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Autophagy is a major cellular recycling process that delivers cellular material and entire
organelles to lysosomes for degradation, in a selective or non-selective manner. This
process is essential for the maintenance of cellular energy levels, components, and
metabolites, as well as the elimination of cellular molecular damage, thereby playing
an important role in numerous cellular activities. An important function of autophagy
is to enable survival under starvation conditions and other stresses. The majority of
factors implicated in aging are modifiable through the process of autophagy, including
the accumulation of oxidative damage and loss of proteostasis, genomic instability and
epigenetic alteration. These primary causes of damage could lead to mitochondrial
dysfunction, deregulation of nutrient sensing pathways and cellular senescence, finally
causing a variety of aging phenotypes. Remarkably, advances in the biology of
aging have revealed that aging is a malleable process: a mild decrease in signaling
through nutrient-sensing pathways can improve health and extend lifespan in all model
organisms tested. Consequently, autophagy is implicated in both aging and age-related
disease. Enhancement of the autophagy process is a common characteristic of all
principal, evolutionary conserved anti-aging interventions, including dietary restriction,
as well as inhibition of target of rapamycin (TOR) and insulin/IGF-1 signaling (IIS). As an
emerging and critical process in aging, this review will highlight how autophagy can be
modulated for health improvement.

Keywords: autophagy, aging, target of rapamycin, insulin/IGF-1 signaling, proteostasis, DNA damage, mitophagy,
anti-aging drugs

THE NEW BIOLOGY AND HALLMARKS OF AGING

Aging is characterized by progressive deterioration of tissues and organs, leading to loss of
physiological function and increased risk of death. In developed societies, we are witnessing a
constant increase in the size of elderly populations, and an ensuing increase in people suffering
from age-related diseases, making health improvement during aging an important challenge and
a priority (Rae et al., 2010). Over the last few decades, outstanding progress has been made toward
understanding the aging process. Specifically, we now know that, despite all of the complexities
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of aging, a single mutation in just one of a few genes in
nutrient-sensing pathways is sufficient to extend lifespan in
all model organisms tested (Kenyon, 2010; Partridge, 2010).
Moreover, the effect of anti-aging mutations is evolutionary
conserved from yeast to mammals, and importantly, the long-
lived mutants in all model organisms are healthier (Fontana et al.,
2010; Selman and Withers, 2011; Singh et al., 2019). Thus, an
improved understanding of the underlying mechanisms of aging
based on genetic findings, with translation into pharmacological
interventions, has the potential to improve health in the
continuously growing elderly populations of modern societies.
The hope is that such strategies will at the same time prevent age-
related diseases (Niccoli and Partridge, 2012; Kennedy et al., 2014;
Partridge et al., 2018). Examples of this approach include the anti-
diabetic and the anti-aging drug metformin, which is the first
drug to be tested for improvement of various health parameters
in elderly people (Barzilai et al., 2016), and rapamycin, which
has been shown to improve the efficacy of the flu vaccination
in aged individuals (Mannick et al., 2018). Such approaches, if
successful in slowing the aging process and age-related diseases,
would be expected to have a significant impact on the quality
of life of elderly individuals, as well as an important socio-
economical benefit (Rae et al., 2010; Partridge et al., 2018;
Campisi et al., 2019).

Currently there are nine proposed and well-defined primary
hallmarks of aging (Lopez-Otin et al., 2013) that contribute to
cellular injury and damage. These comprise genomic instability,
telomere attrition, and epigenetic alteration, loss of proteostasis,
deregulated nutrient-sensing, mitochondrial dysfunction and
cellular senescence. In addition, two integrative hallmarks, stem
cell exhaustion and altered intercellular communication, lead to
functional deterioration and aging phenotypes.

In this review we focus on the autophagy process, whose
upregulation is a common denominator of all major pro-
longevity interventions (Hansen et al., 2018), including dietary
restriction and mild down-regulation of the nutrient-sensing
pathways – insulin (IIS) and mechanistic target-of-rapamycin
signalling (mTOR) (Lopez-Otin et al., 2013). We first consider
the regulators and effectors of autophagy, and examine the role
of autophagy in the aging process. We next focus on how
autophagy regulates those processes affected by aging, such as
proteostasis, the maintenance of genomic integrity and organelle
degradation. Finally, we explore the potential therapeutic role
of autophagy modulation in preventing the aging process and
age-related diseases.

AUTOPHAGY PATHWAY

Under normal physiological conditions autophagic is
indispensable for cellular homeostasis, and is upregulated
under stress conditions. One of the most common examples of
a stress condition is starvation, where active autophagy enables
survival by degrading cellular components (Mizushima, 2018;
Lahiri et al., 2019). There are three different types of autophagy:
macroautophagy, microautophagy and chaperone-mediated
autophagy (CMA), and they differ on how cargo is delivered

to lysosomes for degradation. Macroautophagy is the principal
and most commonly studied type of autophagy that is described
below, and is commonly referred to as autophagy (Ktistakis
and Tooze, 2016). Microautophagy involves the cytosolic
sequesteration of cellular debris by a small invagination of the
lysosomal membrane, thereby accessing lysosomal enzymes for
degradation. Lastly, CMA relies on the cytosolic heat shock
cognate 70 (hsc70) chaperone to recognize a KFERQ motif
in target cytosolic proteins, facilitating lysosomal degradation
(Kaushik and Cuervo, 2018; Scrivo et al., 2018).

A critical feature of autophagy is the ability to degrade cellular
components not only randomly, but also selectively, and the
number of autophagy receptor proteins that deliver certain cargo
for autophagic degradation is continually growing (Kirkin, 2019).
For selective autophagy to occur, LIR (LC3-interacting region)-
containing receptors are essential and link specific cargo with
LC3-II proteins on autophagosomes. The number of identified
selective autophagy cargos are expanding; examples include
degradation of glycogen by glycophagy, ferritin by ferrinophagy,
protein aggregates by aggrephagy, lipids by lipophagy, and
ribosomes by ribophagy. Organelle degradation is referred to
as pexophagy for peroxisomes, mitophagy for mitochondria,
and reticulophagy for endoplasmic reticulum (Dikic, 2017). This
selective degradation is critical for ridding the cell of damaged
constituents (Figure 1).

The autophagy process depends on the formation of
different complexes on the membrane and can be divided
into a number of steps: initiation, nucleation, elongation,
autophagosome-lysosome fusion and degradation of sequestered
material (Ktistakis and Tooze, 2016; Galluzzi et al., 2017;
Lahiri et al., 2019). The Atg1/ULK1 complex, which is
regulated by mTOR and AMPK, initiates the formation of a
complex that regulates phagophore membrane nucleation at the
endoplasmic reticulum and possibly other membrane enclosed
organelles (Carlsson and Simonsen, 2015). The ATG1/ULK1
complex further activates the phosphatidylinositol 3-kinase
(PI3K) complex through a series of phosphorylation events,
which incorporates phosphatidylinositol 3-phosphate into the
phagophore to form an autophagosome (Ktistakis et al., 2014).
Two conjugation reactions are critical for the elongation of the
autophagosome and closure. First, the conjugation of ATG12 to
ATG5, and its interacting partner ATG16L1, via the ubiquitin-
conjugation like enzymes ATG7 and ATG10, generates an ATG5-
12/16L1 complex that is required for mediating the linkage
of ATG8/LC3/GABARAP protein family to the autophagosome
membrane (Nakatogawa, 2013; Lahiri et al., 2019). Following
cleavage of pro-ATG8/LC3/GABARAP by the ATG4 family
of proteases, and a two-step conjugation reaction requiring
ATG3 and ATG7, the cleaved form of ATG8/LC3/GABARAP
is anchored to phosphatidylethanolamine (PE) in the inner and
outer autophagosome membrane. ATG8-PE/LC3-GABARAP
can also be removed from the autophagosome membrane by
the ATG4 family of proteins, although the relevance of this
removal in mammalian cells is not clear (Kauffman et al.,
2018; Agrotis et al., 2019). Recent data seems to suggest
that ATG8-PE/LC3/GABARAP-II is required for late stages of
autophagy (fusion and degradation of inner autophagosomal
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FIGURE 1 | Autophagy regulators and functions associated with anti-aging effects. Different cellular components can be degraded by either non-selective or
selective autophagy. These forms of autophagy are regulated by PI3K, mTOR, and AMPK, as well as the transcription factors TFEB and FOXO, which are
accountable for the transcription of many genes involved in the autophagy process. (A) The different steps of non-selective autophagy. Upon autophagy initiation, a
phagophore is formed and expanded, thereby producing an autophagosome. The matured phagosome fuses with the lysosome, initiating degradation of the
autophagosome’s inner membrane. Cellular components captured within are subsequently degraded and released into the cytoplasm. Autophagy occurs under
basal conditions in the cell, but can be up-regulated during stress. The autophagy process is inefficient during aging. (B) A lifespan curve illustrating the positive
effects of enhancing autophagy during aging to improve the recycling of different cellular components, extending lifespan and healthspan. Anti-aging effects of
autophagy up-regulation have been demonstrated in several model organisms. It has been shown in a number of studies that the lifespan of long-lived mutants is

(Continued)
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FIGURE 1 | Continued
reduced upon down-regulation of autophagy. In addition, there are a few critical studies showing that up-regulation of autophagy by overexpression of one of the
autophagy genes extends lifespan. (C) An illustrative diagram demonstrating the negative regulation of autophagy by PI3K/AKT and mTORC1, and the positive
modulation of autophagy by AMPK via effects on the autophagy complexes ULK and VPS34. Phagophore expansion leads to the engulfment of various cellular
components, such as ribosomes, protein aggregates and lipids, via selective as well as non-selective autophagy. In addition, autophagy plays an important role in
the DNA damage response and the nuclear-associated genes, TFEB and FOXO, play important roles in regulating autophagy. (D) Defective mitochondria are cleared
by the cell through mitophagy. This is the process whereby damaged depolarized mitochondria can be degraded by the PINK1-Parkin pathway, which is
ubiquitin-dependent. In cells with healthy mitochondria, PINK1 is continuously degraded, while Parkin is in the cytoplasm. Upon stress, PINK1 is stabilized on the
outer mitochondrial membrane, where it phosphorylates ubiquitin and E3 ubiquitin ligase Parkin. Once Parkin is recruited to the mitochondria, it then ubiquitinates
some of the outer membrane mitochondrial proteins. These polyubiquitin K63-linked chains are phosphorylated, creating a degradative signal for autophagy.
Receptor proteins involved in this pathway include NDP52 and TAX1BP1. These proteins recognize phosphorylated polyubiquitin chains and link damaged
mitochondria to LC3-II. Another mechanism for mitochondrial degradation involves receptor-mediated autophagy by BNIP3, NIX and FUNDC1. These receptors also
interact with LC3 via the LIR domain and target depolarized mitochondria for degradation. For mitophagy to occur, damaged mitochondria must be separated by
fission. Healthy mitochondria are essential for cellular ATP production and the maintenance of cellular energy homeostasis. (E) The ribophagy receptor NUFIP1
mediates degradation of ribosomes (Wyant et al., 2018). (F) Protein aggregates are ubiquitinated and degraded by autophagy with the help of the autophagy
receptors NBR1 and SQSTM1.

membrane) (Nguyen et al., 2016; Tsuboyama et al., 2016). In
addition, ATG8/LC3/GABARAP can bind to selective autophagy
receptors, such as SQSTM1/p62, that bind to ubiquitinated
proteins and organelles to mediate selective cargo degradation
(Kirkin, 2019). Membrane specific LC3-II and p62 are the most
commonly used autophagy markers (Klionsky et al., 2012).
Once formed, autophagosomes fuse with lysosomes to form
autophagolysosomes (Nakamura and Yoshimori, 2017). It is
in this latter structure that unwanted cellular components are
degraded by acidic lysosomal hydrolases. Autophagy is a highly
coordinated and dynamic process that is tightly controlled by
post-translational regulation in a spatio-temporal manner (Botti-
Millet et al., 2016; Pengo et al., 2017; Delorme-Axford and
Klionsky, 2018), and perturbation in any step can lead to the
accumulation of undigested material and aggregates.

AUTOPHAGY REGULATORS AND
DOWN-STREAM EFFECTORS AND
THEIR LINKS TO AGING

Various cellular energy and metabolic sensors act as major
regulators of autophagy, with their coordinated action leading
to different autophagy activities, thereby maintaining cellular
homeostasis (Table 1). Activated AMP kinase (AMPK) induces
autophagy in response to low ATP/AMP cellular energy status.
Several underlying mechanisms have been described for AMPK-
mediated autophagy up-regulation, such as phosphorylation
of ACSS2 (acetyl-CoA synthetase short-chain family member
2). AMPK can also alter autophagy via induction of TFEB
(transcription factor EB)-mediated transcription of lysosomal
and autophagy genes (Li X. et al., 2017) and via inhibition of
the TOR pathway (Saxton and Sabatini, 2017). Furthermore,
AMPK phosphorylates BECN1 and PIK3C3/VPC34, as well
ULK1, to stimulate autophagic function (Hardie et al., 2016).
Overexpression of AMPK in the Drosophila nervous system
induces autophagy in the brain and cell non-autonomously in the
intestine, resulting in lifespan extension (Ulgherait et al., 2014).
AMPK is a complex sensor of cellular energy status and can be
activated genetically, or pharmacologically by metformin, leading
to lifespan extension in organisms ranging from yeast to mice

(Pryor and Cabreiro, 2015; Salminen et al., 2016). Detailed worm
studies uncovered metformin-induced alterations of microbial
metabolism (Cabreiro et al., 2013), specifically the production of
bacterial agmatine that regulates lipid metabolism and promotes
lifespan extension (Pryor et al., 2019).

Another major autophagy regulator is mTORC1 (mTOR
complex 1), which under nutrient-rich conditions, promotes
growth and inhibits autophagy. This occurs through inhibitory
phosphorylation of ULK1, and of the PIK3C3/VPS34 kinase
complex, as well as by phosphorylation of TFEB (the lysosomal
biogenesis transcription factor), leading to its cytosolic
localization and block in transcriptional activity (Kim and
Guan, 2019). Moderate inhibition of the mTOR pathway and
its downstream effectors, such as S6K, either genetically or
pharmacologically by rapamycin, is one of the most well studied
anti-aging interventions. However, not all of its effects are
mediated exclusively by increased autophagy, and lower protein
synthesis is another pro-longevity effect of decreased mTOR
signaling (Bjedov et al., 2010; Castillo-Quan et al., 2015; Saxton
and Sabatini, 2017; Hansen et al., 2018).

In addition to amino acid sensing, saturated and unsaturated
free fatty acids have also been shown to activate the autophagy
process. This is most likely because circulating free fatty acids are
abundant during starvation, which is the major autophagy trigger
(Papsdorf and Brunet, 2019). Supplementation of food with ω-3
PUFA arachidonic acid (AA) or dihomo-γ-linolenic acid (DGLA)
induces autophagy and extends lifespan in Caenorhabditis
elegans (O’Rourke et al., 2013; Bustos and Partridge, 2017).
In addition, α-linolenic acid induces autophagy in mammalian
cells (O’Rourke et al., 2013). There is currently an increasing
interest in the role of lipids in aging. Lipids that extend
lifespan are mono-unsaturated fatty acids (MUFAs), such as oleic
acid, cis-vaccenic acid and palmitoleic acid; albeit the longevity
mechanism is linked specifically to modifiers of trimethylated
lysine 4 on histone H3 (H3K4me3). This demonstrates an
interesting link between lipids and chromatin (Han et al., 2017).
However, the specific contribution of autophagy induction to
the effects of these lipids is still unknown. Another important
anti-aging observation is that in germline-less glp-1 mutant
worms, lacking the human ortholog of NOTCH1, longevity is
mediated through the intricate interaction of increased lysosomal
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TABLE 1 | Autophagy regulators and down-stream effectors.

Autophagy
regulator

Organism Longevity Blocked by autophagy
impairment?

Down-stream effectors and
mechanisms

References

mTOR Caenorhabditis
elegans

+∼20% (mean lifespan)
daf-15/Raptor

Blocked by bec1 RNAi GFP::LGG1 puncta used to
measure autophagy increase in
daf15/Raptor RNAi worms

Hansen et al., 2008

Drosophila
melanogaster

+∼13% (median lifespan)
in muscle overexpressing
4E-BP

N.D. FOXO/4E-BP regulate
proteostasis via autophagy

Demontis and Perrimon,
2010

AMPK Drosophila
melanogaster

Lifespan extension upon
adult neuronal AMPK
overexpression

Blocked by Atg1 RNAi Overexpression of Atg1 in adult
neurons using elavGS driver
extends lifespan and increases
autophagy in the brain and the
gut. Decreased insulin
signalling associates with
lifespan extension

Ulgherait et al., 2014

Dietary
restriction

Saccharomyces
cerevisiae

+∼100% (mean
chronological lifespan)

Chronological lifespan
extension blocked in
1atgl,1atg2,1atg7, and
1atg8 strains

Autophagy promotes
mitochondrial respiration under
dietary restriction in
chronological lifespan

Aris et al., 2013

Caenorhabditis
elegans

+∼21% (mean lifespan in
eat2 mutant)

Lifespan extension is
dependent on vps34, bed,
unc51, and atg7

Lifespan extension is
dependent on the transcription
factor PHA4/FOXA. Nuclear
receptor NHR62 regulates
DR-induced autophagy

Jia and Levine, 2007;
Hansen et al., 2008; Toth
et al., 2008; Heestand
et al., 2013; Gelino et al.,
2016

IIS Caenorhabditis
elegans

+∼100% (mean lifespan) in
daf2

Lifespan extension
dependent on bec1/Beclin
and atg18

Autophagy increase
independent on daf16/FOXO,
but daf16/FOXO is required for
lifespan extension of daf2
mutants

Melendez et al., 2003;
Hansen et al., 2008; Toth
et al., 2008

N.D., not determined.

lipase LIPL-4 and up-regulation of autophagy (Wang et al.,
2008; Lapierre et al., 2011; Hansen et al., 2018). LIPL-4 lipase
liberates a MUFA, oleoylethanolamide, which mediates longevity
effects by binding to lysosomal lipid chaperone LBP-8. This
in turn leads to its nuclear localization and activation of the
nuclear hormone receptors NHR-80 and NHR-49 (Folick et al.,
2015). Taken together, these findings draw attention to the
connection between autophagy, lipids and aging. They also
demonstrate that autophagy can be regulated by certain fatty
acid species, and vice versa. Indeed, active autophagy can alter
cellular lipid composition through the activity of lysosomal
lipases (Bustos and Partridge, 2017; Papsdorf and Brunet, 2019).
Because autophagy is a degradative process, it must occur
in moderation and in a coordinated manner. For instance,
excessive lipophagy can liberate too many fatty acids from
membrane degradation, which if not stored in lipid droplets,
can lead to acylcarnitine accumulation and mitochondrial
uncoupling and dysfunction (Nguyen and Olzmann, 2017). In
addition, lipid alterations can also affect autophagic vesicular
fusion (Koga et al., 2010). Clearly, more research on the
interaction between autophagy, various lipid species, and aging
is required. Particularly because of the pleiotropic role of
lipids, this interaction can impact energy storage, signalling and
transcription, as well as membrane composition and fluidity.
Increasing proportions of unsaturated lipids in the membrane
correlate with enhanced fluidity, but also increase the risk of
lipid peroxidation, which is associated with reduced lifespan in

worms and in several mammals (Shmookler Reis et al., 2011;
Jove et al., 2013).

Overall, there is a clear link between energy sensors,
nutrients, and nutrient signaling pathways and autophagy.
Conversely, autophagy can influence nutrient signaling through
liberation of degraded molecules, thus influencing cellular health
status (Lahiri et al., 2019). Given that dietary restriction and
modulation of nutrient signaling pathways are major pro-
longevity interventions (Fontana et al., 2010; Fontana and
Partridge, 2015), understanding how autophagy can be modified
specifically to alter the metabolic profile of an individual for
anti-aging purposes is an essential goal.

TRANSCRIPTIONAL CONTROL OF
AUTOPHAGY AND AGING

Several transcription factors are regulators of autophagy, TFEB
(transcription factor EB) being one of the principal ones
responsible for the coordination and expression of autophagy
genes and lysosomal hydrolases. Overexpression of the TFEB
ortholog HLH-30 was shown to increase lifespan in worms,
with the extension being dependent on its nuclear localization
(Lapierre et al., 2013). Another key transcription factor that
regulates autophagy is FOXO (forkhead box class O), which
is implicated in nearly all anti-aging interventions (Kenyon,
2010; Tullet, 2015; Martins et al., 2016). It hence became
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a prime pharmacological anti-aging target (Cheng, 2019).
When unphosphorylated in the nucleus, FOXO activates the
transcription of several autophagy genes (Mammucari et al.,
2007; Zhao et al., 2007). Conversely, when phosphorylated in
the cytoplasm it interacts with autophagy proteins (Cheng,
2019). In addition, autophagy directly and indirectly mediates
FOXO degradation, providing a negative feedback loop, limiting
dangerous excessive autophagic degradation (Webb and Brunet,
2014; Fitzwalter et al., 2018; Cheng, 2019). Interestingly, the
FOXO3A variant is one of the few genes associated with longevity
in human centenarians (Flachsbart et al., 2009). However, the
precise biological effects associated with these FOXO variants
are unknown. Another interesting transcriptional regulator of
autophagy is p53. When in the cytosol, p53 promotes autophagy
suppression, while in the nucleus it induces transcription of
autophagy genes (Yee et al., 2009; Kenzelmann Broz et al.,
2013). This tumor suppressor gene is one of the most commonly
mutated cancer genes and can protect against cancer in mice
when carefully overexpressed under endogenous control in a p53
overexpressor strain called “super p53” (Garcia-Cao et al., 2002).
It also extends lifespan if combined with Ink4/Arf overexpression
(Matheu et al., 2007). The effect of this “super p53” is in stark
contrast to overexpression of constitutively active p53 under a
heterologous promoter. This triggers excessive apoptosis, and
although protecting mice from cancer, it accelerates the aging
phenotype, most likely owing to depletion of the stem cell pools
(Tyner et al., 2002; Finkel et al., 2007).

Given that autophagy is induced by these very different
transcription factors strongly suggests that autophagy is a critical
tool for dealing with most forms of stress. However, any excessive
autophagy may be detrimental and cause cell death, given that it is
a degradative process requiring moderate induction (Kang et al.,
2007; Scott et al., 2007).

EPIGENETIC CONTROL OF AUTOPHAGY
AND AGING

As described earlier, autophagy is initially triggered by post-
translational protein modifications in the cytosol, and can
also be regulated at the transcriptional level by various
transcription factors. However, it can additionally be regulated
at the epigenetic level (Fullgrabe et al., 2014; Lapierre et al.,
2015; Baek and Kim, 2017). It is proposed that under
prolonged autophagy induction, transcription factors help
sustain autophagic flux, while further prolongation entails
epigenetic changes that ensure that autophagy does not become
lethal (Fullgrabe et al., 2013, 2014).

In addition to potentially preventing autophagy from going
awry, it was proposed that an epigenetic regulation of the
autophagic process could perhaps also lead to a memory
effect enabling a quicker response to subsequent starvation
events (Fullgrabe et al., 2014). “Memory effects” for longevity,
transmitted across three generations, have been shown in
C. elegans having lower H3K4me3 activity, owing to mutations
in the corresponding methylation complex. Transgenerational
inheritance is not a common feature of long-lived mutants and

it does not occur in long-lived daf-2 mutant worms, which have
decreased IIS pathway owing to a mutation in the insulin receptor
homolog daf-2 (Greer et al., 2011). There is an association
between autophagy induction and downregulation of H3K4me3
and H4K16ac (Fullgrabe et al., 2013). Increased autophagy is
often linked to deacetylation, particularly of H4K16, which is
mediated by Sirt1, and accompanied by the transcription of
autophagy genes (Fullgrabe et al., 2014). Overexpression of Sirt1
is a well-studied putative anti-aging intervention (Lopez-Otin
et al., 2013), again highlighting the intriguing link between
autophagy and longevity. In general, different autophagy stimuli
lead to deacetylation of H4K16 (Baek and Kim, 2017). Also
LC3/Atg8 is deacetylated by Sirt1 and translocated to the cytosol
upon autophagy initiation (Huang et al., 2015).

Another epigenetic alteration linked to autophagy is H3R17,
resulting from the coactivation of TFEB by CARM1 (Shin et al.,
2016). Autophagy can be suppressed by some of the common
epigenetic changes such as G9a-mediated H3K9 dimethylation
(Artal-Martinez de Narvajas et al., 2013) and silencing histone
mark H3K27 trimethylation via EZH2 (Enhancer of Zest
Homologue2) (Wei et al., 2015). Interestingly, H3K27 is linked
to aging, albeit evolutionary conservation of this remains to be
confirmed. Loss of chromatin repression was observed during
aging in species from C. elegans to humans (Bennett-Baker et al.,
2003). However, while an increase in H3K27me3 by RNAi against
UTX-1 demethylase extends lifespan in worms (Jin et al., 2011;
Maures et al., 2011), it is a decrease in H3K27me3 in flies by
mutations in PRC2 components E(z) and ESC, that promotes
longevity (Siebold et al., 2010). Thus, the intriguing relationship
between autophagy and epigenetics has the potential to provide
invaluable insights into the aging process itself.

Collectively, there are numerous genetic and epigenetic
autophagy regulators, most of which have already been
implicated in aging. Targeting these offers numerous possibilities
for modulating autophagy to improve health in older age.
However, many of these autophagy regulators have pleiotropic
effects, implying that any potential treatments need to be
carefully evaluated.

AUTOPHAGY AS A COMMON
DENOMINATOR OF ANTI-AGING
INTERVENTIONS

Aging is accompanied by progressive decline of autophagy in
many organisms (Hansen et al., 2018). A reduction in autophagy
during aging was demonstrated in a study that carefully examined
autophagy in different tissues throughout adulthood of long-lived
daf-2 and glp-1 C. elegans mutants, and showed that intestinal
autophagy inhibition abolishes longevity only in glp-1 mutants
(Chang et al., 2017). Mice deficient for essential autophagy
genes, such as atg5, atg7 or atg12, are neonatal lethal and die
within 1 day due to failure to adapt to starvation and from
a suckling defect (Kuma et al., 2017). Moreover, this lethality
can be rescued by the neuron-specific expression of ATG5
(Yoshii et al., 2016). Neuronal and glial specific deletion of either
atg5 or atg7 results in viable and short-lived mice displaying
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neuronal protein accumulation and neurodegeneration (Hara
et al., 2006; Komatsu et al., 2006). This highlights the importance
of autophagy in removing damaged proteins in non-dividing
neuronal tissue, and the potential of therapeutic autophagy
enhancement in neurodegenerative disease (Menzies et al., 2017;
Scrivo et al., 2018).

Evidence for the role of autophagy in aging was first shown in
daf-2 long-lived worms, where RNAi-mediated downregulation
of the autophagy gene bec-1 completely abrogated their
pronounced longevity (Melendez et al., 2003). Since this
discovery, dependence on autophagy enhancement has been
demonstrated in nearly all longevity-promoting interventions.
For instance, lifespan extension by dietary restriction, mTOR
inhibition, AMPK up-regulation, mitochondrial mutations, and
the above mentioned germline glp-1 mutation, all require
functional autophagy for lifespan extension (Toth et al., 2008;
Hansen et al., 2018). In all these long-lived mutants, lessening
autophagy by RNAi returns lifespan toward wild type levels.
However, controls treated with similar autophagy-reducing
RNAi interventions do not display altered longevity, suggesting
that the residual autophagy levels are sufficient to maintain
normal lifespan. It is worth noting that the nutrient-sensing
pathways implicated in longevity have pleiotropic effects on
metabolism, and often, under conditions when autophagy is
up-regulated, this also impacts on other anti-aging processes
such translation. It is thus challenging to fully evaluate exact
contributions of different down-stream effectors on overall
longevity. Another intriguing finding is that if autophagy is
inhibited in neurons of post-reproductive adult worms, by
targeting genes involved in the early stage of the autophagy
process such as bec-1, this results in an extension in lifespan
(Wilhelm et al., 2017). One plausible explanation for this
is that if aged worms have impaired autophagy flux in the
neuronal tissues, then inhibiting autophagy initiation stops
clogging the system even further, preventing neuronal decline
(Wilhelm and Richly, 2018). Another example where inhibiting
autophagy is beneficial is in the intestine of the worm,
where this approach limits conversion of intestinal biomass
to yolk, thereby preventing age-related visceral pathologies
(Ezcurra et al., 2018). This suggests that, rather than being
a result of age-associated “wear and tear,” some pathologies
may result from a precise genetically-driven biological program
(Ezcurra et al., 2018).

This detrimental effect of autophagy late in life has only been
observed in worms. It remains to be investigated if autophagy
behaves similarly as an antagonistic pleiotropic process in
mammals, being beneficial in the young, but detrimental in the
aged organism. In this case, interventions to enhance autophagy
to improve healthspan may need to be initiated early to prevent
tissue deterioration, while later in life once the host’s autophagic
machinery has already begun to fail, it should be carefully
considered whether autophagy needs to be enhanced or inhibited.
However, it should be noted that in mice, the autophagy
activating drug rapamycin is beneficial once administered later
in life (Harrison et al., 2009), suggesting that either in mammals
autophagy activation is beneficial irrespective of age, unlike in
worms (Wilhelm et al., 2017; Wilhelm and Richly, 2018), or

that rapamycin-mediated downregulation of translation is an
important effect for healthspan benefits in the aged mice.

In order to improve health during aging, understanding those
alterations that increase lifespan are essential, as they directly
demonstrate the importance of a given paradigm in aging.
Manipulations that increase autophagy directly are valuable but
sparse, and complicated by the fact that that numerous autophagy
genes are involved in different stages of this multistep process.
Moreover, overexpression of only one autophagy gene does
not necessarily trigger autophagy. Nevertheless, there are some
very valuable exceptions that directly show how important this
process is in aging (Hansen et al., 2018; Maruzs et al., 2019).
For instance, overexpression of Atg8a in neurons (Simonsen
et al., 2008), as well as Atg1 overexpression in neuronal tissue
(Ulgherait et al., 2014) or muscle (Bai et al., 2013), extends
lifespan in Drosophila. In addition, mammalian lifespan was
extended by an ubiquitous increase of Atg5 in mice, and was
accompanied by improved motor function (Pyo et al., 2013).
Moreover, knock-in of Becn1 bearing the Phe121Ala mutation,
which interrupts its interaction with its negative regulator BCL2,
leads to increased autophagy flux and longevity in both male
and female mice (Fernandez et al., 2018). These observations are
very important to elucidate how an upregulation in autophagy
leads directly to benefits at the organismal level. Further studies
of autophagy manipulation in different tissues will help to
elucidate further tissue-specific effects and the impact of these on
organismal aging (Hansen et al., 2018). In particular, combining
longevity experiments with healthspan parameters, such as motor
function, cardiovascular deterioration, neuronal loss and insulin
sensitivity, will facilitate the discovery of pharmacological targets
for disease prevention and treatment.

AUTOPHAGY – A BOOST FOR
PROTEOSTASIS

The role of autophagy in delaying aging is commonly attributed
to its capacity to degrade damaged proteins and contribute to
cellular proteostasis (Hansen et al., 2018). Loss of proteostasis
is a prominent feature of aging and a major risk-factor for
age-related neurodegenerative disorders such as Alzheimer’s
and Parkinson’s diseases (Lopez-Otin et al., 2013; Kaushik and
Cuervo, 2015; Sands et al., 2017; Hipp et al., 2019). A recent
detailed proteomic profiling in worms revealed that a third
of the proteome changes in abundance by at least two or
threefold with aging (Walther et al., 2015). Interestingly, long-
lived daf-2 mutant worms have increased proteasome subunits,
but not autophagy proteins, and they maintain proteostasis by
sequestering problematic proteins into less toxic chaperone-
containing aggregates (Walther et al., 2015). This is in accordance
with findings in the neurodegeneration field suggesting that,
if unfolded proteins cannot be re-folded, or degraded, then
the resulting unfolded soluble oligomeric proteins are far more
toxic to the cell than insoluble aggregates (Cohen et al.,
2006; Hipp et al., 2019). Consistent with this, reduced insulin
signaling in long-lived insulin-like growth factor 1 (IGF-1)
heterozygous mice are protected against amyloid β-peptide
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(Aβ) proteotoxicity by favoring a shift from toxic oligomers
toward less toxic aggregates (Cohen et al., 2009). It should be
noted, however, that the relationship between insulin signaling
and neurodegenerative disease is very complex and not well
understood (Ribe and Lovestone, 2016).

Proteostastic mechanisms consist of protein synthesis, protein
folding and protein degradation, all of which are interconnected
in order to achieve a balanced proteome and robust stress
responses when required (Kaushik and Cuervo, 2015; Hipp
et al., 2019). The protein synthesis pathway, mTOR, has a well
described effect on autophagy inhibition, and has recently also
been linked to the proteasome. It has been shown to both activate
it via the nuclear factor erythroid 2-related factor 1 (Nrf1) to
balance active translation (Zhang et al., 2014), and inhibit the
proteasome in a different experimental set up (Zhao et al., 2015).
mTOR inhibition can relieve proteotoxic stress by decreasing
translation, and specifically, by allowing translation of additional
chaperones (Su et al., 2016). Decreasing translation through
mutations in mTOR pathway genes, such as S6K (Selman et al.,
2009), or by or overexpression of the mTOR suppressor TSC1/2
(Kapahi et al., 2004), are well-described anti-aging interventions
for which several underlying mechanisms are suggested. For
example, reduced translation extends longevity by reducing
the protein load for the proteostatic machinery. Furthermore,
the reduction in energy expenditure associated with reduced
translation can be invested into cell maintenance processes.
Moreover, differential translation may lead to stress resilience
and delayed aging (Mehta et al., 2010; Steffen and Dillin,
2016). In addition, it appears that enhancement of proteostasis,
either by improved protein folding or by degradation, is also
a potentially successful anti-aging strategy (Lopez-Otin et al.,
2013). For example, overexpression of the heat shock factor HSF-
1 has repeatedly been shown to extend lifespan in worms (Hsu
et al., 2003; Li J. et al., 2017). Additionally, overexpression of
the proteasomal subunit Rpn6, which stabilizes the 20S core
particle and 19S regulatory particle, can induce proteasome
activity and extend lifespan in C. elegans. This is an exciting
finding as the proteasome has numerous subunits and this
suggests that targeting only one key subunit is sufficient to
intensify proteasomal degradation (Vilchez et al., 2012). In
Drosophila, overexpressing the β5 subunit of the 20S in the
whole organism (Nguyen et al., 2019), or just in neurons,
extends lifespan (Munkacsy et al., 2019). While whole-body
β5 subunit overexpression increases proteostasis in muscle
(Nguyen et al., 2019), neuron-specific overexpression prevents
age-related decline in learning and memory (Munkacsy et al.,
2019). Enhancement of autophagy by overexpression of FOXO
transcription factor in muscle tissues in Drosophila is beneficial
as well (Demontis and Perrimon, 2010). This tissue-specific
upregulation of autophagy in muscle tissues mediates a reduction
in aggregate formation during aging, with an improvement in
proteostasis in the whole organism, as well as increased longevity
(Demontis and Perrimon, 2010).

Autophagy function is highly complementary to that of the
proteasome, which targets small short-lived proteins. Autophagy
degrades large and long-lived proteins, protein aggregates, entire
defective organelles, and essentially any cellular material that is

too bulky for proteasomal degradation (Dikic, 2017; Kocaturk
and Gozuacik, 2018). Interestingly, results in mammalian cells
suggest that there is significant crosstalk and a degree of
compensation between these two degradative processes. If the
proteasome is inhibited, then autophagy enhances to compensate
(Kocaturk and Gozuacik, 2018). However, there is less evidence
to support a role for the proteasome in compensating for a block
in autophagy. This is likely a result of the fact that the proteasome
cannot accomplish all autophagic functions and cannot degrade
organelles (Dikic, 2017; Kirkin, 2019). A common characteristic
of these two degradative pathways is that they both recognize
ubiquitinated substrates. Autophagy often degrades aggregates
linked to K63-based polyubiquitin chains, while substrates for
the proteasome mainly have K48-polyubiquitin chains (Kocaturk
and Gozuacik, 2018). However, it should be noted that the
specificity of autophagy toward K63 ubiquitinated substrates is
not that clear. For example, in autophagy-deficient mice all types
of ubiquitin chains accumulate (Riley et al., 2010).

AUTOPHAGY – CYTOPLASMIC
INFLUENCE ON DNA DAMAGE

Aging is accompanied by accumulation of damage and damaged
organelles, among which damaged DNA is the most strongly
linked to aging. Various syndromes originating from deficiency in
DNA repair enzymes recapitulate some of the aging phenotypes
and are models of accelerated aging. Examples include Werner
and Bloom syndrome, which are caused by mutations in the
WRN and BLM genes, respectively, both of which are RecQ-
like helicases (Carrero et al., 2016). Cockayne syndrome is
another progeria model deficient in ERCC6 or ERCC8, while
Hutchinson-Gilford progeria bears a mutation in laminin A
gene (LMNA), whose product is a key structural component of
nuclear lamina. In addition, defective DNA repair associated with
mutations in genes such as Ku70, Ku80, Ercc1, and Xpd leads
to shorter lifespan in mice (Vermeij et al., 2016). This strongly
suggests a role for DNA damage in aging (Vermeij et al., 2016).

Interestingly, autophagy affects DNA repair, a finding that
came as a surprise given that autophagy is mainly a cytoplasmic
process. Initially it was reported that mammalian cells lacking
beclin1 or atg5 genes have increased genomic instability
(Karantza-Wadsworth et al., 2007; Mathew et al., 2007). Since,
autophagy was linked to different components of the DNA
Damage Response (DDR), as we discuss below, this strengthens
the impact of autophagy on genomic integrity and thus aging
(Eliopoulos et al., 2016; Hewitt and Korolchuk, 2017).

Maintenance of genomic stability is key for survival. Therefore
a complex DDR, with the ability to detect various types of
DNA aberrations and engage appropriate DNA repair systems,
has evolved (Ciccia and Elledge, 2010). DNA lesions, through
post-translational histone modifications, trigger relaxation of the
chromatin, and inhibit replication and transcription, in order to
promote DNA repair instead (Jeggo et al., 2017). For instance,
removal of HP1α (heterochromatin protein 1 alpha) from
DSB sites allows formation of Rad51 nucleoprotein filaments
and successful homologous recombination (HR). Interestingly,
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HP1α is ubiquitinated by RAD6, which then triggers autophagic
degradation of HP1α and loosening of chromatin compaction for
successful double strand break (DSB) repair in mammalian cells
(Chen et al., 2015). DSBs are bound by MRN (Mre11-Rad50-
Nbs1) and then ATM (ataxia-telangiectasia mutated) kinase,
which becomes autophosphorylated and activated, ultimately
leading to either homologous recombination (HR) repair, that
can occur exclusively in G2/S phase of the cell cycle, or non-
homologous end joining (NHEJ). The latter functions in all
phases of the cell cycle (Ciccia and Elledge, 2010). Although
NHEJ is traditionally considered more erroneous than HR, it
has been shown that the increased DNA resection required
in different types of NHEJ and HR correlates well with the
level of mutations (Rodgers and McVey, 2016). For instance,
HR can be mutagenic when hyper-resection by Rad52 mediates
single-strand annealing-type of HR (Ochs et al., 2016). Single
strand breaks are recognized by RPA (replication protein A),
which recruits ATR (ataxia-telangiectasia and Rad3 related)
kinase, promoting phosphorylation of p53 and Chk1 as part
of the irradiation response. In both ATM-Chk2 and ATR-Chk1
axes of repair, among which cross talk exists, one of the key
initial events for DDR is phosphorylation of γH2AX by ATM,
ATR or DNA-PKcs (Ciccia and Elledge, 2010; Blackford and
Jackson, 2017). In addition to DSB and single strand break
(SSB) repair, base excision repair (BER), and nucleotide excision
repair (NER) are scanning DNA for different types of damage.
Mismatches occurring during replication are fixed by mismatch
repair (MMR), while specialized translesion synthesis (TLS)
polymerases tolerate damage and avoid replication fork stalling
(Ciccia and Elledge, 2010; Jeggo et al., 2017). As well as these
DNA damage sensors, mediators and effectors, a number of other
cellular responses are essential when timely DNA repair is not
achieved (Ciccia and Elledge, 2010). These include cell cycle
arrest, changes in energy and metabolism and initiation of cell
death. Interestingly, autophagic cell death in cells undergoing
a replicative crisis is critical for eliminating cells with genomic
instability (Nassour et al., 2019).

There is an increasing number of conceptually interesting
links between autophagy and DDR (Eliopoulos et al., 2016;
Hewitt and Korolchuk, 2017). For instance, valproic acid,
which is an autophagy stimulator and histone deacetylase
inhibitor, targeting HDACs Hda1 and Rpd3, limits DDR by
stimulating autophagic degradation of acetylated recombination
protein Sea2/CtIP. This confers DNA damage sensitivity –
an interesting finding linking acetylation, autophagy and DSB
repair (Robert et al., 2011). Genomic instability of autophagy-
deficient cells (Karantza-Wadsworth et al., 2007; Mathew et al.,
2007) is linked to compensatory upregulation of proteasomal
degradation, resulting in less phospho-Chk1 in response to
damage. Consequently HR is impaired, making these cells more
reliant on NHEJ (Liu et al., 2015). Chk1 is also a substrate for
CMA, and high levels of Chk1 accumulating in the nucleus
are equally detrimental to genome integrity, as shown when
CMA is inhibited and the MRN complex is destabilized (Park
et al., 2015). This highlights the fact that in DNA repair,
alterations in enzyme activity need to be subtle, and possibly
coordinated with other interacting proteins, otherwise repair

outcome is perturbed. Furthermore, it has been shown in the
hematopoietic system that increasing autophagy using rapamycin
is protective against radiation and induced HR and NHEJ (Lin
et al., 2015). Rapamycin-independent autophagy is also described
in yeast, where DNA damaging agents, acting through DDR
kinases Mec1/ATR, Tel1/ATM, and Rad53/CHEK2, induce a
novel type of autophagy, named genotoxin-induced targeted
autophagy, which relies on Atg11 (Eapen et al., 2017). Another
interesting DNA repair link involves the p62/SQSTM1 autophagy
receptor protein, which plays a role in proteasomal degradation
of ubiquitinated proteins (Liu et al., 2016). p62/SQSTM1-
dependent proteasomal degradation of recombination proteins
filamin A (FLNA) and RAD51 in the nucleus is excessive under
high levels of P62/SQSTM1. This occurs when the autophagic
degradation of p62 is impaired, leading to defective DNA repair
(Hewitt et al., 2016). A nuclear increase of p62 in autophagy-
deficient mammalian cells also inhibits the E3 ligase RNF168,
leading to deficient H2A ubiquitination, thereby thwarting
recruitment of both NHEJ and HR DNA repair enzymes to
the damaged sites (Wang et al., 2016). Inefficient p62-mediated
degradation of GATA4 transcription factor leads to induction
of cellular senescence, linking autophagy and senescence (Kang
et al., 2015). In summary, these findings demonstrate intriguing
connections between DNA and protein damage control, and
highlight the effect of low levels of nuclear p62 for preventing
genomic instability (Mathew et al., 2009). Above, we focused
on the links between DSB and SSB repair and the autophagy
process. However, BER, NER, and MMR are also associated
with autophagy, albeit to a lesser extent. Indeed, it was recently
reported that DNA damage, induced by 5-FU, is accompanied
by BER and MMR activation and repair, resulting in autophagy-
mediated cell death (SenGupta et al., 2013). In the presence of
a different cytotoxic chemical, 6-TG, MMR induces autophagy
via p53 (Zeng et al., 2007). Finally, in addition to the above
mentioned DDR proteins that are modulated by the autophagic
status of the cell, autophagy can result in the degradation of
entire micronuclei, which are chromosomal fragments that are
not incorporated into daughter cells, and which are common
markers of genotoxicity (Rello-Varona et al., 2012).

In conclusion, despite being a cytoplasmic process, autophagy
can affect numerous aspects of DNA repair. Moderate autophagy
enhancement appears to mainly exert positive effects on DDR.
It would therefore be interesting to examine whether lifespan in
long-lived autophagy mutants depends on DDR. Owing to the
complexity of DNA repair systems, overexpression of a single
enzyme does not necessarily enhance the entire type of repair,
similar to autophagy, making lifespan extension by genetic up-
regulation of DDR difficult to investigate. However, these types
of findings are particularly valuable for understanding aging,
and a few examples do exist. A large overexpression screen
in Drosophila uncovered that ubiquitous enhancement of mei-
9/XPF resulted in a consistent increase in longevity among tested
candidates genes (Shaposhnikov et al., 2015). Remarkably, an
extensive study of 18 rodent species revealed that DSB repair
co-evolves with longevity, not NER; the latter correlating with
sunlight exposure of different species, not their lifespan (Tian
et al., 2019). More specifically, it is five amino acids in SIRT6 that
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dictate the different activities of both HR and NHEJ-types of DSB
repair, and which are accountable for longevity (Tian et al., 2019).
Thus, it would be interesting to develop drugs that enhance DNA
repair, without inflicting DNA damage, as they may prove to be
effective anti-aging drugs.

DEGRADING CELLULAR ORGANELLES –
MITOPHAGY AND AGING

The precise role of mitochondria in aging is an interesting
and heavily debated topic. It is increasingly becoming apparent
that their degradation by mitophagy, whereby mitochondrial
number is regulated and damaged mitochondria recycled, is
important for aging and disease. Mitochondrial fission and
fusion are vital for the maintenance of mitochondrial shape
and health, and are regulated by MFN1/2, FIS1, DRP1, and
OPA1. For instance, under starvation conditions mitochondria
are protected from mitophagy; mitochondrial fusion results in
mitochondria predominantly in the elongated form, thwarting
their degradation (Gomes et al., 2011). On the other hand, it is key
that damaged parts of the mitochondria are separated through
a fission process. These non-functional mitochondria are then
degraded by ubiquitin-dependent pathways. Depolarization of
the mitochondrial membrane leads to accumulation of PINK1 on
the outer membrane, where it phosphorylates ubiquitin and the
E3 ubiquitin ligase PARKIN, leading to activation of PARKIN and
the ubiquitination of mitochondrial membrane proteins (Kane
et al., 2014; Koyano et al., 2014; Gladkova et al., 2018; Harper
et al., 2018; Palikaras et al., 2018). It is thought that selective
autophagy adaptors, NDP52 and TAX1BP1 bind to ubiquitinated
mitochondria, enabling their degradation by selective autophagy
(Lazarou et al., 2015). A recent paradigm shift has shown that for
various forms of selective autophagy, the autophagy adaptors lead
to recruitment of the autophagy initiation machinery, initiating
a cascade of autophagosome formation locally (Ravenhill et al.,
2019; Vargas et al., 2019; Zachari et al., 2019). Additionally, in
ubiquitin-independent mitophagy, mitochondria are linked to
the autophagosomes by BNIP3, FUNDC1 and NIX, which are
specific autophagy receptors. Enhancing mitophagy has emerged
as a promising therapeutic strategy in Parkinson’s disease and
other age-related disorders (Padmanabhan et al., 2019).

Mitochondria malfunction with age, leading to perturbations
in metabolic and energy homeostasis, releasing reactive oxygen
species (ROS) (Lopez-Otin et al., 2013; Munkacsy and Rea,
2014). Increases in ROS, causing molecular damage, have long
been considered important culprits in aging. However, careful
reassessment suggests that mutants displaying subtle increases
in ROS can be long-lived, while highly elevated ROS levels are
detrimental (Lopez-Otin et al., 2013; Ristow and Schmeisser,
2014). This is a hormesis effect, where low dose of a substance
has a positive stimulatory effect but, contrarily, high dose is toxic
(Gems and Partridge, 2008). ROS can be protective until a certain
threshold of damage is reached, owing to their role in signaling
and ability to trigger defense responses that result in increased
robustness and longevity. If this threshold is surpassed, then
the amount of DNA damage that occurs becomes toxic for the

organism and lifespan is shortened (Gems and Partridge, 2008;
Ristow and Schmeisser, 2014; Schieber and Chandel, 2014).

Unexpectedly, given the essential role of mitochondria in
physiological functions, it has been observed that mutations in
some mitochondrial subunits extend lifespan in worms (Feng
et al., 2001; Dillin et al., 2002), flies (Copeland et al., 2009)
and mice (Liu et al., 2005). Mutations in all mitochondrial
respiratory chain complex genes, except complex II, can extend
lifespan in C. elegans (Munkacsy and Rea, 2014). It was suggested
that this effect occurs as a result of an imbalance between
nuclear and mitochondrial encoded subunits, inducing the
mitochondrial unfolded protein (UPRmt) response. Furthermore,
it is thought that this does not occur in complex II mutants,
since it is the only complex that is exclusively encoded by
the nuclear genome (Houtkooper et al., 2013). Remarkably, the
triggering of the UPRmt in one tissue can be communicated
to another tissue, and this communication leads to enhanced
protection against organismal stress (Durieux et al., 2011;
Zhang et al., 2018). To fully explain the increased longevity
of mitochondrial mutants, in addition to induction of the
UPRmt, it was proposed that these mutants display enhanced
mitophagy, removing defective mitochondria and improving
cellular homeostasis. Indeed, an imbalance between mitophagy
and mitochondrial biogenesis plays an important role in aging in
C. elegans (Palikaras et al., 2015). Also, increasing mitochondrial
fission by overexpression of Drp1 in Drosophila enhances
mitophagy, maintains mitochondrial respiratory function during
aging and extends healthspan (Rana et al., 2017). Another
interesting observation linking autophagy and mitochondria
is that mitochondrial permeability determines the effect of
autophagy on lifespan (Zhou et al., 2019). More precisely, low
mitochondrial permeability is required for various autophagy-
mediated lifespan extension effects, while increased permeability
is detrimental to the organism (Zhou et al., 2019). In addition,
there is evidence to support ROS as secondary messengers,
not only as damaging agents. For example, mitochondrial ROS
produced by reversing electron transport leads to lifespan
extension in Drosophila (Scialò et al., 2016). Overall, it seems that
mild induction of stress responses, when damage appears to not
be overwhelming, is beneficial for aging, possibly by inducing
defense mechanisms and preparing the cell for any subsequent
damaging insults that may incur. However, as soon as the stress
threshold is exceeded, then either excessive damage, or the stress-
response pathway itself, may become detrimental and lead to
life-shortening consequences.

DRUGS TARGETING AUTOPHAGY FOR
BETTER HEALTH DURING AGING

One of the critical challenges in modern societies is to improve
health during aging. The steep increase in life expectancy seen
in populations over recent decades is recognized as a remarkable
accomplishment due to advancements in medicine, public health
and technology. However, this has been accompanied by a
greater number of individuals suffering from age-related diseases,
such as cancer and neurodegenerative disorders. Enhanced
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autophagy is a common mechanism among putative anti-aging
interventions, and a number of such drugs exist that are capable
of increasing the autophagic process (Table 2). This in turn
opens up promising clinical avenues to improve health in the
elderly, and to prevent the onset of diseases of old age through
pharmacologically-modulated autophagy (Partridge et al., 2018;
Campisi et al., 2019; Singh et al., 2019).

Autophagy has a complex relationship with cancer and
neurodegeneration (Jiang and Mizushima, 2014; Leidal et al.,
2018). Our understanding of the role of autophagy has improved
significantly from the study of a variety of genetically engineered
mouse models displaying a lack of autophagy, either from
Atg7 or Atg5 deletion, in combination with an oncogene
mutation KrasG12D, causing either pancreatic intraepithelial

neoplasia (PANIN) (Rosenfeldt et al., 2013) or liver adenoma
(Takamura et al., 2011). In accordance with the above-mentioned
findings, the autophagy-deficient cells suffer from genomic
instability (Karantza-Wadsworth et al., 2007; Mathew et al.,
2007). Critically, these benign early stage tumors never progress
into more malignant ones. This suggests that active autophagy
is required for further tumor transformation, most likely to
sustain tumor cell survival under stressful conditions owing
to lack of nutrients and hypoxia (Kimmelman and White,
2017; Poillet-Perez and White, 2019). It thus appears that
human cancers preserve autophagy function. This also points
to the fact that complete autophagy ablation in mouse models,
while providing a conceptually important insight into the role
of autophagy in cancer, may not represent the pathological

TABLE 2 | Compounds that increase autophagy with potential anti-ageing properties.

Compound Organism Longevity Blocked by autophagy
impairment?

Non-autophagic mechanism References

Rapamycin Caenorhabditis
elegans

+19% (mean lifespan) N.D. Requires an intact SKN-1/Nrf
transcription factor

Robida-Stubbs et al.,
2012

Drosophila
melanogaster

+15% (median lifespan) Lifespan extension blocked by
atg-5 RNAi

Reduces translation and
lifespan and also blocked by
overexpression of constitutively
active ds6k/S6K

Bjedov et al., 2010

Mice Lifespan extension when
started either early or late
in life. An optimal dose
with maximal lifespan
extension has not been
determined

N.D. Reduced S6K phosphorylation
is used as readout of mTORC1
inhibition

Harrison et al., 2009;
Miller et al., 2014

Torin 1 Drosophila
melanogaster

+60% (median lifespan)
of short lived controls

N.D. Autophagy activation
determined by lipidated
Atg8/LC3

N.D. Mason et al., 2018

Trehalose Caenorhabditis
elegans

+32% (mean lifespan) Lifespan extension is
dependent on LGG1/Atg8/LC3
and Beclin

Lifespan extension is also
dependent on the transcription
factor DAF16/FOXO

Honda et al., 2010; Seo
et al., 2018

Spermidine Saccharomyces
cerevisiae

Extends both
chronological and
replicative lifespan

Partial and
condition-dependent on Atg7

N.D. Eisenberg et al., 2009

Caenorhabditis
elegans

+15% (mean lifespan) Lifespan extension dependent
on bec-1/Beclin

N.D. Eisenberg et al., 2009

Drosophila
melanogaster

+30% (mean lifespan) Lifespan extension abolished in
flies lacking atg7

N.D. Eisenberg et al., 2009

Urolithin A Caenorhabditis
elegans

+45% (mean lifespan) Lifespan extension is
dependent on several genes
involved in macroautophagy
and mitophagy

Lifespan extension also
dependent on aak-2/AMPK
and skn-J/Nrf

Ryu et al., 2016

Valproic acid Caenorhabditis
elegans

+35% (mean lifespan) N.D. Increased DAF-16 nuclear
localization

Evason et al., 2008

Lithium Schizosaccharomyces
pombe

+10% (median
chronological lifespan)

N.D. Reduced translation Sofola-Adesakin et al.,
2014

Caenorhabditis
elegans

+46% (median lifespan) N.D. Changes in chromatin structure
and histone methylation

McColl et al., 2008

Drosophila
melanogaster

+16% (median lifespan) No change in lipidated
Atg8/LC3, not blocked by
heterozygous loss of atgl and
additive lifespan extension in
combination with rapamycin

Increased activation of the
redox and xenobiotic response
by CncC/Nrf2

Castillo-Quan et al.,
2016, 2019

N.D., not determined.
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landscape of the majority of advanced malignant tumors in
humans (Poillet-Perez and White, 2019).

Tumors require autophagy to provide the cell with key
metabolic intermediates, such as nucleotides and TCA
(tricarboxylic acid) cycle metabolites (Guo et al., 2016).
This highlights an aspect of tumor vulnerability, whereby
autophagy inhibition may be more harmful to tumor tissue
than normal healthy tissue. It should be noted that autophagy
in the surrounding tissue contributes to tumor growth. One
of the key metabolites provided by the host that promotes
tumor growth in the pancreas is arginine, which is degraded
in autophagy-deficient mice by liver secreted arginase 1
(ARG1) (Poillet-Perez et al., 2018). However, not all tumors
tested are arginine auxotrophs, and therefore sensitive to the
autophagy status of the host. Another example of the role of
autophagy in extra-tumoural tissue can be seen in stroma-
associated pancreatic stellate cells, which support pancreatic
ductal adenocarcinoma through autophagic alanine secretion
(Sousa et al., 2016). Overall, although autophagy can have both
tumor-promoting or -reducing effects, depending on the stage
of the tumor and its genetic makeup, it is autophagy inhibitors
such as hydroxychloroquine that have been primarily tested as
anti-cancer therapies, as they are expected to hinder growth in
advanced tumors (Poillet-Perez and White, 2019). However,
many cancer drugs, such as rapamycin, are autophagy activators.
Thus, careful evaluation of the role of autophagy in different
tumor types is required. In particular, the effect of autophagy
modulation in different drug combinations and regimes needs to
be studied in the context of tumor growth.

In the case of neurodegenerative disease, drugs enhancing
autophagy, rather than inhibiting, are the most studied. Most
misfolded proteins that are deposited in the brains of people
affected by neurodegenerative disorders, such as α-synuclein,
tau and huntingtin, are autophagy substrates (Menzies et al.,
2017). There is evidence that there is insufficient autophagy in
many neurodegenerative disorders, and that enhanced autophagy
may offer promising therapeutic benefits (Menzies et al., 2017).
However, if during aging or in disease, the autophagy process is
impaired at any stage, then further up-regulation of autophagy
pharmacologically will not aid in aggregate clearance. In keeping
with this, an in vitro study demonstrated that autophagy
enhancement by rapamycin, or due to starvation, surprisingly
can lead to increased toxicity (Tanik et al., 2013). We therefore
need to fully understand the role of autophagy, and how
perturbations in autophagy flux affect protein aggregation and
clearance in neurodegenerative disease. It also highlights the
need for more refined autophagy-modulating drugs that can
target different stages of the autophagy process. When using
autophagy altering drugs that affect other cellular processes,
such as in the case of rapamycin, which down-regulates
translation, then this additional effect of altered translation
on the disease progression should also be evaluated. In aging,
the differential rapamycin effects, including the inhibition of
translation, and activation of autophagy, are beneficial for
longevity (Bjedov et al., 2010), but this may not be the case
in disease-related situations. Enhancement of autophagy flux
thus offers a potential promising strategy for prevention of

neurodegenerative disorders, by improving neuronal proteostasis
and preventing cellular toxicity. However, different personalized
approaches may be required in terms of optimizing the effects
of autophagy modulation and minimizing negative pleiotropic
effects of pharmacological interventions.

Similar to neurodegeneration, enhanced autophagy has
proven to be an important pharmacological intervention in
models of aging. Autophagy can be increased upon inhibition
of growth pathways, which are also principal targets of cancer
therapy. Interestingly, some of the anti-cancer drugs, such as
rapamycin and the MEK/ERK inhibitor trametinib, have been
shown to exert pro-longevity effects (Castillo-Quan et al., 2015).
The very same nutrient-sensing/growth pathways that are highly
up-regulated in cancer, enabling uncontrollable growth of tumor
cells, can also promote health if mildly down-regulated to
inhibit nutrient-sensing in normal cells (Bjedov and Partridge,
2011; Campisi et al., 2019). Anti-cancer drugs are used in very
high concentrations for anti-cancer therapy, often causing side
effects. However, in stark contrast, when administered in very
low doses to normal non-transformed tissue, they promote
anti-aging and disease preventative effects (Bjedov et al., 2010;
Slack et al., 2015). It is important to note, however, that not
all anti-cancer drugs in small concentrations are expected to
improve health. Indeed, many are DNA-damaging agents, such as
temozolomide and carboplatin, with negative effects on genome
stability (Cheung-Ong et al., 2013). Moreover, as we refine
the tools and screening procedures to monitor the autophagic
process in healthy and diseased-tissue, it is likely that we will
uncover many more autophagy enhancers and inhibitors (Pengo
et al., 2018; Panda et al., 2019).

Autophagy activation can be achieved using two licensed
drugs that are used to treat epilepsy and mood disorders, namely
valproic acid and carbamazepine, as well as the mood-stabilizing
drug lithium (Sarkar et al., 2005; Schiebler et al., 2015; Kerr et al.,
2018). Valproic acid and lithium have proven anti-aging effects in
model organisms. All of these drugs have been linked to mTOR-
independent autophagy activation via reducing the recycling of
inositol, which in turn reduces inositol 1,4,5-trisphosphate (IP3),
disrupting the Beclin-Bcl-2 complex (Ravikumar et al., 2010).
Indeed, mTOR-independent autophagy was recently shown to
promote longevity and healthspan in mice (Fernandez et al.,
2018). Valproic acid has been shown to extend lifespan and
to reduce age-related locomotor decline in C. elegans (Evason
et al., 2008). Interestingly, while a clear epistatic mechanism
of action was not studied, it was observed that valproic acid
induces DAF-16/FOXO nuclear accumulation, which may in
turn regulate the transcription of autophagy genes (see above).
Additionally, the combination of optimal concentrations of
valproic acid and trimethadione, another anticonvulsant, had
additive effects in extending worm lifespan (Evason et al., 2008).
In mice, combinations of valproic acid and lithium retarded
the onset and severity of symptomatology, and prolonged the
lifespan of a mouse model of amyotrophic lateral sclerosis
(ALS) (Feng et al., 2008). Although the main lithium trial in
ALS patients was negative (Group et al., 2013), ALS is linked
to several different gene mutations, and therefore analysis of
genetically defined sub-groups of patients at earlier stages of
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disease may be necessary. Recent post-mortem analyses of the
cerebral cortex transcriptome of ALS patients revealed at least
three distinct molecular signatures in which patients could be
classified. Intriguingly, the most common molecular subtype
included aberrant expression of oxidative and proteostasis stress
responses, which included autophagy-related genes (Tam et al.,
2019). Therefore, in addition to genetic testing for common gene
mutations, a better understanding of the molecular basis of ALS
may lead to treatment stratification based upon disease molecular
signatures (Group et al., 2013).

The lifespan extending effects of lithium were first shown in
C. elegans (McColl et al., 2008) and have been confirmed in yeast
and flies (Sofola-Adesakin et al., 2014; Castillo-Quan et al., 2016).
In addition, increasing concentrations of lithium in the drinking
water have been linked to a reduction in all-cause mortality in
a Japanese population (Zarse et al., 2011). Interestingly, none
of these studies have tied the longevity properties of lithium to
increased autophagy. In yeast, the effects of lithium were linked to
reduced translation (Sofola-Adesakin et al., 2014), in C. elegans it
was associated with histone methylation and chromatin structure,
while in Drosophila it was shown to inhibit glycogen synthase
kinase-3 (GSK-3) activity and the transcriptional activation of
the cap’n’collar C (CncC)/Nrf2. The latter regulates redox and
xenobiotic metabolism (Castillo-Quan et al., 2016). Furthermore,
patients suffering from bipolar disorder treated with lithium
have longer telomeres, not only in comparison to non-lithium
treated patients with bipolar disorder, but also with non-affected
relatives (Squassina et al., 2016; Powell et al., 2018). These results
suggest that lithium may have many non-autophagic related and
pleiotropic anti-aging mechanisms.

Three non-licensed nutraceutical compounds, trehalose,
spermidine, and urolithin A have been shown to increase
autophagy. Trehalose is a disaccharide used by some species
as a mechanism for storing excess sugar to protect against
environmental stressors (Sarkar et al., 2007a; Seo et al., 2018).
It activates autophagy via a poorly defined mTOR-independent
mechanism, and it also acts as chemical chaperone (Ravikumar
et al., 2010). It increases clearance of Huntington’s disease-
associated polyglutamine expansion aggregates in an atg-5-
dependent manner in mammalian cell lines (Sarkar et al.,
2007b). When fed to C. elegans, or when trehalose production
is genetically enhanced by shifting storage away from glycogen,
it increases lifespan (Honda et al., 2010; Seo et al., 2018) with
an upregulation of several well-defined markers of autophagy
induction in worms (Seo et al., 2018). Lifespan extension
and upregulation of atg-9 mRNA levels are DAF-16/FOXO-
dependent (Seo et al., 2018). Moreover, the longevity of worms
with higher trehalose circulation requires LGG-1/Atg8 and Beclin
(Seo et al., 2018), thus demonstrating by genetic epistasis that
autophagy is required for trehalose to extend lifespan.

Spermidine is a polyamine that extends the lifespan of yeast,
worms, flies and mice (Eisenberg et al., 2009, 2016). In worms,
the lifespan-extending effects are dependent on intact Beclin, and
in flies on Atg7, demonstrating that autophagy is required for the
longevity benefits of spermidine (Eisenberg et al., 2009). In mice,
the cardioprotective functions of spermidine were genetically
shown to be dependent on intact autophagy. Furthermore, in

humans, higher spermidine intake by questionnaire-assessment
was associated with lower levels of heart failure (Eisenberg
et al., 2016) and a reduction in all-cause mortality in an Italian
population (Kiechl et al., 2018).

Urolithin A is one of the three end-products (the other two
being Urothilin B and C) of microflora-mediated processing of
ellagic acid in the gut from ellagitannins. It is contained in berries,
acorns, nuts and tree leaves. When fed to C. elegans, urolithin
A extends lifespan and improves healthspan (Ryu et al., 2016),
and reduces Aβ-associated memory loss (Fang et al., 2019). The
lifespan-extending properties of urolithin A are at least partially
dependent on AMPK, and completely dependent on intact
mitochondria, as it induces mitophagy (Ryu et al., 2016). The
worm lifespan extension produced by urolithins was completely
dependent on Pink1, dct-1/BNIP3, Beclin, pdr-1/Parkin, sqst-
1, vps-34 and skn-1/Nrf1/2. In mice, urolithin A treatment has
also been linked to mitophagy induction and improved muscle
function (Ryu et al., 2016).

Among the autophagy-activating drugs with anti-aging effects,
rapamycin is the best characterized. It is licensed for clinical use
in humans as a co-immunosuppressant in renal transplantation.
It is also used to coat coronary stents in the prevention
of restenosis following coronary angioplasty, and to treat
lymphangioleimyomatosis, a rare lung disease of smooth muscle
cell growth. Rapamycin is the flagship mTORC1 inhibitor
and acts by allosterically binding to FK506-binding protein12
(FKBP12) to form a complex, which in turn binds and inhibits
mTOR (Grolleau et al., 2002; Thoreen et al., 2009). Rapamycin
has been shown to extend lifespan in yeast, worms, flies and
mice (Powers et al., 2006; Medvedik et al., 2007; Harrison et al.,
2009; Bjedov et al., 2010; Robida-Stubbs et al., 2012; Miller
et al., 2014), and a randomized controlled preclinical trial in
dogs is in the pipeline to study its anti-aging effects (Urfer
et al., 2017). In addition, rapamycin treatment in mice and
elderly people has been linked to an improved response to
vaccination against influenza virus (Chen et al., 2009; Mannick
et al., 2014, 2018). The mechanism of action of rapamycin-
mediated lifespan extension has been shown to be independent of
dietary restriction in flies (Bjedov et al., 2010), and metabolically
and transcriptionally different in mice (Miller et al., 2014). While
autophagy is assumed to be upregulated when mTOR is inhibited
(either genetically or pharmacologically), so far and to the
best of our knowledge, the only epistatic investigation showing
that autophagy is required for lifespan extension has been
performed in flies (Bjedov et al., 2010). However, rapamycin-
mediated lifespan extension also requires S6K (Bjedov et al.,
2010), another downstream effector important in translation
and ribosomal physiology (Pende et al., 2004; Chauvin et al.,
2014). In addition, in C. elegans and Drosophila, rapamycin-
mediated lifespan extension does not require DAF-16/FOXO
(Bjedov et al., 2010; Robida-Stubbs et al., 2012), but instead
requires the redox regulator SKN-1/Nrf1/2 in worms (Robida-
Stubbs et al., 2012). The effects of rapamycin are mostly specific
to mTORC1. However, under certain conditions of prolonged
exposure, it can also inhibit mTORC2 (Sarbassov et al., 2006).
In rodents and patients, rapamycin leads to insulin resistance
and hyperlipidemia (Morrisett et al., 2002; Houde et al., 2010),
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and this has been attributed to its effects on mTORC2 inhibition
(Lamming et al., 2012). Interestingly, in Drosophila higher
triacylglycerol content associated with rapamycin treatment
is abolished in combination with lithium, and pronounced
lifespan extension is achieved when a combination of three
drugs, rapamycin, lithium, and trametinib is fed to flies
(Castillo-Quan et al., 2019). Efforts continue in developing
dual mTORC1/mTORC2 catalytic inhibitors like the Torin1
and Torin2 (Thoreen et al., 2009), which have already been
shown to reduce cellular senescence in mammalian cells and
extend lifespan in Drosophila (Leontieva and Blagosklonny,
2016; Mason et al., 2018). However, the reality is that we
need to identify new compounds that specifically target the
autophagy process. Otherwise, the non-autophagy-related effects
of inhibiting mTORC1, mTORC2 or other pathways will not
allow a clear examination of the potentially beneficial clinical
effects of autophagy activation.

CONCLUSION AND FUTURE OUTLOOK

In conclusion, we have described the intricate relationship
between aging and autophagy, and discussed major anti-aging
interventions that depend on autophagy enhancement. There
is increasing evidence that boosting autophagy flux and the
recycling of damaged cellular components may prove to be an
effective anti-aging strategy. However, we need to be mindful of
the fact that autophagy is a degradative process, and that strong
upregulation may therefore be detrimental to the organism. The
more evidence we gather for improvement of health during aging
by targeting autophagy, the more complexities we are uncovering.
Numerous questions are continually arising concerning the
optimal manipulation of autophagy that is required to benefit a
given organism. These include factors relating to the intensity
of autophagy increase, its timing and effect in the young versus
old individuals, whether non-selective autophagy should be
targeted or if specific cargoes should be selectively degraded.
Finally, the question of tissue specificity needs to be addressed,
to determine whether autophagy offers greater benefits when
augmented in a specific single tissue or in a combination of
tissues. Furthermore, despite tremendous progress in the fields

of autophagy and aging, in order for successful therapies to be
developed, we need to improve our measurements of autophagy
flux. By determining which parts of this multistep process are
failing in aging and disease, we can tailor our interventions
accordingly. One of the main challenges will be to develop specific
strategies that either alter selective autophagy, or restore rate-
limiting steps in the autophagy process. Many of the current
autophagy activators that have been characterized also affect
other intracellular processes, such as the inhibition of translation
by rapamycin. It is currently unclear whether autophagy-specific
drugs, or those targeting multiple cellular pathways, will provide
the most potent health benefits. In order to optimize the benefits
of autophagy, short temporary treatment may offer the greatest
advantages, cleansing the cell of damaged components, while
minimizing toxic side-effects. Similar approaches also apply to
senolytic drugs that remove senescent cells from an organism.
In summary, autophagy has been implicated in a plethora of
essential cellular processes, including those involved in the DNA
damage response, immunity, cell death and senescence, and thus
has critical importance in the identification of new drugs and
strategies to improve healthy aging.
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