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“Liver medicine” refers to all diagnostic and treatment strategies of diseases and
conditions that cause liver failure directly or indirectly. Despite significant advances in
the field of liver medicine in recent years, improved tools are needed to efficiently
define the pathophysiology of liver diseases and provide effective therapeutic options
to patients. Recently, organoid technology has been established as the state-of-the-art
cell culture tool for studying human biology in health and disease. In general, organoids
are simplified three-dimensional (3D) mini-organ structures that can be grown in a
3D matrix where the structural and functional aspects of real organs are efficiently
recapitulated. The generation of organoids is facilitated by exogenous factors that
regulate multiple signaling pathways and promote the self-renewal, proliferation, and
differentiation of the cells to promote spontaneous self-organization and tissue-specific
organogenesis. Newly established protocols suggest that liver-specific organoids can
be derived from either pluripotent stem cells or liver-specific stem/progenitor cells.
Today, robust and long-term cultures of organoids with the closest physiology to in vivo
liver, in terms of cellular composition and function, open a new era in studying and
understanding the disease pathology as well as high-throughput drug screening. Of
note, these next-generation cell culture systems have immense potential to be further
improved by genome editing and bioengineering technologies to foster the development
of patient-specific therapeutic options for clinical applications. Here, we will discuss
recent advances and challenges in the generation of human liver organoids and highlight
emerging concepts for their potential applications in liver medicine.
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INTRODUCTION

The prevalence of liver diseases is rising, and they account for approximately 2 million deaths per
year worldwide (Asrani et al., 2019). The etiologies of chronic liver diseases are multifactorial and
show variation according to geographical location (Zhou et al., 2014). The main causes include
chronic viral infections (hepatitis B and C), excessive alcohol intake, obesity-related fatty liver
disease and steatohepatitis, inherited diseases (Wilson’s disease, storage disorders, hepatorenal
tyrosinemia, etc.), autoimmune liver diseases, drug-related liver diseases, as well as malignancies
and idiopathic causes (Zhou et al., 2014).
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To date, various cell culture and animal models have been used
to decipher the molecular mechanisms of liver development and
pathogenesis. Among them, conventional two-dimensional (2D)
cell cultures have several limitations, especially for long-term and
stable expansion. In addition, 2D primary hepatocyte cultures fail
to replicate key aspects of the human liver tissue, in particular,
the complex architecture and cellular heterogeneity (Duval et al.,
2017; Rowe and Daley, 2019). Moreover, these cells often lack
cell–cell and cell–extracellular matrix (ECM) interactions that
are essential for maintaining in situ phenotypes and biological
functions as well as tissue-specific cellular processes (Baxter et al.,
2015; Duval et al., 2017). Furthermore, primary hepatocytes have
limited division capacity when grown in 2D cultures and rapidly
lose liver-specific gene expression patterns and functions, such
as the synthesis of coagulation inhibitors (Boost et al., 2007),
maintenance of stable cytochrome P450 (Darnell et al., 2012;
Kostadinova et al., 2013), and integrin ligation (Meli et al., 2012),
at a few weeks after plating (Clayton and Darnell, 1983; Bissell
et al., 1987; Mitaka and Ooe, 2010).

Ever since induced pluripotent stem cell (iPSC) technology
was established, hepatocyte generation by stepwise differentiation
protocols that mimic in vivo organogenesis has become readily
feasible in 2D cultures (Takahashi et al., 2007; Si-Tayeb et al.,
2010b; Chen et al., 2012; Hannan et al., 2013). These protocols
typically use cocktails of growth factors/cytokines in order
to recapitulate embryonic liver development under in vitro
culture conditions. Nevertheless, the hepatocytes derived by these
differentiation protocols vary considerably in their maturation
level and, in most cases, represent immature hepatocytes. Plus,
they do not have the ability to expand for the long term in
monolayer culture, partly due to the absence of a tissue-specific
architecture, mechanical and biochemical cues, and cell–cell
communications under 2D conditions (Pampaloni et al., 2007;
Luo et al., 2018).

Animal models can also be used in the study of liver
pathologies. The large majority of these models have functional
vasculature, stromal, and immune components, offering
numerous benefits over 2D cultures. However, animal models
need resource-intensive and time-consuming processes to
be developed. Furthermore, physiological and genomic
interspecies differences in animal models pose limitations in the
representation of the disease phenotypes and the prediction of
research outputs such as drug response (Mariotti et al., 2018).

Organoids are simply defined as 3D cell culture systems
that mimic the structural and functional characteristics of the
represented organ. This definition refers to the assembly of
organ-specific cell type(s) that develop from pluripotent stem
cells/organ stem/progenitor cells and their self-organization
through cell sorting and spatially restricted lineage commitment,
similar to the developmental process in vivo (Lancaster and
Knoblich, 2014; Clevers, 2016; Fatehullah et al., 2016). Organoid
structures can be stably maintained in long-term in vitro cultures,
continuing to reflect, even after many generations, the in vivo
characteristics of the tissue of origin without any significant
genetic or physiological changes (Huch et al., 2015; Akbari et al.,
2019). During the process of organoid culture, often in a tissue-
specific manner, a number of growth factors and small molecules

are utilized in order to regulate the signaling pathways that are
essential for the self-renewal, differentiation, and proliferation
of organoids. At present, two main approaches to successfully
forming organoids using defined biochemical factors in a proper
3D matrix have been widely exploited. The first approach is based
on the differentiation of pluripotent stem cells (PSCs), which then
self-organize to form tissue-specific organoids such as the optic
cup (Eiraku et al., 2011; Nakano et al., 2012; Kuwahara et al.,
2015; Eldred et al., 2018), brain (Lancaster et al., 2013; Pas̨ca
et al., 2015), intestine (Spence et al., 2011), pancreas (Greggio
et al., 2013), liver (Takebe et al., 2013; Sampaziotis et al., 2015;
Guan et al., 2017; Lee et al., 2018; Akbari et al., 2019; Koike
et al., 2019), lung (Dye et al., 2015), prostate (Drost et al.,
2016), kidney (Takasato et al., 2015), and blood vessel (Wimmer
et al., 2019). The second approach relies on the derivation
of functional organoids from tissue-specific adult/fetal/pediatric
stem or progenitor cells, which preserve, under normal and
damaged conditions, the regenerative capacity of specific tissues.
These types of organoids have also been established from multiple
tissues including intestine (Ootani et al., 2009; Sato et al., 2009),
stomach (Barker et al., 2010), liver (Huch et al., 2015; Hu et al.,
2018), kidney (Schutgens et al., 2019), skin (Boonekamp et al.,
2019), and pancreas (Huch et al., 2013a; Boj et al., 2015).

LIVER

Structure and Function
The liver, the largest organ in the body, serves vital metabolic,
exocrine, and endocrine functions. In addition to bile production
and regulation of glycolytic, urea, and cholesterol metabolism,
the liver promotes blood detoxification and regulates blood
homeostasis, particularly by secreting coagulation factors and
serum proteins such as albumin (Gordillo et al., 2015; Stanger,
2015). The liver lobule, composed of heterogeneous cell types, is
the smallest structural unit of the liver. Metabolically, it is divided
into different structural zones and functional organizations
(Kietzmann, 2017). Hepatocytes are the major parenchymal cell
type of the liver lobules, accounting for ∼70% of the total mass
of an adult organ. Hepatocytes and cholangiocytes (the other
epithelial cell type of the liver) are derived from the embryonic
endoderm, while the non-parenchymal liver cells, such as the
stromal cells, stellate cells, Kupffer cells, and blood vessels, have a
mesodermal origin (Gordillo et al., 2015; Stanger, 2015). Recent
advanced technologies, in particular, single-cell RNA sequencing,
have made it possible to identify the existence of adult human
liver-resident epithelial progenitors and to map stem/progenitor
heterogeneity within the liver. These new insights have provided
strong guidance cues for advancing understanding of liver
biology and physiology (Aizarani et al., 2019).

Liver Organogenesis
The main principle of liver organoid technology is to recapitulate
the major phases of organogenesis in a dish. An understanding
of sequential events and regulatory factors in liver development
is therefore crucial (Tremblay and Zaret, 2005; Si-Tayeb et al.,
2010a; Fiorotto et al., 2018). During gastrulation, blastula first
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gives rise to endoderm (one of the three primary germ layers),
which is further patterned into discrete organ domains in the
foregut, midgut, and hindgut. The liver bud is then formed
from the foregut endoderm by the induction of Activin/Nodal,
WNT, FGF, and BMP signals (Douarin, 1975; Gualdi et al.,
1996; Jung et al., 1999; Kamiya et al., 1999; Rossi et al.,
2001; Zaret, 2002; D’Amour et al., 2005; Han et al., 2011).
Following the formation of this structure, the hepatoblasts
undergo expansion and differentiation to yield both hepatocytes
and biliary epithelium, while the adjacent mesoderm-derived
mesenchyme contributes to the generation of liver fibroblasts
and stellate cells. The normal structure of the liver tissue is
then completed by further maturation of the hepatocytes and
cholangiocytes and the cellular integration of the mesenchyme
and endothelium (Tremblay and Zaret, 2005).

ORGANOID MODELS

iPSC-Derived 3D Liver Organoid Models
Hepatic Organoids
The generation of hepatic organoids from iPCSs was first
proposed by Takebe and colleagues using an elegant co-
culture model. In this model, hepatic progenitors were obtained
by stepwise differentiation from iPSCs in a 2D cell culture
setting and then co-cultured with human mesenchymal stem
cells (MSCs) and Human Umbilical Vein Endothelial Cells
(HUVECs). Subsequently, macroscopically visible 3D aggregates
called iPSC-liver buds (LB) were spontaneously produced in
a Matrigel-embedded culture. Furthermore, human vasculature
structures in iPSC-LB became functional by connecting to the
host vessels following transplantation. In particular, the hepatic
cells in the engrafted liver buds started to secrete albumin
into the bloodstream of the recipient mouse from day 10 until
day 45 post-transplantation. More importantly, these organ bud
structures demonstrated an ability to regenerate and rescue
drug-induced lethal liver failure (Takebe et al., 2013). In a
follow-up study, single-cell RNA sequencing elucidated patterns
of gene expression unique to lineage identity and facilitated
identification of heterogeneous and dynamic cell populations
during differentiation from pluripotency to a liver bud (Camp
et al., 2017; Potter, 2018). Following these efforts on generating
a functional human liver bud, many research groups have
developed various protocols to produce different types of liver
organoids derived from pluripotent stem cells. Some of the
important protocols in the field are summarized in Figure 1.

Guan et al. (2017) have recently established iPSC-derived
hepatic organoids (Hep-org), surrounded by cholangiocyte
ductal structures, within about 50–60 days. Unfortunately, when
these organoids reached a critical size, making it difficult to
receive enough nutrients and oxygen, their proliferation and
regenerative capacity decreased significantly. This disadvantage
was overcome by dissociating the organoids into single cells
and then replating and reforming them in Matrigel (Guan
et al., 2017). Recently, a new protocol has been described
for the generation of human pluripotent stem cell (hPSC)-
derived organoids with a hepato-biliary structure. The organoids

displayed hepatic gene expression signatures and key functional
characteristics of cholangiocytes in vitro and survived more
than 8 weeks after transplantation in immune-deficient mice
(Wu et al., 2019).

More recently, we described a rapid and highly efficient
protocol for the production of human hepatic organoids derived
from iPSCs. Our study revealed that enrichment of Epithelial
Cell Adhesion Molecule (EpCAM)-positive cells resulted in a
homogenous population of endodermal cells and licensed the
differentiation of functional hepatocytes. In addition, R-Spondin
improved the specification of EpCAM-positive endoderm
intermediate cells in this culture system (Akbari et al., 2019).
Moreover, only EpCAM-positive endodermal cells, and not
EpCAM-negative cells, had the ability to form hepatic organoids.
Our findings are in strong agreement with previous studies
showing that EpCAM exhibited a dynamic pattern of gene
expression during liver development and that EpCAM-positive
cells were able to give rise to liver compartments (Schmelzer et al.,
2007; Tanaka et al., 2009; Lu et al., 2013). In addition, our study
showed that these endoderm-derived hepatic organoids (dubbed
eHEPOs) could be produced in 14 days and expanded for more
than 1 year without any significant loss in culturing efficiency
(Akbari et al., 2019). Likewise, in vitro characterization analyses
indicated that eHEPOs could obtain epithelial morphology and
a pseudostratified structure. One of the key aspects of this
method was that the cellular composition and the morphological
structure of eHEPOs were preserved in young and old organoids.
Furthermore, analysis of gene expression profiles revealed
a transition from pluripotency toward mature hepatocytes.
Finally, eHEPOs exhibited functional characteristics of mature
hepatocytes in vitro, efficiently engrafted in the mouse liver, and
expressed human ALB at day 32 following intrasplenic injection
(Akbari et al., 2019). More recently, a breakthrough method has
been developed to establish an integral multi-organ structure.
First, the anterior and the posterior gut spheroids were separately
differentiated from iPSCs. Afterward, an anterior spheroid was
transferred to an adjacent posterior spheroid. Over time, these
spheres fused and invaginated as an interconnected multi-
organ. In sum, that method demonstrated that anteroposterior
interaction recapitulated the foregut–midgut boundary in vitro,
even in the absence of extrinsic factors (Koike et al., 2019).

Cholangiocyte Organoids
Another type of organoids that exhibit cholangiocyte
characteristics and functions were developed and used by several
research groups to specifically study biliary duct physiology
and cholangiopathies. For the first time, Dianat et al. (2014)
have successfully generated iPSC-derived cholangiocyte-like
cells (CLCs) in 3D culture. These cells displayed structural and
functional similarity to primary cholangiocytes, such as cilia
formation and response to hormonal stimulation. Similarly,
CLCs were able to transport Rhodamine 123 into the lumen by
the multidrug resistance 1 transmembrane (MDR1), another
property of physiologically functional cholangiocytes (Dianat
et al., 2014). Then, by combining 2D monolayer and 3D
culture systems, Ogawa and colleagues generated cholangiocyte
organoids (Chol-org) from hPSCs. This method utilized
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FIGURE 1 | Key protocols for generating iPSC-derived 3D liver organoid cultures. FCS, Fetal Calf Serum; 3D, three-dimensional; FGF, Fibroblast Growth Factor;
TGF, Transforming Growth Factor; R-SPO, R-Spondin; EGF, Epidermal Growth Factor; HGF, Hepatocyte Growth Factor; CM, Condition Medium; FACS,
Fluorescence-Activated Cell Sorting; EpCAM, Epithelial Cell Adhesion Molecule; iPSC, Induced Pluripotent Stem Cell; BMP, Bone Morphogenetic Protein; ME,
Mesoendoderm; HP, Hepatic Progenitor; KGF, Keratinocyte Growth Factor; HB, Hepatoblast; HCM, Hepatocyte Culture Medium; OSM, Oncostatin M; H/C,
Hepatocyte/Cholangiocyte; Dex, Dexamethasone; ITS, Insulin-Transferrin-Selenium; DE, Definitive Endoderm; FG, Foregut; FP, Foregut Progenitor; CP,
Cholangiocyte Progenitor.
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cholangiocyte development cues to establish a self-organized
bile duct-like structure. Cholangiocyte fate was achieved
using 3D co-culture of hepatoblasts with OP9 stromal cells in
the presence of growth hormones. Herein, NOTCH protein
secreted by OP9 cells was used to mimic JAG1/Notch signaling
and promote cholangiocyte development and specification.
The cholangiocytes exhibited a branching morphology and
cholangiocyte-related gene expression profiles. Furthermore,
these cells lost the expression of hepatoblast and hepatocyte
markers such as Alpha-fetoprotein (AFP) and albumin.
Transport activity assay and a forskolin-induced cyst swelling
test verified the functionality of these cholangiocytes (Ogawa
et al., 2015). Another approach developed by Sampaziotis et al.
(2015) demonstrated that Chol-org could be generated from
hepatoblast-derived cholangiocyte progenitors using FGF10,
Activin A, retinoic acid, and EGF. These Chol-org demonstrated
functional properties of cholangiocytes such as alkaline
phosphatase and gamma-glutamyl-transpeptidase activity as well
as bile acid uptake and export (Sampaziotis et al., 2015, 2017).
Additionally, the use of laminin as a matrix increased the number
and diameter of cysts as well as the expression of iPSC-derived
cholangiocyte marker genes (Takayama et al., 2016).

Adult Stem Cell-Derived 3D Liver
Organoid Models
The liver displays a remarkable regenerative capacity
(Michalopoulos, 2010; Hindley et al., 2014; Stanger, 2015).
However, the types of cells involved in liver homeostasis and
regeneration after damage are not well-defined. Previously, it
was shown that Sox9-positive cells (oval cells) near the bile
duct participate in the regenerative response of the liver after
massive injury (Furuyama et al., 2011). Such findings are in close
agreement with other studies that highlighted the contribution
of biliary epithelial cells to the regenerative response of the
liver (Dorrell et al., 2011; Espanol-Suner et al., 2012). Likewise,
the results of these studies are consistent with other findings
demonstrating that ablation of hepatic progenitors impairs liver
regeneration (Shin et al., 2015). Collectively, these findings
indicate that liver stem/progenitor cells retain the potential to
form the liver parenchyma in vivo and organoids in vitro.

The available evidence suggests that Lgr5-positive progenitor
cells are not present in the healthy adult liver and pancreas
(Huch et al., 2013b), but, rather, they are activated upon chemical
damage and become detectable near the bile ducts of the liver. It
has been shown that freshly isolated healthy bile duct fragments
and, more intriguingly, Lgr5-positive single cells isolated from
mouse liver could yield 3D organoids. These bipotent epithelial
liver organoids could be differentiated into mature and functional
hepatocytes in vitro and could rescue liver failure in the
fumarylacetoacetate hydrolase (Fah−/−) mutant mouse, a model
for tyrosinemia type I liver disease, after transplantation (Huch
et al., 2013b; Broutier et al., 2016). Furthermore, the Clevers
group adapted a mouse liver organoid protocol to culture
bipotent stem cells from the adult human liver (Huch et al.,
2015). They demonstrated that human EpCAM-positive single
cells from the ductal area or even ductal fragments could develop

into clonal epithelial hepatic organoids. These organoids could
generate functional hepatocytes after differentiation in vitro
and engraftment within the parenchyma of recipient mouse
liver in vivo. The study also found that the organoids were
genetically stable in long-term cultures, being characterized by
a low number of single base changes, most of which were
probably incorporated before or during organoid generation
but not during culture (Huch et al., 2015). Although Huch’s
model elegantly demonstrated that the ductal progenitors had the
capacity to generate hepatocytes under defined culture conditions
and Raven and collaborators have more recently shown that
impaired hepatocellular regeneration during liver injury could
trigger ductular reaction and the generation of hepatocytes of
non-hepatocyte origin (Raven et al., 2017), there is an ongoing
controversy surrounding studies that demonstrated that the
majority of regenerative response following hepatic damage
rely primarily on hepatocytes rather than stem cells (Grompe,
2014). In particular, murine lineage-tracing studies provided
supporting evidence that only hepatocytes were involved in
liver regeneration after damage (Schaub et al., 2014; Yanger
et al., 2014). Wnt signaling from liver endothelial cells can
influence homeostatic self-renewal of hepatocytes. Specialized
Axin2-positive cells localized to the pericentral liver lobule
were previously identified as the source of precursors for this
homeostatic reaction (Wang et al., 2015). The expression of early
liver progenitor marker TBX3 in these cell types confirmed the
presence of a mature and progenitor cell population in the adult
liver. Likewise, periportal and hybrid hepatocytes with low levels
of SOX9 expression replenished the liver mass after chronic
injury (Font-Burgada et al., 2015). Accordingly, the Clevers group
has recently established a new organoid model originating from
a single mature Axin2-positive hepatocyte. Their study showed
that Wnt/Rspo1 and HGF signaling pathways were the main
regulators of primary hepatocyte expansion in both mouse and
human organoid models. This approach facilitated the growth
of hepatic organoids from a single hepatocyte directly after
collagenase digestion. Here, both undamaged hepatocytes and
hepatocytes from physically damaged liver (partial-hepatectomy,
PHx) were used for the production of murine hepatic organoids.
These organoids displayed the key functional attributes and
gene expression profiles of hepatocytes. In addition, Gene
Set Enrichment Analysis (GSEA) of PHx-derived organoids
revealed that the gene expression profiles of mouse hepatic
organoids resembled those of post-PHx proliferating hepatocytes.
Accordingly, hepatic organoids recapitulated the regenerative
response of adult liver upon partial hepatectomy. Fetal and
adult human liver specimens were also used to form organoids
in the same study. When compared to adult donors’ hepatic
organoids, fetal-derived hepatic organoids displayed higher
expansion capacity. One reason for impaired expansion in the
adult hepatic organoids could be the inherently limited activity
of telomerase enzyme (Hu et al., 2018). Moreover, the low
number of cholangiocytes inside the hepatic organoids and
trans-differentiation of Hep-org to Chol-org when cultured in
cholangiocyte medium (Huch et al., 2015) is a sign of de novo
generation of bile ducts after partial resection. Hepatic organoids,
in this study, were different from the earlier Chol-org models in
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terms of cell size, nucleus/cytoplasm ratio, subcellular structure
and function, and gene expression profiles. This critical difference
could be explained by the cell of origin of the organoids. While
the hepatic organoids originated from hepatocytes, Chol-org
were developed from EpCAM-positive precursor cells. Moreover,
in terms of in vivo functionality, the same study showed that
organoids were able to engraft and repopulate in the liver of
immunodeficient mice (Hu et al., 2018).

Complex crosstalk between hepatocytes, plasma, and other
resident cells in the liver plays a key role in maintaining
liver functions and regulating regenerative responses. Autocrine
signals from hepatocytes (VEGF, TGF-α), paracrine signals from
stellate cells (HGF) (Michalopoulos, 2007), and inflammatory
cytokines from Kupffer cells (IL-6 and TNF-α) are essential
for triggering a successful liver regenerative reaction. Peng
et al. (2018) have recently shown that TNF-α would promote
mouse hepatocyte expansion in 3D culture conditions in vitro.
Also, these cells were able to engraft and repopulate in
Fah−/− mouse liver. Based on these findings, one can conclude
that this approach could potentially be integrated with Hu’s
protocol for the generation of human hepatocytes with near-
physiological features. Another liver organoid culture model has
been developed by Vyas et al. (2017). Herein, decellularized
ferret liver scaffolds were seeded with human fetal progenitor
cells containing liver stromal and endothelial cells and then
incubated in differentiation media for 3 weeks to induce
hepatobiliary organoids in an in vitro culture setting. Although
this model proved that hepatic and biliary lineage specification
and maturation in scaffold was better than for the cells grown
in Matrigel, the self-renewal capacity of the organoids and
efficiency of this method in recapitulating adult liver functions
was comparably low (Figure 2).

3D Organoid Models for
Non-parenchymal Liver Cells
Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells
that contribute to liver physiology and pathophysiology (Scholten
et al., 2010; Mederacke et al., 2013; Wells, 2014). In a healthy
liver, HSCs are quiescent at baseline, and their function is to
store vitamin A lipid droplets. Following damage due to toxins
or viral infections, HSCs become metabolically active resulting
in the accumulation of ECM in liver (Friedman, 2008). HSCs
have limited proliferation capacity in 2D culture, cannot maintain
the quiescent phenotype, and spontaneously lose key functional
features in vitro (Mederacke et al., 2015; Perea et al., 2015).
Koui et al. (2017) showed that iPSC-derived HSC progenitors
could be expanded and maturated in vitro and could acquire
lineage-specific characteristics. A recent study by Coll et al.
(2018) has established an efficient culture system to differentiate
HSCs from iPSCs. In this system, HSCs were generated via
protocols that were initially developed to establish HSCs from
ESCs (Asahina et al., 2009; Onitsuka et al., 2010). Briefly, iPSCs
were differentiated toward mesodermal progenitors with BMP4.
Then, these mesothelial cells were induced with retinol and
palmitic acid for their subsequent differentiation into HSCs. After
12 days, the resulting cells resembled primary HSCs in terms of

morphology, transcriptome profile, and functional attributes. In
addition, when grown as 3D spheroid co-cultures together with
HepaRG cells, HSCs stored vitamin A and, more importantly,
they switched from a quiescent state to an activated state in
response to hepatic toxicity. In conclusion, this method provided
a robust and reliable culture system for the investigation of liver
biology and pathobiology using hepatic organoids and activated
HSCs (Coll et al., 2018).

POTENTIAL APPLICATIONS OF LIVER
ORGANOIDS

Organoids have many great advantages over conventional cell
culture techniques. These miniaturized organs enable long-
term stable expansion in a near-physiological manner and
mimic 3D tissue function and structure and disease pathology.
Therefore, they have tremendous potential to be transformed into
excellent platforms for various basic and translational research
applications, including disease modeling, drug screening, gene
therapy, elucidating microbe-host interactions, and organ
replacement (Figure 3).

Disease Models via Liver Organoids
Over the past few years, with the discovery of other powerful
technologies, CRISPR-Cas9 genome editing in particular,
organoids research has opened up new avenues for understanding
the molecular pathophysiology of diseases. To this end,
the introduction of disease-specific mutations into the liver
organoids derived from healthy donors has become rapid and
seamless, enabling researchers to readily investigate mutation-
related mechanisms and clinical phenotypes. Alternatively, tissue
explants or biopsies from patients can also be used directly for
the production of disease-specific organoids. Table 1 summarizes
the liver disease models published in the literature.

Rare and Genetic Diseases
Alpha-1-antitrypsin deficiency (A1ATD) is a rare inherited
disorder that causes lung and liver diseases, skin problems, and
inflammation of the blood vessels. A1AT is a serine protease
inhibitor that is synthesized mostly in the liver and transferred
through the bloodstream to the lungs. Its primary function in
the lungs is to inhibit an enzyme called neutrophil elastase, thus
protecting the lung tissue against proteolytic degradation. The
most common genetic missense mutation in A1ATD is the PiZ
allele (Glu342Lys) of the SERPINA1 gene, which results in the
agglomeration of misfolded proteins in hepatocytes (Bals, 2010).
To model this condition, Huch et al. (2015) developed organoids
using liver biopsy specimens obtained from three patients
with A1ATD disease. Notably, patient-derived organoids (PDO)
mimicked the disease pathology, with reduced protein levels
and aggregation of A1AT protein in the endoplasmic reticulum.
Alagille syndrome (ALGS), another multisystem genetic disorder,
was also modeled using the same approach (Huch et al., 2015).
Of note, ALGS has autosomal dominant inheritance and is
predominantly caused by heterozygous mutations in the JAG1
gene, which codes for the Jagged1 protein, a transmembrane
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FIGURE 2 | Key protocols for developing adult liver stem cell-derived 3D liver organoid cultures. 3D, three-dimensional, FGF, Fibroblast Growth Factor; TGF,
Transforming Growth Factor; R-SPO, R-Spondin; EGF, Epidermal Growth Factor; HGF, Hepatocyte Growth Factor; CM, Condition Medium; FACS,
Fluorescence-Activated Cell Sorting; EpCAM, Epithelial Cell Adhesion Molecule.

ligand in the Notch signaling pathway. JAG1 mutations lead to
deficiencies in various tissues, including liver, heart, and muscle
(Turnpenny and Ellard, 2012). According to the findings of this
study, organoids from ALGS patients were unable to form intact
bile duct structures in vitro, and cells in the organoid lumen
underwent apoptosis, mimicking the in vivo disease pathology
(Huch et al., 2015). In addition to liver stem/progenitor-derived
organoids, Guan and colleagues used patient-specific iPSCs to
model this genetic disorder. Specifically, iPSCs from two ALGS
patients were differentiated into organoids via the protocol
described in Figure 1. In contrast to healthy organoids, the
bile duct formation and the biliary transport function of ALGS-
specific PDOs were significantly impaired. In addition, using a
reverse approach employing CRISPR-Cas9 technology, ALGS-
causing JAG1 mutation C829X was introduced into iPSCs
prepared from healthy human fibroblasts. As a result, the capacity
of the genetically modified iPSC-derived organoids to form duct-
like structures was significantly reduced, recapitulating the ALGS
liver pathology (Guan et al., 2017).

Citrullinemia type I (CTLN1) is an inherited urea cycle
disorder of the liver arising from a deficiency in the enzyme
Argininosuccinate Synthase 1 (ASS1) (Kose et al., 2017).
Infant patients with severe Citrullinemia type I experience
life-threatening clinical manifestations, such as episodes of
hyperammonemia that might be fatal or result in permanent
neurologic damage. Current strategies (drugs and a low-
protein diet) for the management of Citrullinemia type I
are not effective, and, in severe cases, long-term survival is
low. Cell transplantation with functional hepatocytes emerges
as a promising therapeutic approach. Recently, iPSCs derived
from Citrullinemia type I patients with homozygous G390R
mutations in the ASS1 gene have been used to develop a disease-
specific model. Particularly, patient-specific iPSCs were generated
by reprograming dermal fibroblasts with episomal vectors

and differentiating toward definitive endoderm under defined
conditions. Then, iPSC-derived EpCAM-positive endodermal
cells were isolated and used to generate functional hepatic
organoid cultures. These organoids exhibited hepatocyte-specific
marker gene expression and recapitulated the key metabolic
functions of mature hepatocytes, including LDL uptake, albumin
secretion, and glycogen storage. Further analysis revealed that
the hepatic organoids mimicked the clinical phenotypes of
Citrullinemia type I patients such as increased ammonia and
decreased urea. Moreover, these phenotypes could be rescued
by ectopic expression of the wild-type ASS1 gene in patient-
derived organoids. Collectively, this model offers a promising
framework to study gene correction/replacement strategies in
cell-based therapies and perform pre-clinical drug discovery and
development studies in urea cycle disorders (Akbari et al., 2019).

Cholangiocyte organoids derived from iPSCs have also been
used for disease modeling. For instance, Ogawa and colleagues,
as described in Figure 1, used patient-specific Chol-org for
modeling the Cystic Fibrosis (CF) disease. CF is a life-threatening
rare autosomal recessive disorder caused by mutations in the
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
gene. Mutations in the CFTR gene disrupt the function of the
chloride ion channel, causing dysregulation of ion flux and
epithelial fluid transport in the lung, pancreas, colon, and liver.
In this study, Chol-org derived from iPSCs displayed misfolded
CFTR proteins, impaired cyst formation, and loss of chloride
channel function, reflecting the disease phenotype of the patients.
Furthermore, they showed that exposure of the organoids to
a small-molecule CFTR potentiator drug VX-770 (Ivacaftor)
along with forskolin and IBMX corrected the misfolding defect
and led to the functional restoration of the mutant CFTR
protein (Ogawa et al., 2015). Chol-org were also used in another
study to successfully model ALGS, polycystic liver disease,
and CF-associated cholangiopathy (Sampaziotis et al., 2015).
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FIGURE 3 | Potential applications for liver organoids.

Particularly, the treatment of patient-derived Chol-org with CF-
related drugs (verapamil and octreotide) rescued the clinical
phenotype of CF cholangiopathy in vitro. In support of these
findings, an ongoing research project called HIT-CF Europe1

is also using next-generation cell culture systems with the aim
of evaluating the efficacy and safety of rare CF mutation-
specific drug candidates in patient-derived organoids. The project
highlights the exciting promise of organoid culture systems

1https://www.hitcf.org/

to provide better lives for people with CF. Taken together,
next-generation organoid technologies hold great potential to
accurately model biliary-related diseases and pave the way for
organoid-based preclinical studies in precision medicine.

Cancer and Complex Diseases
Liver cancer is the fifth most common cancer in the world and
the second leading cause of death (Bray et al., 2018). The lack
of powerful liver cancer models that accurately recapitulate the
histopathology, heterogeneity, genome and transcriptome profile
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TABLE 1 | Organoid-based liver disease models.

Organoid type Cell source Disease Modeling approach References

Patient-derived Genome editing

Hepatic Liver Biopsy A1-Antitrypsin Deficiency, Alagille Syndrome X Huch et al., 2015

Tumor Surgical Resection Liver Cancer X Broutier et al., 2017

Tumor Needle Biopsy Liver Cancer X Nuciforo et al., 2018

Tumor Surgical Resection Liver Cancer X Li et al., 2019

Hepatic iPSCs Alagille Syndrome X X Guan et al., 2017

Hepatic iPSCs Citrullinemia type I X Akbari et al., 2019

Hepatic iPSCs Steatohepatitis Wolman Disease X Ouchi et al., 2019

Cholangiocyte iPSCs Cystic Fibrosis X Ogawa et al., 2015

Cholangiocyte iPSCs Cystic Fibrosis X Sampaziotis et al., 2015

of tumors hampers the development of effective treatments.
While different liver cancer models, such as cancer cell lines
and patient-derived xenografts (PDX), have been established in
the past, the drawbacks of each model limit their applications
in liver cancer studies. For instance, when passaged for long
periods in 2D culture, the cancer cell lines accumulate mutations
and undergo clonal selection, which results in loss of original
genetic and phenotypic heterogeneity (Kim, 2005). Moreover,
the low engraftment rate, high cost, time-consuming nature of
establishment, and non-suitability for large-scale drug testing
limit the use of PDX models (Hidalgo et al., 2014; Gu et al., 2015;
Cavalloni et al., 2016).

Personalized cancer medicine is a novel and innovative
approach aiming to establish effective therapeutic strategies for
each patient based on tumor-specific features. In this regard,
tumor organoids called tumoroid models are emerging as
a promising platform. Recently, Broutier et al. established
a tumoroid culture model from three different subtypes of
primary liver cancer (PLC), namely hepatocellular carcinoma
(HCC), cholangiocarcinoma (CC), and combined hepatocellular-
cholangiocarcinoma (CHC), using liver cancer samples obtained
from patients with no history of viral treatment. The established
tumoroids retained the histological characteristics as well
as transcriptome profiles and genomic signatures of the
original tissue. Furthermore, in vivo studies demonstrated the
tumorigenic and metastatic potential of PLC-derived organoids
upon transplantation under the kidney capsule. Importantly,
integrated omics data from PLC-derived organoids led the
researchers to identify new biomarkers and novel potential
therapeutic agents for PLC, such as an ERK inhibitor (Broutier
et al., 2017). In another study, Nuciforo et al. (2018) developed
a methodology through which they generated tumoroids
from needle biopsy samples from different HCC patients
with various tumor stages and etiologies. These tumoroids
successfully recapitulated the histopathological properties along
with the gene expression profiles and mutational landscapes
of the original tissues. Moreover, they also preserved tumor
features after transplantation into immunodeficient mice
(Nuciforo et al., 2018).

Recently, Li et al. (2019) have developed a cohort of
27 tumoroid cell lines from multiple regions of human
tumor samples from CC and HCC patients. Epithelial, bile

duct, stemness, and mucin markers were used for the
characterization of the cellular identity of tumoroids. Further
analysis demonstrated that the patient-derived tumoroids
reflected the histological features, transcriptome profiles and
genetic background of the original primary liver tumors.
Interestingly, high-throughput drug screening of these tumoroids
displayed heterogeneous drug responses, suggesting strong intra-
and inter-tumor heterogeneity. As a result, only a small group
of drugs was found to be effective in blocking their proliferation
(Li et al., 2019).

With regard to liver cancer research, a new study
demonstrated that organoid technology could be utilized to
model cancer initiation (Sun et al., 2019). Specifically, Sun and
colleagues suggested that direct reprograming of fibroblasts into
3D hepatocytes could be accomplished by ectopic expression
of FOXA3, HNF1A, and HNF4A. Intriguingly, these hepatic
organoids had limited expansion and proliferation capacity,
which could be overcome by SV40 transduction. In this model,
c-MYC transduction facilitated HCC initiation and liver cancer
formation in vivo, in part through the induction of excessive
mitochondrion-endoplasmic reticulum coupling. Furthermore,
when transplanted orthotopically, RAS-transformed organoids
formed intra-hepatic cholangiocarcinomas with a hepatocyte
origin (Sun et al., 2019).

Organoids derived from normal tissues can also be used
to model cancer by sequential introduction of cancer driver
gene mutations. The advantage of using such models is
they enable investigation of the effects of driver mutations
in an isogenic (identical) genetic background. To this end,
different laboratories have independently engineered mutant
colon organoids by incorporating mutations for at least four
of the most commonly altered genes in colorectal carcinoma,
namely KRAS, APC, TP53, SMAD4, and PIK3CA (Drost et al.,
2015; Matano et al., 2015). These mutant organoids developed
adenocarcinomas when transplanted into the kidney capsule
of recipient mice, modeling the progression of colon cancer.
Similarly, a recent study has revealed that BAP1 loss-of-function
by CRISPR-Cas9 in liver organoids, in combination with
common cholangiocarcinoma mutations (TP53, PTEN, SMAD4,
and NF1), affects epithelial tissue organization and cell-to-cell
junctions and results in the acquisition of malignant features
(Artegiani et al., 2019).
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The potential of human liver organoids as a model for studying
chronic and complex liver diseases is also promising for the
discovery of effective treatments. In that regard, Ouchi et al.
(2019) have developed a method to generate a multi-cellular liver
organoid system in order to model non-alcoholic steatohepatitis.
In particular, the liver organoids exhibited lipid accumulation,
fibrosis, and inflammation upon free fatty acid exposure. The
findings of this study suggest that this system could recapitulate
the progressive aspects of steatohepatitis and model Wolman
disease and, more importantly, that FGF19 could be used to
alleviate the disease pathologies (Ouchi et al., 2019).

Host–Microbiome Interactions
Randall’s laboratory has studied Hepatitis C Virus (HCV) entry
and localization in hepatoma organoids. HCV colocalizes in
basolateral membrane, and its virions progressively accumulate
at tight junctions. This model is a promising tool for investigating
the complex traffic processes of HCV (Baktash et al., 2018).
Recently, Taniguchi’s laboratory generated functional human
iPSC-derived liver organoids and infected them with the
Hepatitis B Virus (HBV) genome. Herein, the functional liver
organoids demonstrated higher susceptibility to HBV infection
than human iPSC-derived 2D hepatic-like cells and could
maintain HBV propagation and produce infectious virus for
longer durations. Notably, HBV infection resulted in severe
hepatic dysfunction of organoids, characterized by elevated
hepatic injury markers and an altered hepatic ultrastructure.
Interestingly, this study also showed that HBV-infected liver
organoids generated without the immune cells had an impaired
hepatic function and thus proposed the hypothesis that HBV
might indeed be a cytopathic virus (Nie et al., 2018).

In summary, liver organoids are highly promising models for
studying hepatitis virus-host interactions and can easily become
personalized infection models for individualized hepatitis
studies and treatments.

Omic Profiling
Instead of screening from established drug libraries, omics data
can be used to predict novel drug candidates for diseases. With
the help of organoid technology, one could also amplify sufficient
quantities of healthy and diseased tissues in vitro and analyze
causal mutations by deep sequencing or track treatment regimens
by phenotypic profiling of the organoids using omic platforms.
Recently, Huch’s team has predicted novel drug targets for liver
cancer patients by studying the omic profiles of tumoroids and
showed that ERK inhibitors could decrease tumor formation in
patient-derived xenograft models (Broutier et al., 2017). These
findings indicate that omic profiling would offer a convenient
strategy to understand the molecular pathogenesis of diseases and
identify novel therapeutic drug targets.

Bioengineered Organoid Models
To increase the longevity and reproducibility of cell functions
in vitro, the research community is now using multiple
bioengineering tools such as high-throughput microarrays,
lab-on-chip technologies (Polini et al., 2014; Bhise et al.,
2016), protein micropatterning, microfluidics, specialized

plates, biomimetic scaffolds, and bioprinting to control the
cellular microenvironment (Zhang et al., 2017b). Underhill
and Khetani (2018) have recently reviewed the advances in
bioengineered liver models with utility in drug screening
and the microenvironmental determinants of liver cell
differentiation/function (Massa et al., 2017; Zhang et al., 2017a).

Jin et al. (2018) developed a vascularized 3D liver organoid
model derived from induced hepatocytes (iHep) that were
directly differentiated from fibroblasts. They achieved this by
co-culturing the iHeps with endothelial cells in a decellularized
3D liver extracellular matrix (LEM) hydrogel in a microfluidic-
based cell culture device with a continuous dynamic flow of
media. By taking advantage of this platform, iHep-based 3D liver
organoids were able to establish a multiorgan system comprised
of multiple organoids derived from different internal organs and
demonstrated great feasibility for functional and standardized
high-throughput drug screening (HTS) (Jin et al., 2018).

Micro-scale technologies can mimic in vivo-like cellular
microenvironments by allowing precise control of crucial
physicochemical factors such as fluid flow, biochemical signals,
and so on (Huh et al., 2010; Schepers et al., 2016; Chung
et al., 2017). Recently, Wang et al. (2018) proposed a simple
and robust strategy that promoted in situ differentiation,
long-term 3D culture, and the generation of hiPSC-based
functional liver organoids in a perfusable micropillar chip system.
The liver organoids displayed favorable growth and cellular
heterogeneity characteristics involving the differentiation of
hepatocytes and cholangiocytes, mimicking liver tissue in vivo. In
particular, the liver organoids under perfused culture conditions
exhibited improved cell viability as well as endoderm- and
mature hepatocyte-specific gene expression. Moreover, when
compared to static cultures, they displayed enhanced metabolic
capabilities and liver-specific functions including albumin and
urea production. Finally, the liver organoids showed a dose- and
time-dependent hepatotoxic response to acetaminophen, which
again offers an ideal platform for drug testing (Wang et al., 2018).

Hepatotoxicity
Hepatotoxicity refers to the toxic effects of drugs and their
metabolites on liver tissue and usually implies chemical-
driven acute liver injury and failure. Toxicity analysis for
all kinds of drugs is essential prior to their approval for
entry into the market (Kaplowitz, 2005). Up to now, 2D
primary hepatocytes have been used as a model for drug
metabolism and toxicity screening. However, hepatocytes are
unstable and functionally ineffective in long-term cultures due
to impaired cytochrome P450 (CYP) activity. To this end,
hepatic organoids would offer an excellent platform on which to
perform chemical-induced hepatotoxicity prediction. Recently,
Mun et al. (2019) have found that hepatic organoids can
express Phase I drug metabolism CYP enzymes and Phase II
detoxification enzymes. Specifically, CYP1A2 and CYP3A4 were
induced following omeprazole treatment in hepatic organoid
culture. In addition, CYP3A4- and CYP1A2/2E1-mediated
hepatotoxic drugs (troglitazone and APAP, respectively) were
analyzed in 2D hepatocyte and organoid cultures. Based on
cell viability experiments following exposure to hepatotoxic
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drugs at clinically relevant concentrations, hepatic organoids
exhibited higher sensitivity than 2D hepatocytes. In particular,
the toxic concentration of trovafloxacin (a broad-spectrum
antibiotic) was approximately 50-fold higher in 2D hepatocytes
(Mun et al., 2019). In conclusion, organoid-based hepatotoxicity
analysis proves beneficial for drug screening studies and early
prediction of chemical-induced liver injury. Alternatively, our
recent findings suggest that iPSC-derived hepatic organoids can
be readily cultured for many generations (at least 48 passages)
and continue to preserve hepatic functions, rendering this model
suitable for long-term preclinical hepatotoxicity screening studies
(Akbari et al., 2019).

Biobanking
The organoid models will also serve as a renewable resource
via cryopreserved biobanks of healthy and diseased human
organoids (van de Wetering et al., 2015). Today, these “Living
Biobanks” are becoming increasingly attractive to researchers
in academia and industry for various purposes, especially
those related to the development of innovative therapeutic
strategies, the identification of novel diagnostic markers, and
the development of individualized patient treatment plans.
Recently, the Human Cancer Models Initiative (HCMI), was
established as an international collaboration between the US
National Cancer Institute (NCI), Cancer Research UK (CRUK),
the Wellcome Sanger Institute (WSI), and the Hubrecht
Organoid Technology (The HUB). As part of the pilot
phase, by using cutting-edge technologies, the HCMI aims
to generate, clinically annotate, and genetically characterize
around 1,000 next-generation cancer cell/organoid models from
patient tumors2. The overall goal of the HCMI is to advance
cancer research by providing the research community with
a large collection of readily accessible cancer cell models
and all the necessary resources, including consent forms and
standardized protocols, used for model development. These
cancer models can then be utilized to perform basic and
translational cancer research and contribute to drug target
discovery, the identification of novel disease-specific biomarkers,
and the development of preventive as well as therapeutic
strategies for personalized medicine.

Gene Therapy
Targeted gene therapy has been used with great success to
repair or inactivate mutations of genetic diseases in animal or
in vitro cell culture models. In the near future, many efforts
will likely be devoted to combining modern genome editing
tools with organoid technologies in vitro to generate healthy
isogenic organoids by repairing genetic defects in patient-derived
organoids. Hopefully, these technologies could potentially be
exploited to treat patients with life-threatening and otherwise
incurable diseases, granted that the grafts are accepted by
the recipient tissue without any immune rejection. As an
example, a disease-causing mutation has recently been reverted
to wild-type via CRISPR-Cas9 in patient-derived organoids
from Alagille syndrome, and the phenotype of the disease was

2https://ocg.cancer.gov/programs/hcmi

successfully rescued in vitro (Guan et al., 2017). We have
reason to believe that whenever the genome editing technologies
become fully applicable for clinical practice with regard to safety
and efficiency, organoid technologies will also become feasible
for such therapies.

Transplantation
Functional organoids are promising alternatives for cell and
whole organ transplantations, as they can be produced from
isogenic self-tissues. Using iPSC technologies, it is also possible
to generate HLA-matched tissue-specific organoids from readily
accessible tissue biopsies. Indeed, the capacity of in vitro cultured
organoids to repair diseased or damaged tissue in vivo has
been demonstrated by studies reporting functional engraftment
of orthotopically transplanted organoids in the kidney (van
den Berg et al., 2018), liver (Takebe et al., 2013; Huch
et al., 2015; Hu et al., 2018; Akbari et al., 2019), and brain
(Mansour et al., 2018). As a final remark, these transplantable
organoids should be produced following method validation,
a key element in proving the quality and reliability of the
product being developed, under Good Manufacturing Laboratory
(GMP) compliance.

LIMITATIONS

Even though the volume of literature on this topic has exploded
incredibly over the course of the last few years (named Method
of the Year 2017, 2018), the organoid technology remains
an imperfect cell culture model, and various challenges and
limitations need to be addressed to improve organoid models.
Currently, the time required for tissue maturation and for
organoid outgrowth is a major limitation, increasing the cost of
organoid generation, particularly for certain organoids such as
retina, brain, and liver, where early progenitor/undifferentiated
cells are present in the structure. Other limitations of organoid
culture are the lack of vascularization, which is essential for
nutrient exchange, and the lack of interaction with other
cell types of the native microenvironment, such as immune
and neural cells. Moreover, current organoid cultures fail
to recapitulate the complex network between different body
systems, which is a limiting factor in studying the coordinated
function and crosstalk between distinct organs. In addition,
organoid cultures are heterogeneous, with no reliable means
of synchronizing size, shape, and viability. This, unfortunately,
leads to complications in systematic data analysis and study
design (Fatehullah et al., 2016). Additionally, Matrigel is
often a critical component of organoid culture. Matrigel
derived from mouse-sarcoma is the major practical barrier
against the generation of human-transplantable organoids.
Furthermore, organoid culture is unable to mimic in vivo
growth factor/signaling gradients in matrix, a potential limitation
for organoid growth from certain tissues. To address these
challenges and overcome these limitations, biomimetic scaffolds
based on either synthetic polymers or natural macromolecules
need to be constructed, and protocols regarding media recipes
need to be modified.
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DISCUSSION

Organoids are one of the most accessible 3D cultures of cells
and organ fragments, in which the self-organizing properties
of stem cells and their differentiated progeny are orchestrated
to establish physiologically relevant models of human tissues
in vitro. These rapidly evolving models have a wide range
of applications, such as providing a source of functional
healthy and diseased human tissue from limited amounts of
starting material for studying tissue-specific biological processes,
analyzing the dynamics of stem cell behavior, and performing
drug screening and disease modeling at near-physiological
conditions, thus maximizing their potential to bridge the gap
between basic research and translational medicine. Increasing
interest in organoid technologies will ensure that these models are
accessible to a broad range of academic and clinical scientists. In
combination with a more defined ECM, it can be foreseen that a
highly accurate and reproducible culture model could emerge and
overcome existing constraints that prevent the transition from
bench to bedside.

Over the past decade, liver organoids have proved the
most powerful next-generation cell culture system in modeling
liver diseases and are becoming an increasingly viable option

for disease- or patient-specific therapeutic strategies in
personalized liver medicine.
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