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Sperm cryopreservation is an important technique for fertility management, but post-
thaw viability of sperm differs among breeding bulls. With metabolites being the
end products of various metabolic pathways, the contributions of seminal plasma
metabolites to sperm cryopreservation are still unknown. These gaps in the knowledge
base are concerning because they prevent advances in the fundamental science of
cryobiology and improvement of bull fertility. The objective of this study was to test
the hypothesis that seminal plasma amino acids are associated with freezability of bull
sperm. To accomplish this objective, amino acid concentrations in seminal plasma from
seven bulls of good freezability (GF) and six bulls of poor freezability (PF) were quantified
using gas chromatography–mass spectrometry (GC–MS). Multivariate and univariate
analyses were performed to identify potential freezability biomarkers. Pathways and
networks analyses of identified amino acids were performed using bioinformatic tools.
By analyzing and interpreting the results we demonstrated that glutamic acid was
the most abundant amino acid in bull seminal plasma with average concentration of
3,366 ± 547.3 nM, which accounts for about 53% of total amino acids. The other
most predominant amino acids were alanine, glycine, and aspartic acid with the mean
concentrations of 1,053 ± 187.9, 429.8 ± 57.94, and 427 ± 101.3 nM. Pearson’s
correlation analysis suggested that phenylalanine concentration was significantly
associated with post-thaw viability (r = 0.57, P-value = 0.043). Significant correlations
were also found among other amino acids. In addition, partial least squares-discriminant
analysis (PLS-DA) bi-plot indicated a distinct separation between GF and PF groups.
Phenylalanine had the highest VIP score and was more abundant in the GF groups than
in the PF groups. Moreover, pathway and network analysis indicated that phenylalanine
contributes to oxidoreductase and antioxidant reactions. Although univariate analysis
did not yield significant differences in amino acid concentration between the two groups,
these findings are significant that they indicate the potentially important roles of amino
acids in seminal plasma, thereby building a foundation for the fundamental science of
cryobiology and reproductive biotechnology.
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INTRODUCTION

There is an urgent need for more efficient, sustainable, and
profitable cattle farming to feed the ever-increasing world
population. Artificial insemination (AI) using cryopreserved
sperm is a significant tool for the agri-food industry to
improve modern animal production. The first attempt on
sperm cryopreservation was made in 1776 (Royere et al.,
1996); since then significant progress has been made using
various cryoprotective agents and protocols during the last
two centuries. Such progress, however, has not yet achieved
the desired level of success because post-thaw survivability of
sperm cells is disappointingly low, <50%, despite the best effort
put forward in developing preservation techniques (Nijs et al.,
2009). During cryopreservation, sperm cells undergo cellular
and molecular changes, among which are membrane damage,
oxidative stress, DNA fragmentation, reduced mRNA–protein
interactions, as well as epigenetic modifications (O’Connell
et al., 2002; Flores et al., 2011; Valcarce et al., 2013). Such
modifications have detrimental effects on sperm physiology and
thus on fertility.

Bovine seminal plasma is composed of secretions from
testis, epididymis, and accessory sex glands. Such mixture
contains proteins, ions, and metabolites including amino acids,
lipids, monosaccharides, nucleosides, minerals, electrolytes, and
steroid hormones (Egea et al., 2014; Cheng et al., 2015). As
metabolites are the end-products of metabolic pathways, they
play significant roles in sperm physiology such as energy
metabolism, motility, and regulation of metabolic activities
(Bieniek et al., 2016). While some components of seminal
plasma have positive influences on sperm cryotolerance,
others have detrimental effects (Yeste, 2016; Recuero et al.,
2019). Regardless, metabolites in seminal plasma can be used
to estimate bull fertility and sperm freezability. Hamamah
et al. (1993) analyzed seminal plasma from fertile and
infertile men using 1H nuclear magnetic resonance (NMR)
spectra, and found significant differences in concentrations of
glycerylphosphorylcholine citrate (GPC), and lactate between
azoospermic and oligoasthenozoospermic patients. Lin et al.
(2009) characterized the metabolite profiles of primate sperm
to investigate the association between metabolism and energy
supply. The association between glycolytic substrates and energy
production, which is essential for motility, was determined using
metabolomics approach in mouse spermatozoa (Goodson et al.,
2012). More recently, using both NMR and gas chromatography–
mass spectrometry (GC–MS), total of 96 metabolites and more
than 10 biological pathways were identified in human sperm
(Paiva et al., 2015).

Free amino acids of seminal plasma have various functions
including reducing free radicals, protecting cells against
denaturation, and providing oxidizable substrate to spermatozoa
(Mann and Lutwak-Mann, 1981). However, identities and roles
of seminal plasma amino acids during cryopreservation are not
fully understood. Alanine, glycine, glutamine, histidine, and
proline have been used as cryoprotectant agents for various
species as they either inhibit lipid peroxidation or modulate
osmotic mechanism (Heber et al., 1971; Renard et al., 1996;

Trimeche et al., 1999; Jaiswal and Eisenbach, 2002; Dvořáková
et al., 2005; Sangeeta et al., 2015). In addition to stabilizing
proteins, amino acids also possess antioxidant properties to
protect sperm cells from cold shock (Atessahin et al., 2008).
For example, proline improves motility and protects sperm
cells against damages caused by free radicals by stabilizing the
membrane structure and function during the freezing (Rudolph
et al., 1986; Smirnoff and Cumbes, 1989). Additionally, alanine
and glutamine also affect the motility and viability of the sperm
(Koskinen et al., 1989; Khlifaoui et al., 2005; Amirat-Briand
et al., 2009) by to some extent improving the cryoprotective
effects of glycerol.

Recently, we have identified 63 seminal plasma metabolites of
which 21 were amino acids from bulls with different field fertility
scores (Velho et al., 2018) demonstrating the importance of
metabolite profiles between low and high fertility bulls. Seminal
plasma addition before freezing also influenced on post-thaw bull
sperm kinematics (Nongbua et al., 2018). To investigate further
the impacts of seminal plasma composition on sperm cells, in this
study we ascertained the relationship between freezability and
amino acids in bull seminal plasma.

MATERIALS AND METHODS

Semen Collection and Determination of
Bull Semen Freezability
Seminal plasma samples from 13 bulls with various freezability
and semen freezability data were provided by a commercial
breeding company (Alta Genetics Inc., Watertown, WI,
United States). The bulls were housed in the same nutrition
and management environment to prevent sample variation.
Semen was collected using artificial vagina and protease
inhibitor was added immediately. Semen was then centrifuged
at 800 × g for 15 min to separate the seminal plasma and
sperm. This seminal plasma was transferred into sterile
microcentrifuge tubes and centrifuged again at 800 × g for
15 min to completely eliminate sperm in the sample. Following
this second centrifugation, seminal plasma was transferred into
new tubes and shipped to Mississippi State University (MSU) in
a liquid nitrogen tank.

Bull semen was extended with commercial egg-yolk–tris-
based extender, and then frozen at Alta Genetics using standard
protocols (Pace et al., 1981). Briefly, fresh semen was collected
from bulls via artificial vagina, and semen was evaluated for
concentration, volume, color, and motility. Then, semen was
extended with one-step egg-yolk–tris–glycerol extender. The
extender included 20% egg-yolk and 6% glycerol. This is
called initial extension which includes fourfold dilution with
extender at 32◦C. The extended semen was cooled down to
5◦C within 90 min. Then, the remaining extender was added
at 5◦C to complete extension, and packaged into quarter cc
straws (250 µl) and let semen equilibrate for 3–4 h. Following
the equilibration process, straws were frozen using automated
freezer machine. The freezing was completed within 14 min
(temperature from 5◦C to −196◦C), and stored in a liquid
nitrogen tank.
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Post-thaw sperm viability was assessed using flow cytometry
(CyFlow SL, Partec, Germany). Fluorescent stain combinations
of SYBR-14 with propidium iodide (SYBR-14/PI, Live/Dead
Sperm Viability Kit L-7011, Thermo Fisher Scientific) were
used as described previously (Garner et al., 1994; Nagy
et al., 2004). Membrane integrity of 10,000 sperm cells from
each collection was measured with the highest accuracy and
objectivity. We verified that biological sample preparations,
instrument configurations, and data analysis were compliant
with the recommendations set by the International Society for
Advancement of Cytometry on the minimum information
necessary. The CyFlow SL (Partec, Münster, Germany)
instrument equipped with 488 nm blue state laser allowed
excitation of SYBR14 and PI to measure sperm viability. It was
also fully equipped with five parameters: FSC, SSC, red, green,
and orange/yellow colors. With the Partec FloMax software, the
instrument allowed a real-time data acquisition, data display,
and data evaluation.

The quality control measures and repeatability of flow
cytometric sperm viability analysis were routinely verified
by control samples which consisted of positive (100% dead
sperm) and negative control (100% live sperm) of standard
biological samples and their mixture of different ratios (100/100,
75/25/50/50, 25/75, and 100/100% dead and live sperm
combinations). Another quality measure we used was the control
of reagents (SYBR-14 and PI). The reagents and biological
standards were used to calibrate the instrument settings and
data processing. In the calibration, non-sperm particles were
gated out and not included in the calculations. Partially stained
(green and red) moribund sperm were considered as dead in the
analysis. The percentage of live (green) sperm is used as a measure
of sperm freezability parameter, the percentage of sperm that
maintained membrane integrity during freeze–thawing process.
The following formula was used to count the percentage of viable
sperm: The% Viable sperm = The number of viable sperm/Total
sperm (viable+ dead+moribund)× 100.

Collectively, a unique freezability phenotype was generated
to characterize variation among bulls for their lifetime post-
thaw viability of sperm. For this particular research, we used
post-thaw viability data generated over 8 years period (between
2008 and 2016). The database included 100,448 ejaculates from
860 Holstein bulls that were collected at least 20 different
times in approximately 3 months period. The average and
standard deviation of post-thaw viability for individual bulls were
calculated, and then bulls were ranked based on average post-
thaw semen viability. The threshold was the population average
which consisted of the 100,448 ejaculates from 860 Holstein
bulls. The average post-thaw viabilities of all bulls ranged from
33.03 to 67.3% (population average 54.7 ± 5.4%). The bulls
were then classified as GF and PF based on average post-
thaw viability score and the differences from the population
average. The population average was our threshold to classify
GF and PF groups. Bulls with greater sperm post-thaw viability
than population average grouped as GF while those lower
than average were considered as PF. Total of 13 bulls were
selected with high confidence among 860 bulls for the presented
study (Table 1).

TABLE 1 | Semen freezability phenotypes of the Holstein bulls used for GC–MS
analysis: (A) Bulls 1–7 were defined as good freezability (GF) and Bulls 8–13 were
grouped as poor freezability (PF) and (B) Percent differences of good and poor
freezing phenotypes from the population average.

(A)

Bull
No.

Freezability
status

Average
post-thaw

viability (%)

Difference from
population

average (%)

1 Good freezability 66.19 11.50

2 64.40 9.71

3 64.28 9.59

4 62.34 7.65

5 61.95 7.26

6 59.92 5.23

7 58.37 3.68

8 Poor freezability 55.03 0.34

9 54.92 0.23

10 54.77 −0.08

11 52.68 −2.01

12 49.23 −5.46

13 48.93 −5.76

(B)

Bulls were classified as good freezability and poor freezability based on average
post-thaw viability scores and the percent differences from the population average
(P < 0.001).

Sample Preparation for Gas
Chromatography–Mass Spectrometry
Analysis
The amino acid analyses of seminal plasma from 13 bulls with
various freezability were performed using EZfaast Amino Acid kit
(©Phenomenex Inc., Torrance, CA, United States) as previously
described by Kaspar et al. (2008). All samples were prepared and
analyzed according to protocol that provided by Phenomenex
Inc., Torrance, CA, United States. Briefly, 10 µl of seminal plasma
and 25 µl of internal standard solution (norvaline 0.02 nM and
N-propanol 10%) were pipetted into glass sample preparation
vials. Solution in the sample preparation vial was passed through
the sorbent tip using a syringe. Then, 200 µl of N-propanol
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was pipetted into the same vial and passed through the sorbent
tip and into syringe barrel. Drained liquid from sorbent tip
was discarded. One hundred and twenty microliters of sodium
hydroxide and 80 µl of N-propanol were pipetted into same glass
vial, and the particles inside the sorbent tip were ejected into
solution. A volume of 50 µl of chloroform–propyl chloroformate,
and 100 µl of iso-octane were transferred to the tube and the
resulted mixture was vortexed for 1 min after each adding.
Transparent part of the (upper) organic layer transferred into
autosampler vial, and evaporation of the solvent was achieved
using a TurboVap R© LV evaporator (Biotage, Charlotte, NC,
United States) with a gentle stream of nitrogen at 30◦C. The
extract was then suspended in 50 µl of solution containing iso-
octane (80%) and chloroform (20%) and transferred to an amber
glass vial having a fixed insert (Agilent Technologies, Santa Clara,
CA, United States) for the analysis using GC–MS.

Amino Acid Analysis Using Gas
Chromatography–Mass Spectrometry
We used recommended GC-MS parameters to analyze the
seminal plasma amino acids and the reference standards in an
Agilent 7890A GC System that was coupled to an Agilent 5975C
inert XL MSD with triple-axis mass detector, an Agilent 7693
Series Autosampler, and a capillary column (ZebronTM EZ-AAA
10 m× 0.25 mm; ©Phenomenex, Santa Clara, CA, United States).
The derivatized mixture (1.5 µl) was injected into the inlet
that was heated at 250◦C with 1:15 split ratio. Following the
injection of the sample at 3 ml/min, standard septum purge
was performed using helium carrier gas at 1 ml/min constant
flow rate. Auxiliary, ion source, and quadrupole were heated at
310, 240, and 180◦C, respectively. The oven was programmed
initially at 110◦C, and ramped up to 320◦C within 11 min.
The solvent delay time was at 1.30 min. The MS was operated
in selected ion monitoring (SIM) mode and appropriate ion
sets were selected. All amino acids were identified based on
retention times, target and qualifier ions in comparison with
authentic standards supplied by ©Phenomenex Inc., Torrance,
CA, United States (Table 2). For calibration, increasing volumes
of the diluted standards (0, 5, 10, 40, 80, 160, and 200 nmol/ml)
were as described above. Abundances of the target ions of amino
acids were divided by abundance of target ion of the internal
standard (norvaline) and the unitless ratios were used to calculate
amino acid concentrations using internal standard calibration.

Statistical Analysis
The associations between freezability of sperm and concentration
of seminal plasma amino acids were assessed using both
univariate and multivariate approaches. For univariate approach,
a generalized linear mixed model was used to determine the
statistical significance between GF and PF groups. The variance
was estimated by the GLIMMIX procedure of SAS 9.4 (SAS
Institute Inc., Cary, NC, United States). The Kenward–Roger
approximation was used to calculate the degree of freedom
in case of heterogeneous variances. In addition, correlations
among seminal plasma amino acids and correlations between
seminal plasma amino acid concentrations and freezability

TABLE 2 | Selected ions and retention times for the SIM analysis of 22 amino
acids, dipeptides and internal standard (norvaline).

Amino acid Abbreviation Retention
time

Target ion
(m/z)

Qualifier ion
(m/z)

Alanine ALA 1.42 130 88

Glycine GLY 1.53 116 207

Alpha-aminobutyric acid ABA 1.64 144 102

Valine VAL 1.74 158 116

Beta-aminobutyric acid Beta-AiB 1.83 158 116

Norvaline NOR 1.88 158 72

Leucine LEU 1.97 172 76

Allo-isoleucine aILE 2.00 172 130

Isoleucine ILE 2.03 172 130

Threonine THR 2.25 160 101

Serine SER 2.29 146 203

Proline PRO 2.37 156 243

Asparagine ASN 2.47 155 69

Aspartic acid ASP 3.04 216 130

Methionine MET 3.08 203 277

4-Hydroxyproline 4HYP 3.22 172 86

Glutamic acid GLU 3.42 230 170

Phenylalanine PHE 3.45 206 190

Alpha-aminoadipic acid AAA 3.73 244 98

Ornithine ORN 4.48 156 70

Lysine LYS 4.75 170 128

Tyrosine TYR 5.24 206 107

Tryptophan TRP 5.54 130

All amino acids were identified based on retention time, target and qualifier ions.

scores were determined using Pearson’s correlation (Xia and
Wishart, 2011). For multivariate analyses, MetaboAnalyst 3.01

(Xia et al., 2015) was used. For each variable, an observation
was subtracted from the overall mean and the difference
was divided by the standard deviation. This scaling or
normalization of the data allowed us to bring the variances
of all variables to the value of 1 while preserving the relative
variability among observations within a variable. Following
the normalization of data, partial least squares regression-
discriminant analysis (PLS-DA) was performed and the bi-plot
was constructed. The VIP scores in PLS-DA were calculated
to identify significance of variables on phenotype. A VIP score
>1.5 was considered as significant for group separation, and
the significance level of 0.05 was used to determine statistical
significance for other analyses. GraphPad Prism 8 was used
(GraphPad Software, Inc., La Jolla, CA, United States) to generate
some of the figures.

Pathway and Network Analysis
Pathways and network analyses of amino acids were performed
using bioinformatic tools. The pathway-based compound-
reaction-enzyme-gene networks were identified using MetScape
3.1 (Karnovsky et al., 2012) which was plug in Cytoscape
3.7.12. Interactomes of gene products defined by MetScape 3.1

1http://www.metaboanalyst.ca
2https://cytoscape.org/
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FIGURE 1 | Representative GC–MS chromatogram of bull seminal plasma. Total of 21 amino acids were identified using SIM (selected ion monitoring), Norvaline
used as an internal standard with a concentration of 200 nM.

were identified using the biological networks gene ontology
tool (BiNGO) within Cystoscope 3.7.1. A merged network was
created in Cystoscope by entering subjected genes to analyze

TABLE 3 | Average amino acid concentrations (nM) of seminal plasma from good
and poor freezability semen (mean ± SD).

Amino acid Good freezability Poor freezability Both

Alanine 943.4 ± 232.9 1180.00 ± 318.6 1053 ± 187.9

Glycine 464.7 ± 90.62 389.10 ± 73.09 429.8 ± 57.94

α-Aminobutyric acid 6.349 ± 3.17 9.65 ± 4.258 7.874 ± 2.53

Valine 145.3 ± 13.89 134.80 ± 33.49 140.5 ± 16.43

β-Aminobutyric acid 92.77 ± 13.81 94.03 ± 25.50 93.35 ± 13.28

Leucine 140.7 ± 15.73 141.00 ± 26.44 140.8 ± 14.18

Allo-isoleucine 4.70 ± 1.67 7.32 ± 4.348 5.912 ± 2.13

Isoleucine 54.06 ± 5.93 45.66 ± 13.38 50.19 ± 6.73

Threonine 104.3 ± 19.67 149.10 ± 36.93 125 ± 20.20

Serine 250.2 ± 52.74 310.90 ± 63.93 278.2 ± 40.14

Proline 35.56 ± 9.34 46.87 ± 17.39 40.78 ± 9.18

Asparagine 1.98 ± 1.90 4.02 ± 1.63 2.92 ± 1.25

Aspartic acid 412.0 ± 120.3 444.40 ± 181.7 427 ± 101.3

Methionine 7.851 ± 1.99 10.27 ± 3.16 8.97 ± 1.76

4-Hydroxyproline 49.50 ± 9.74 44.45 ± 5.21 47.17 ± 5.59

Glutamic acid 3567 ± 899.8 3131.00 ± 635.6 3366 ± 547.3

Phenylalanine 25.53 ± 2.06 18.72 ± 1.28 22.38 ± 1.56

α-Aminoadipic acid 18.21 ± 3.23 16.23 ± 1.53 17.29 ± 1.83

Ornithine 33.39 ± 4.83 27.27 ± 3.98 30.56 ± 3.18

Lysine 77.43 ± 13.63 58.42 ± 12.76 68.65 ± 9.42

Tyrosine 14.25 ± 2.71 11.26 ± 2.78 12.87 ± 1.91

the interactome of genes for Bos Taurus, and significance level
was set as 0.05.

RESULTS

Amino Acid Concentration in Bull
Seminal Plasma
Twenty-one amino acids were detected in bull seminal plasma
(Figure 1). Free amino acid concentrations of bull seminal

FIGURE 2 | Concentrations of the most and the least abundant amino acids
in bull seminal plasma. (A) The most abundant amino acids in bull seminal
plasma was glutamic acid. Alanine, glycine, aspartic acid, and serine were the
other predominant amino acids in bull seminal plasma. (B) The least
predominant amino acids were tyrosine, methionine, alpha aminobutyric acid,
allo-isoleucine, and asparagine.
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FIGURE 3 | Pearson’s correlations among amino acids identified in bull seminal plasma. (A) Correlation matrix of amino acid concentrations in seminal plasma
[shaded lines: Pearson correlation coefficients (r); white boxes: P-value; highlighted boxes: P < 0.05). (B) Heatmap of Pearson’s correlations among amino acids
identified in bull seminal plasma.
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plasma are depicted in Table 3. Among these, glutamic acid was
the most abundant amino acid in seminal plasma with an average
concentration of 3366± 547.3 (mean± SD) nM, which accounts
for approximately 53% of all the amino acids. The other most
predominant amino acids were alanine, glycine, aspartic acid, and
serine with mean concentrations of 1053 ± 187.9, 429.8 ± 57.94,
427± 101.3, and 278.2± 40.14 nM, respectively (Figure 2A). The
least abundant were tyrosine, methionine, alpha-aminobutyric
acid, allo-isoleucine, and asparagine with mean concentrations
of 12.87 ± 1.91, 8.97 ± 1.76, 7.87 ± 2.53, 5.91 ± 2.13, and
2.92± 1.25 nM, respectively (Figure 2B).

Identification of Potential Freezability
Biomarkers
There was no significant difference in amino acid concentrations
between GF and PF groups (P > 0.05). However, phenylalanine
concentration was significantly correlated with average post-thaw
viability (r = 0.57, P-value = 0.044). Additionally, there were

significant correlations among individual amino acids (Figure 3),
such as the concentration of proline was positively correlated
with leucine (r = 0.90, P-value < 0.0001), iso-leucine positively
correlated with valine (r = 0.92, P-value < 0001), and the
concentration of threonine was positively correlated with alanine
(r = 0.95, P-value < 0001).

The multivariate analysis, PLS-DA, of seminal plasma amino
acids showed a distinct separation between GF and PF bulls
(Figure 4). PLS-DA was used for the classification. A variable
importance in projection (VIP) score, which is widely used in
PLS-DA, rank the amino acids considering their significance
in discrimination between the GF and PF bulls. VIP score is
referred as a weighted sum of squares of the PLS loadings.
The X-axis specifies the VIP scores to each variable on the
Y-axis. Therefore, amino acids with VIP score >1.5 was
identified as phenylalanine, and VIP score in the corresponding
heat map demonstrated that phenylalanine is more abundant
in seminal plasma of the GF bulls than in that of PF
bulls (Figure 5).

FIGURE 4 | Partial least squares discriminant analysis (2D PLS-DA) of the seminal plasma amino acids from good freezability (GF) and poor freezability (PF) bulls.
The plots indicate a separation between GF and PF bulls. PLS-DA was obtained with two components.
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FIGURE 5 | Variable importance in projection (VIP) plot displays the top 15
most important amino acid features identified by PLS-DA. Colored boxes on
right indicate concentration of corresponding amino acid from GF and PF
samples. VIP score is a weighted based on PLS-DA model.

Pathways and Networks of Seminal
Plasma Amino Acids
Pathway and network analyses of the amino acids with highest
VIP scores (phenylalanine and threonine) and the most abundant
amino acids (glutamic acid, alanine, and glycine) were performed
using MetScape (3.1.3) (Karnovsky et al., 2012). By analyzing
the results, we showed that phenylalanine was involved in
tyrosine metabolism, and interacted with several compounds and
genes (Figure 6A). The interactome of phenylalanine showed
that this amino acid contributes to a number of cellular and
biological processes, such as antioxidant detoxification, metabolic
processes of reactive oxygen species, and oxidoreductase activity
(Table 4). Threonine was involved in glycine, serine, alanine, and
threonine metabolism and it shows significant gene ontology in
terms of cellular amino acids and derivative metabolic processes
(Figure 6B). Glutamic acid was correlated with many genes,
enzymes, and other reactions (Figure 6C), most of which occur
in mitochondria. It has a significant interactome regarding
oxidoreductase activity, regulation of cell death, and the oxoacid
metabolic process. It also contributes to histidine metabolism, the
urea cycle, and the metabolism of arginine, proline, glutamate,
aspartate, and asparagine, and Vitamin B9 (folate) metabolism.
Alanine created a significant gene ontology in terms of ligase
activity and forming carbon–oxygen bonds, and is also involved
in pathways of glycine, serine, alanine, and threonine metabolism
(Figure 6D). Finally, glycine is involved in seven different
biological and cellular pathways, and has generated significant
gene ontology in terms of oxidoreductase activity (acting on

the CH-NH2 group of donors), sarcosine oxidase activity, and
D-amino-acid oxidase activity. All findings are summarized
in Table 4.

DISCUSSION

Successful sperm cryopreservation is an imperative element of
fertility management and assisted reproductive studies (ART).
The contributions that seminal plasma metabolites have on
sperm cryopreservation are still largely unknown. In this
present study, we performed GC–MS analyses to investigate
the amino acid profiles of bull seminal plasma and classify
potential biomolecular markers of freezability. Consecutively,
bioinformatic tools were used to identify network and biological
pathways of seminal plasma amino acids. To the extent
of our knowledge, our study is the first to conduct an
extensive assessment of amino acids in bull seminal plasma
considering association of specific seminal plasma amino acids
with freezability phenotypes.

Seminal plasma is a complex fluid composed of a broad
range of metabolites such as organic compounds and energy
substrates. Biochemical compositions of seminal plasma differ
among species and even among individual males (Killian
et al., 1993). This may be due to different management and
feeding variations as well as metabolic activity of sperm. These
metabolites in seminal plasma have functional roles in sperm
preservation, motility, and control of metabolic activity (Bieniek
et al., 2016). Amino acids and peptides are the major biochemical
compounds found in bovine sperm and its seminal plasma. There
is a wide range of amino acids in seminal plasma of which
concentrations of many rise after ejaculation due to the massive
proteolytic activities occurring in semen (Mann, 1964). Amino
acids function as oxidizable substrates for the energy supply,
causing reactions in semen (Neumark and Schındler, 2007).

The most abundant amino acid present in seminal plasma is
glutamic acid accompanied by a considerable level of glutamic
oxaloacetic transaminase (GOT) activity (Flipse, 1960). As in
earlier bull semen studies, the abundance of glycine, alanine,
serine, aspartic acid, and glutamic acid is found to be high and
high levels of amino acids in seminal plasma are higher than
in sperm (Roussel and Stallcup, 1967). In a recent study aimed
at analyzing metabolomes of seminal plasma from bulls with
somewhat higher vs. lower fertility, researchers have identified
63 metabolites, in seminal plasma, of which 21 are amino acids
that can be potential biomarker of fertility. Abundances of L-
leucine and ornithine differed between the fertility groups, and
the levels of fructose were correlated with those of glutamic acid
and amino-butyrolactone (Velho et al., 2018). In other studies,
researchers have determined different numbers of amino acids
and peptides, in seminal plasma of bull, where glutamic and
aspartic acid were the most abundant, and were associated with
fertility and pregnancy rates (al-Hakim et al., 1970; Holden et al.,
2017). Also, seminal plasma of human and other species were
found to contain large numbers of amino acids (Engel et al., 2019;
Santiago-Moreno et al., 2019). Fertility and sperm freezability are
not always related. This current study was aimed at ascertaining
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FIGURE 6 | Continued
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FIGURE 6 | Pathway and network analyses of the amino acids with highest VIP scores (phenylalanine, threonine) and the most abundant amino acids (glutamic acid,
alanine) were performed using MetScape. (A) Phenylalanine, (B) threonine, (C) glutamate, and (D) alanine. Amino acids are shown in red hexagons. Gray square:
Reaction node with reaction ID; Pale red hexagon: Compound node; Green square: Enzyme node; Blue circle: Gene node.
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TABLE 4 | The interactome of amino acid shows that amino acid contributes
to a great number of cellular and biological processes, such as antioxidant
detoxification, reactive oxygen species metabolic processes, and
oxidoreductase activity.

Amino acid GO ID Description P-value

Phenylalanine 10602 Oxidoreductase activity, acting on
paired donors, with incorporation or
reduction of molecular oxygen, reduced
pteridine as one donor, and
incorporation of one atom of oxygen

0.003

10636 Cellular biosynthetic process 0.007

10652 Oxygen and reactive oxygen species
metabolic process

0.025

10677 Response to stress 0.016

10678 Response to oxidative stress <0.0001

10680 Tyrosine metabolic process 0.004

10733 Oxidoreductase activity, acting on
peroxide as acceptor

<0.0001

10735 Response to reactive oxygen species <0.0001

10738 Antioxidant activity <0.0001

10788 Hydrogen peroxide metabolic process 0.012

10789 Hydrogen peroxide catabolic process 0.007

10865 Vitamin binding <0.0001

10879 Peroxiredoxin activity 0.007

10894 Oxidation reduction 0.001

10913 Cellular response to reactive oxygen
species

0.013

11069 Fatty acid transport 0.008

Threonine 11913 Cellular amino acid and derivative
metabolic process

0.017

Glutamic acid 8483 Transaminase activity <0.0001

16639 Oxidoreductase activity, acting on the
CH-NH2 group of donors, NAD or
NADP as acceptor

0.001

12782 Regulation of cell death 0.047

43436 Oxoacid metabolic process <0.0001

Alanine 15707 Ligase activity, forming carbon–oxygen
bonds

0.017

15722 Small molecule metabolic process 0.008

Glycine 16641 Oxidoreductase activity, acting on the
CH-NH group of donors, oxygen as
acceptor

0.001

8115 Sarcosine oxidase activity 0.001

3884 D-Amino-acid oxidase activity 0.003

17834 Oxidoreductase activity, acting on the
CH-NH2 group of donors

0.016

seminal plasma amino acids associated with sperm freezability.
In the current study, we identified the glutamic acid as the most
abundant amino acid. We also demonstrated that glutamic acid
was correlated with a number of genes, enzymes, and other
reactions, most of which occur in mitochondria. This provides
an important evidence of interactome regarding oxidoreductase
activity, regulation of cell death, the oxoacid metabolic process,
and significant possibility of influence on cell energy production.

The other most predominant amino acids revealed in our
study were alanine, glycine, aspartic acid, and serine. When these
amino acids in seminal plasma were compared to those found in

human seminal plasma (Li et al., 2019), profiles of some seminal
plasma amino acids were similar to those profiles we found such
as serine, glycine, and glutamic acids. The least abundant in
our study, on the other hand, are tyrosine, methionine, alpha-
aminobutyric acid, allo-isoleucine, and asparagine, and are found
to be similar with the low levels of amino acids of methionine
and tyrosine in bull (Assumpção et al., 2005). Also, in domestic
fowl, valine, serine, glycine, and alanine were the most abundant
amino acids followed by glutamic acid (Santiago-Moreno et al.,
2019). The alanine created a significant gene ontology in terms
of its ligase activity and formed carbon–oxygen bonds, and
is also involved in pathways of glycine, serine, alanine, and
threonine metabolism.

During the cryopreservation process, sperm undergo critical
cryo-injury based on membrane damage, oxidative stress, and
DNA fragmentation which reduce post-thaw viability of sperm
cells. Even though the exact cryo-protectant mechanisms of
amino acids have not been clearly understood, it is presumed
they may bind phospholipid membrane bilayers and stabilize
the cell membranes (Bilodeau et al., 2001). In addition, osmo-
regulative and antioxidative features may provide resilience
during freezing–thawing (Kruuv and Glofcheski, 1992; Farshad
and Hosseini, 2013). However, there are not a great number of
studies that have investigated the protective influence of amino
acids against cryo-injury. Previous studies have claimed that
seminal plasma supplementation of amino acids into semen
extenders improved sperm viability, acrosome integrity and
membrane integrity of sperm (Ali Al Ahmad et al., 2008), and
post-thaw semen quality (Saravia et al., 2009). More specifically,
in human research, it was found that addition of glutamine to
semen as a cryoprotectant agent increased post-thaw motility
in human sperm (Atessahin et al., 2008). In animal studies,
supplementation of extender solutions with glutamine, glycine,
and cysteine enhanced acrosome and membrane integrity of
buffalo bull semen (El-Sheshtawy et al., 2008). Additionally,
there was a positive correlation between membrane integrity and
the concentration of valine, isoleucine and leucine, and lysine
(Santiago-Moreno et al., 2019).

One of the most common negative consequences of
cryopreservation of sperm cell is DNA damage, and majority
of DNA lesions in sperm cells is caused by oxidative stress
(Zribi et al., 2010). Seminal plasma content plays a significant
role in protection against oxidative stress. Aitken and Baker
(2004) clarified that taurine and hypotaurine are the amino acids
that reduce oxidative stress through binding to the oxidizing
agents. In addition, supplementation of donkey semen with
glutamine reduced DNA fragmentation index (Bottrel et al.,
2018). Sangeeta et al. (2015) reported that supplementation
of ram sperm with L-glutamine and L-proline reduced lipid
peroxidation and increased acrosomal integrity. Glutamic acid is
the key component of glutathione which has been demonstrated
to inhibit cellular damage resulting from lipid peroxidation
and reactive oxygen species (Arai et al., 1999). In the present
study, we showed that phenylalanine is more abundant in
seminal plasma of the GF bulls than in that of PF bulls. It
has significant gene ontology terms for antioxidant activity,
response to oxidative stress, and oxidoreductase activity through
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its actions on peroxide as acceptor, and metabolic processes of
oxygen as well as reactive oxygen species. We postulate that
phenylalanine could have an antioxidant effect, and increased
concentrations of phenylalanine in seminal plasma may reduce
DNA damage caused by oxidative stress. Moreover, PLS-DA
results demonstrate a distinct separation between GF and PF
groups. Thus, the abundance of glutamic acid may explain
protective effects of seminal plasma during cryopreservation.
Furthermore, glutamine may play an important role in gene
expression redox-potential, and cell integrity (Curi et al., 2005).
It has been assumed electrostatic interactions between plasma
membrane phospholipids and amino acids help to generate a
layer on the sperm surface, and which thus protects the sperm cell
from cryo-injury (Anchordoguy et al., 1988; Kundu et al., 2001).

CONCLUSION

We have found that glutamic acid, alanine, and glycine are the
predominant metabolites in bull seminal plasma. It is clear that
there is a distinct separation of the amino acid profiles for the
seminal plasmas of GF and PF bulls. According to our findings,
phenylalanine could be considered as a freezability biomarker,
and may be used as a cryoprotectant supplement. In addition,
amino acid profiles of the seminal plasma could be used to
determine the freezability phenotypes. These findings help us
better understand the exact mechanisms of cryopreservation for
sperm cells as well as other cell types.
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