) that have Ensembl
gene/transcript annotation were mapped to the expression
table of Ensembl genes/transcripts obtained from GTEx project
(Carithers and Moore, 2015). The SPs that could not be annotated
to corresponding Ensembl genes/transcripts were not considered
here. The great majority (2,625 out of 2,774) of SPs were
expressed in at least one of 30 human tissues. Blood, brain,
and adipose tissue were the top three tissues with the largest
number of expressed SPs while fallopian tube was the least
(Supplementary Figure 2B). Expression enrichment analysis
showed that liver (138 SPs), testis (118 SPs), and pancreas (59 SPs)
were the top three tissues with the largest number of enriched SPs,
whereas no enriched SPs were found in whole blood, adipose,
uterus, breast, esophagus, and cervix uteri based on the criteria
of fold change ≥ 4 and adjusted P < 0.01 (Figure 4E). As
expected, blood contains the largest number of detected SP,
despite the lack of enriched SP expression, since whole blood
may contain SPs secreted from diverse tissues. Furthermore,
functional enrichment analysis of enriched SPs in different tissues
revealed that the functions of SPs were closely associated with the
functions of corresponding tissues (Figure 4F). For example, the
SPs enriched in pancreas, spleen, and salivary tissues were mainly
involved in pancreatic secretion pathway, humoral immune
response function, and salivary secretion pathway.

A Number of Our Identified SPs Are
Functionally Important in Diverse
Cancers
To investigate the expression changes of SPs at transcriptional
level in cancers, we conducted differential expression
determination between tumor and normal samples for 13
different cancers including breast invasive carcinoma, colon
adenocarcinoma (COAD), lung adenocarcinoma (LUAD),
prostate adenocarcinoma, and stomach adenocarcinoma
of TCGA project (Evans and Relling, 1999). Hundreds of
differentially expressed SP genes (DESPGs) were identified in
each cancer type (Supplementary Figure 2C). Kidney renal clear
cell carcinoma (KIRC) possessed the largest number of DESPGs,
whereas prostate adenocarcinoma had the least (Figure 5A
and Supplementary Figure 2C). Any two different types of
cancers shared at least 98 DESPGs (Figure 5A). Moreover, 3
SPs were differentially expressed across 13 distinct cancers,
while 90 DESPGs were found among > 10 cancers. Functional
enrichment analysis of those 90 DESPGs showed that they were
enriched in tumor-related pathways (such as Wnt signaling
pathway, TGF-beta signaling pathway, focal adhesion, and
ECM-receptor interaction) and secretory-related GO terms (e.g.,
extracellular structure organization and extracellular matrix
organization) (Supplementary Figures 2D,E). Additionally,
each cancer has its specific DESPGs (Figure 5B). Thus, DESPGs

play important roles in cancers and each cancer has its specific
pattern of DESPGs.

We further conducted Kaplan–Meier analysis to investigate
whether the expression of those cancer-specific DESPGs was
associated with the patients’ survival in corresponding tumors.
Intriguingly, we detected 14 such cancer-specific DESPGs that
their expression levels can be applied to significantly divide the
patients into high-risk and low-risk groups (P-value < 0.05).
The involved cancers and genes for these 14 DESPGs are
Uterine Corpus Endometrial Carcinoma (UCEC) (e.g., GLB1,
HSPA5, and PDIA3), KIRC (e.g., FUT11, GNRH1 and IFNGR2),
Liver hepatocellular carcinoma (LIHC) (e.g., BGLAP and SSR2),
Kidney renal papillary cell carcinoma (KIRP) (e.g., ADAM9 and
TPST2), Thyroid carcinoma (THCA) (e.g., TGFBR1), LUAD
(e.g., TAC4), Kidney Chromophobe (KICH) (e.g., BSG), and
COAD (e.g., FUCA1) (see Supplementary Figure 3). Notably,
FUT11 (Zodro et al., 2014), BGLAP (Yajima et al., 1989),
SSR2 (Abdel-Hamid et al., 2014), TGFBR1 (Li et al., 2018; Tan
et al., 2018), BSG (Tsai et al., 2007), and FUCA1 (Terraneo
et al., 2013) have been reported to be associated with related
cancer, but no studies showed the functions of other eight
DESPGs in corresponding cancers. Therefore, these 14 cancer-
specific DESPGs could be potential prognostic biomarkers for
relevant tumors.

The Great Majority of Our Identified SPs
Possess Functional Domains
Since domains are the basic functional units of proteins (Deng
et al., 2014), we identified domains in SPs. We scanned the
SPs using InterPorScan (Jones et al., 2014) (version 57) based
on eleven integrative protein family databases, including
Pfam, CATH-Gene3D, PIRSF, PROSITE, HAMAP, PRINTS,
ProDom, SMART, TIGRFAMs, SUPERFAMILY, and PANTHER.
Strikingly, 89.21% of SPs and 90.15% of novel SPs were annotated
with known domains. Moreover, most of SPs (82.33%) can be
mapped to the domains in the Pfam database. Domains
matched with SPs are mainly associated with immunity, such
as Immunoglobulin V-set domain, Immunoglobulin C1-set
domain, Class I Histocompatibility antigen, domains alpha
1 and 2, and Immunoglobulin domain (Figure 5C). The
enriched families for 2,927 novel SPs include Immunoglobulin
V-set domain, Immunoglobulin C1-set domain, Class I
Histocompatibility antigen, domains alpha 1 and 2, MHC-I
C-terminus, Immunoglobulin domain, Calcium-binding EGF
domain, and so on (Figure 5D).

To characterize the protein domains in 749 (347 novel)SPs that
have no assigned known domains, we conducted de novo domain
boundary prediction by employing PPRODO (Sim et al., 2005).
The majority of 749 SPs were assigned with 902 domain regions,
with a cutoff of 0.25 for the boundary score (generally equates
to a prediction accuracy of ∼70% and ∼75% for one-domain
and two-domain chains). Specifically, 309 of 347 novel SPs were
annotated with novel domains. Taking together, 6,845 of all the
6,943 SPs and 3,484 of the 3,522 novel SPs were annotated with
known or novel domains, suggesting that those SPs identified by
us are with functions.
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FIGURE 5 | Differentially expressed SP genes in 13 different cancers and functional domain annotation of SPs. (A) Number of differentially expressed SPs shared by
each two different cancers. (B) Number distribution of cancer-specific differentially expressed SPs. (C) Top 10 enriched domains of known SPs. (D) Top 10 enriched
domains of novel SPs.

Our Identified SPs Are Freely Accessible
in SPRomeDB Database
To provide a research resource for our identified SPs, we
developed a user-friendly and freely available open access
database namely SPRomeDB3. All data of human SPs are
presented in SPRomeDB without restrictions. Users are able
to conveniently browse and use the sources of SPs in the
SPRomeDB. We believe that SPRomeDB is a valuable SP database
to help researchers to gain insights into human SPs and conduct
various related studies.

DISCUSSION

In this study, we systematically explored human SPs based on
the non-redundant proteins integrated from UniProt, Ensembl,
AceView, and RefSeq databases. Since the characteristics of SPs

3www.unimd.org/SPRomeDB

are complicated, we employed stringent cutoff to minimize the
false positives. Although our stringent criteria missed a number
of GSSPs, our identified SPs were with high-confidence and only
8 of them (0.1%) were overlapped with GSNPs. After a series
of analyses, a total of 6,943 high-quality SPs were identified
and 3,522 of them are novel, suggesting that the known human
SP set was far from complete. Strikingly, most (89.21%, 6,194
out of 6,943) of our identified SPs were annotated with known
protein domains, indicating that they could play important
biological roles. By processing a large amount of MS/MS and
RNA-seq data, we found that the great majority (90.3%) of SPs
were expressed at protein and/or transcript levels, which further
provides supporting evidences for those SPs. In order to facilitate
SP researches, we constructed SPRomeDB database to enable
users to freely accessible the resource of our identified SPs.

We observed that those SPs were broadly expressed in diverse
tissues and cell types. Interestingly, the largest numbers of SPs
were identified in testis, prostate, ovary, pancreas, and rectum,
which is reasonable since that these tissues usually generate a
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lot of SPs to maintain their functions. Testis secretes hormones
(primarily testosterone) and is the primary male reproductive
organ, while ovary also produces the female hormones estrogen
and progesterone are for female reproductive system. The main
function of prostate is to secrete prostate fluid, one of the main
components of semen. Pancreas produces insulin and other
crucial enzymes as well as hormones for maintaining metabolic
homeostasis. Rectum is the terminal segment of the digestive
system, which also could secrete related proteins. In contrast, the
smallest number of SPs was detected in CD4T cells. Although
CD4T cells could secrete cytokines and chemokines to activate
and/or recruit target cells, CD4T cells are not solid tissue and
many SPs may not be captured by experiment.

Moreover, we observed that a significant fraction of SPs were
with enriched expression in different stages of early embryos.
Intriguingly, gene functional enrichment analysis indicated that
some SPs were enriched in the pathways of ER processing in
E3 stage and lysosome in E4 stage. We further compared our
identified SPs, GSSPs, and GSNPs with the ER-resident and
lysosomal proteins. The result showed that 15, 3, and 2 proteins
were overlapped with the 56 ER-resident proteins from the study
of Pehar et al. (2012) in our identified SPs, GSSPs, and GSNPs,
respectively. We also obtained 452 lysosomal proteins from
hLGDB database (Brozzi et al., 2013) and separately detected
61, 39, and 58 proteins in our detected SPs, GSSPs, and GSNPs.
Therefore, some ER-resident and lysosomal proteins are SPs and
the SPs with enriched expression in corresponding embryonic
stages might be closely related to the development of different
segments of the secretory pathway.

Additionally, we identified 14 cancer-specific DESPGs that
their expression levels were significantly associated with the
prognosis of eight tumors of UCEC, KIRC, LIHC, KIRP, THCA,
LUAD, KICH, and COAD. Only six of them have been studied
in relevant cancers. For example, a previous study indicated that
FUT11 could be a potential biomarker for the progression of
KIRC through meta-analysis (Zodro et al., 2014). SSR2 has been
shown to be a reliable cancer biomarker for LIHC (Abdel-Hamid
et al., 2014). TGFBR1 is a receptor of TGF-β ligands and could be
correlated with thyroid tumorigenesis (Tan et al., 2018). However,
the remaining eight cancer-specific DESPGs of GLB1, HSPA5,
PDIA3, GNRH1, IFNGR2 ADAM9, TPST2, and TAC4) were
not reported in any researches, which could be potential novel
prognostic biomarkers in corresponding tumors.

Collectively, we systematically analyzed and characterized
human SPs and identified 3,522 novel SPs, which largely extended
the human SP repository. Most of our identified SPs contain
functional domains and a number of them are closely associated
with early embryonic development or the prognosis of different

human cancers. Moreover, the user-friendly database SPRomeDB
can provide valuable SP resource for future researches and
clinic applications.
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