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Mechanomics represents the natural progression of knowledge at the intersection of
mechanics and biology with the aim to codify the role of mechanical environment on
biological adaptation. Compared to the mapping of the human genome, the challenge
of mapping the mechanome remains unsolved. Solving this grand challenge will require
both top down and bottom up R&D approaches using experimental and computational
tools to visualize and measure adaptation as it occurs. Akin to a mechanical test
of a smart material that changes its mechanical properties and local environment
under load, stem cells adapt their shape, cytoskeletal architecture, intrinsic mechanical
properties, as well as their own niche, through cytoskeletal adaptation as well as up- and
down-regulation of structural proteins that modulate their mechanical milieux. Recent
advances in live cell imaging allow for unprecedented study and measurements of
displacements, shape and volume changes in stem cells, reconfiguring of cytoskeletal
machinery (nucleus, cytoskeleton), in response to controlled mechanical forces and
stresses applied at cellular boundaries. Coupled with multiphysics computational and
virtual power theoretical approaches, these novel experimental approaches enable
mechanical testing of stem cells, multicellular templates, and tissues inhabited by
stem cells, while the stem cells themselves evolve over time. The novel approach is
paving the way to decipher mechanisms of structural and functional adaptation of stem
cells in response to controlled mechanical cues. This mini-review outlines integrated
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approaches and methodologies implemented to date in a series of studies carried
out by our consortium. The consortium’s body of work is described in context of
current roadblocks in the field and innovative, breakthrough solutions and is designed
to encourage discourse and cross disciplinary collaboration in the scientific community.

Keywords: mechanoadaptation, stem cell, live imaging, cell motility, cell adherence, mechanomics

INTRODUCTION

Mechanomics studies the influence of forces on biological
structure and function, across length scales, from molecules to
cells, to tissues, to organs and organ systems that make up
organisms. Mechanomics encapsulates the natural progression
of knowledge at the intersection of mechanics and biology,
from an understanding of biomechanics and mechanobiology,
with the aim to codify the role of mechanical environment
on biology. Substituting the words “mechanics” and “genetics,”
mechanomics could be considered the mechanics equivalent of
genomics, which addresses the role of genetics on structure
and function in biology. While the genome includes genes or
genetic material encoded chemically (base pairs) and structurally
(chromosomes) within a cell or organism, the mechanome
comprises the genome’s environmental equivalent that literally
shapes the organism at every length scale, throughout organismal
life and evolution of species. The mechanome, like the genome,
is unique to each individual. Yet the mechanome is not pre-
programed at conception. Indeed, the mechanome is quite
the opposite–it is adaptive, making it challenging to codify
while also compelling to emulate, as a means to promote well
being and to harness for therapeutic purposes throughout life
(Anderson and Knothe Tate, 2007a; Knothe Tate et al., 2008,
2016a; Knothe Tate, 2017).

EMERGING CONCEPT

The basic concept that forces intrinsic to life on Earth shape
the structure, and thereby modulate function and adaptation of
living organisms, from conception and throughout life, has a rich
history. Centuries of research and observations recorded in a vast
body of scientific literature underpin the concept, e.g., among
others, Leonardo Da Vinci (1452–1519), Giovanni Borelli (1608–
1679), D’Arcy Thompson (1860–1948), and Friedrich Pauwels
(1885–1980) (Anderson et al., 2008; Knothe Tate et al., 2016a).
Mapping the mechanome is an emerging concept that follows in
the progression of the large scale human genome mapping project
initiated in 1990 and completed in 2003, where circa 3.3 billion
base pairs of the human genome were sequenced and identified
(Collins et al., 2003).

In contrast to mapping the human genome, the challenge
of mapping the mechanome remains unsolved, likely because
it presents further dimensions of complexity, the principal
one being the adaptation of living material over time, which
itself plays out in development, growth, adaptation and aging
of individuals over a lifetime and evolution of species and
phyla over generations. Indeed, understanding and mapping the

underlying mechanisms of mechanical adaptation of cells
and the tissues they create, making up organs and organ
systems of living organisms, over time periods ranging
from periods of development to lifetimes to evolutionary
time periods is a grand challenge of biology (Figure 1)
(Knothe Tate et al., 2010b, 2016a).

Solving this grand challenge will require both top down
and bottom up R&D approaches using experimental and
computational tools to visualize and measure adaptation as
it occurs (Anderson et al., 2005; Anderson and Knothe Tate,
2008). Top down approaches start with the big picture, in full
cognizance of the system complexity, and provide invaluable
contextual information regarding the system’s building blocks,
i.e., cells, in their natural and or model environments. Bottom
up approaches piece together units to build complexity (Knothe
Tate, 2011). In the context of mechanomics, one could argue that
the most basic unit comprises the totipotent and/or pluripotent
stem cell which itself arises from the fertilized egg, through which
the complex organismal system emerges over a lifetime.

Akin to a mechanical test of a smart material that changes
its mechanical properties and local environment under load,
stem cells adapt their shape, cytoskeletal architecture, intrinsic
mechanical properties, as well as their own niche, through
cytoskeletal adaptation as well as up- and down-regulation of
structural proteins that modulate their mechanical milieu. Recent
advances in live cell imaging allow for unprecedented study and
measurements of displacements, shape and volume changes in
stem cells, their cytoskeletal machinery (nucleus, cytoskeleton)
and local environment, in response to controlled mechanical
forces and stresses applied at cellular boundaries. Together,
these enable experimental studies akin to mechanical testing
of stem cells, multicellular templates, and tissues inhabited by
stem cells, while the stem cells themselves evolve over time.
The approaches are paving the way to decipher mechanisms
of structural and functional adaptation of stem cells in
response to controlled mechanical cues (Anderson et al., 2008;
McBride and Knothe Tate, 2008; Song et al., 2010, 2012, 2013;
McBride et al., 2011a).

Similarly, new approaches to mechanics of materials
enable characterization of the cell’s stress state using
virtual power theory. This mathematical approach predicts
the energy expended over time (power) during a virtual
mechanical test of an idealized cell model, where the cell
is idealized as a collection of infinitesimally small material
elements. Through iterative implementation of the model,
mechanoadaptation of a cell can be predicted over time
(Knothe Tate et al., 2016b). Displacements and/or stresses
and strains measured in the experimental models noted
above serve as inputs for the analytical and/or computational
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FIGURE 1 | Multiscale and multidisciplinary approaches to mechanomics. (A) Mechanoadaptation of tissues and organs aligns closely with mechanoadaptation at a
cellular level, since cells manufacture the structural proteins making up the extracellular tissue matrix and the matrix in turn modulates how exogenous mechanical
signals are transferred to cells and their nuclei, after (Ng et al., 2017), used with permission. (B) A recently updated first map of the mechanome includes data points
from a number of labs in which volume and shape changing stresses were mapped against time and lineage commitment was noted by the shape of the data point,
after (Anderson and Knothe Tate, 2007a; McBride et al., 2008; Ng et al., 2017), used with permission. (C) Fate map for mesenchymal stem cells. Mesenchymal
condensation (blue dotted box, E11.5 in the mouse), the first step in skeletogenesis, is followed by lineage commitment toward chondrogenic (orange), osteogenic
(blue), and adipogenic (green) fates. Transcription levels for factors (red and blue font) at points in time can be used to benchmark stages of development along
specific lineages, after (Song et al., 2013), used with permission. (D) Each oval represents a 95% confidence area for specific lineage commitment (indicated by
color) associated with areas ranges of shear and normal stress states, some of which overlap, after (Song et al., 2013), used with permission.

models and enable formation of mechanome maps based
on 95% confidence intervals of actual data (Figure 1)
(Song et al., 2013).

This mini-review outlines integrates different approaches and
methodologies implemented to date (provided below section
“Different Approaches”) in series of studies carried out by
our consortium. This body of work is described context
of current roadblocks in the field (Current Research Gaps)
and innovative, breakthrough solutions (Future Developments
in the Field). While the focus of the mini-review is on
presenting for the first time an integrative perspective on studies
from our consortium, we aim to raise awareness, encourage

discussion and build collective understanding through interactive
posting of comments and insights as part of the online
Frontiers publication.

DIFFERENT APPROACHES

A multitude of models and approaches are necessary to
unravel the complexity of multiscale mechanoadaptation via
cells (Figure 2). Through a breadth of studies modeling
prenatal development and postnatal healing, the exquisite
mechanosensitivity of stem cells to their mechanical environment
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has been documented (McBride et al., 2008). While this mini-
review focuses on our consortium’s body of work, recent reviews
and original articles offer further perspectives, i.a. (Heo et al.,
2015; Steward and Kelly, 2015; Le et al., 2016; Ladoux and Mege,
2017; Stumpf et al., 2017; Ni et al., 2019).

Engineering and Culture of Model Tissue
Anlagen or Templates
Consortium studies from over a decade ago demonstrated
the modulatory effect of cell density seeding protocol (either
seeded at density or proliferated to density) on baseline gene
expression of transcription factors indicative of pre-, peri-,
and post-mesenchymal condensation, an event marking the
initiation of skeletogenesis in the embryo and occurring at
development stage E11.5 in the mouse. Remarkably, through
the choice of stem cell seeding protocols or biophysical effects
intrinsic to cell density at seeding, it was possible to form
model tissue templates and to guide their differentiation toward
mesenchymal condensation (McBride and Knothe Tate, 2008;
Zimmerman and Knothe Tate, 2011). Through imaging and
gene transcription studies it could be shown that increasing
density at seeding results in changes to stem cell volume while
seeding at density compared to proliferating to density results
in changes to stem cell nucleus shape. Hence cell seeding
density and protocols for reaching density provide physical
mechanisms by which force transmission between cells can
translate to conformational and gene transcription changes
within the nucleus (Zimmerman and Knothe Tate, 2011).

Development and Implementation of a
Testing Platform for Controlled
Mechanical Testing of Model Tissue
Templates
To study effects of controlled mechanical forces on stem
cell lineage commitment, our consortium aimed to identify
experimental platforms that mimicked physiological conditions
while introducing minimal artifacts and enabling live cell imaging
during testing procedures (Figures 2F,G) (Sorkin et al., 2004;
Anderson et al., 2006; Anderson and Knothe Tate, 2007b).
In testing then state-of-the-art, commercialized parallel flow
chambers used in mechanotransduction studies, we discovered
that none of the commercialized chambers studied delivered
the flow regimes predicted by fluid dynamics. The lack of
reproducibility of flow regimes between chambers, within and
between manufacturers, called into question the comparability
of a host of published studies using such chambers. In
addition, none of the commercialized chamber manufacturers
had tested flows in the presence of cells (Anderson et al., 2006;
Anderson and Knothe Tate, 2007b).

Hence we developed an R&D program integrating
computational fluid dynamics simulations (computational)
and bench top imaging and fluid dynamics studies to study
flows in the absence and presence of cells (Figures 2F,G). These
studies enabled development of a novel perfusion chamber
platform, which we provided on an open source, at cost basis
(Anderson et al., 2006; Anderson and Knothe Tate, 2007b),
and commercialized non-exclusively by Harvard Apparatus for

industry. The so-called ProFlow chamber lent itself for studies
of cells seeded on coverslips, permeable membranes, PDMA
substrates, and tissue templates and subjected to low, laminar
flow regimes typical for in vivo mechanical environments
(Harvard apparatus catalog).

Contrary to contemporary understanding at the time, our
consortium’s series of studies showed that flow regimes exposed
cells and multicellular templates not only to the expected shear
(deviatoric) stresses at fluid-cell and cell-cell interfaces but also to
normal stresses (dilatational: compression, tension) (Figure 2G)
(Song et al., 2013). Furthermore, through spatiotemporal control
of flow velocities (achieved through chamber geometries and/or
flow pumps), changes in fluid viscosity, and template design
considerations (seeding density and protocol), the platform
proved ideal to deliver controlled shape (deviatoric) and volume
(dilatational) stresses to cells within the chamber while imaging
volumes within the chamber, using a laser scanning confocal or
multiphoton microscope (Anderson et al., 2005, 2006; Anderson
and Knothe Tate, 2007b, 2008; McBride et al., 2008).

Using micro-particle image velocimetry (micro-PIV), we
calculated the precise flow field in each plane of focus of the
microscope by measuring the direction and distance traveled
of micron sized fluorescent particles introduced into the fluid,
and then visualized the flow field in three dimensions, in the
absence and presence of cells (Song et al., 2010; Song et al.,
2012) (Figures 2F,G). Similarly, we calculated displacements on
cell surfaces by tracking displacements of microspheres coated
with Concanavalin A, a lectin carbohydrate binding protein
that binds covalently to the glycocalyx of the cell (Song et al.,
2013). In this way, we measured at subcellular resolution the
delivery of forces and the resulting deformation of the cell or cell
constructs/tissue templates in near-real time (Song et al., 2010,
2012, 2013) (Figures 2F,G).

The spatial and temporal data including the flow fields
and cells/tissue templates were used as inputs for a coupled
multi-physics computational model (Figure 2G), enabling
calculation of changes in modulus of elasticity of the cells
over time as well as between experimental cohorts of different
seeding densities, protocols and substrates/tissue templates.
This, together with measurements of changes in baseline
gene transcription of factors indicative of lineage commitment
(osteogenesis, chondrogenesis, adipogenesis, vasculogenesis, and
hematopoiesis) provided thousands of single cell data points that
could be depicted as 95% confidence intervals, relating stress
and strain to lineage commitment (Figure 1D), forming the
basis of the first mechanome map of model embryonic murine
mesenchymal stem cells (Song et al., 2013).

Role of Cell and Nucleus Shape, Volume
as Well as Cytoskeletal Proteins Actin
and Tubulin in Mechanoadaptation
In our consortium’s earliest studies of mechanoadaptation, we
realized that cell fixation itself changed the shape and volume of
individual cells, underscoring the importance of live cell imaging
in study of mechanoadaptation (Zimmerman and Knothe Tate,
2011). Live imaging required the use of new methods to assess
cytoskeletal proteins including compression resisting tubulin
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FIGURE 2 | Cross length and time scale experimental and coupled computational approaches to map the mechanome. (A) Ultra high resolution digital image
correlation and (B) strain mapping of the periosteum milieu using high definition television lenses and ex vivo loading of the sheep femur to mimic stance shift loading
after treatment of a critical sized defect with periosteum in situ. After (Knothe Tate et al., 2007; McBride et al., 2011a), used with permission. (C) High resolution
imaging of collagen (green) and periosteum derived stem cell nuclei ex vivo to visualize hypothesized mechanism of modulating stem cell quiescence via loss of
intrinsic prestress with injury. After (Yu et al., 2017), used with permission. (D,E) In its natural, healthy state, periosteum is attached under prestress to every bone
surface like Velcro, through a multitude of collagenous Sharpey’s fibers. When the Sharpey’s fibers become detached, e.g., due to trauma, the pre-tensioned,
crimped collagen relaxes and becomes more crimped (less stretched), after (Yu et al., 2017), used with permission. (F) Using computational fluid dynamics
predictions and computer-aided design and manufacture, perfusion chambers were manufactured to deliver precise volumetric flow fields to cells and tissue
templates cultured within. The system was designed to enable concomitant microscopy, demonstrating the effect of cells themselves on local flow fields, when
seeded at low density (top) and at near confluence (bottom), after (Song et al., 2010, 2012, 2013), used with permission. (G) After full computational and
experimental validation of the system, including mechanical stresses delivered and resulting deformation on cell/tissue surfaces, tissue templates were tested using
the same experimental platform and paired with multiphysics computational methods to enable near-real time mechanical testing of cells and tissue templates as
they evolve (change phenotype and/or change their baseline gene expression of transcription markers typifying lineage commitment pathways), after (Song et al.,
2010, 2012, 2013), used with permission. ∗ Indicates a significant differences, as defined by a p < 0.05.

and tension resisting actin. Initial work used the BacMam
vector to tag fluorescently actin or tubulin monomers during
transcription and live imaging to follow the tagged monomers
in space and time within cells exposed to forces through seeding
density/protocols and/or delivery of forces via flow (Chang
and Knothe Tate, 2011; Zimmerman and Knothe Tate, 2011)
In addition to exerting dilatational (pressure) forces on cells,
increasing seeding densities were observed to result in higher
concentrations (fluorescence intensities) of tubulin within the cell
(Zimmerman and Knothe Tate, 2011). Exposure to normal and
shear stresses via fluid flow, in combination with seeding density
resulted in differential expression of actin in the cells (Chang and
Knothe Tate, 2011). Hence, the mechanical loading and imaging

platform lent itself well for observation and measurement of
mechanoadaptation in stem cells via cytoskeletal re-/modeling.

To characterize mechanoadaptation as a function of changes
in cell and nucleus shape and volume concomitant to
cytoskeletal re-/modeling, new methods were recently developed
for cells seeded on substrates and tissue templates as well
as cells ingressing into Matrigel-based, tissue templates (Putra
et al., 2019 accepted conditional to revision). It is expected
that these methods will enable prospective probing of the
mechanome, i.e., application of mechanical loads predicted to
lead to desired differentiation (from 95% confidence intervals
of retrospective plots) and testing of efficacy in achieving
target lineages.
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Modulation of Mechanoadaptation
Through Control of Boundaries via
Cell-Cell Adhesion Complexes
To mimic processes of emergent architecture and loss of
such architecture in a controlled model of tissue neogenesis
our consortium developed novel models using primary mouse
and human mesenchymal cells. We first used primary mouse
mesoderm stem cells from wild type mice and a mouse
model with conditional knockout for beta-catenin, a protein
linking cell-cell adhesion proteins (cadherins) to the actin
cytoskeleton within the cell (Falls et al., 2008; Knothe Tate
et al., 2010b). Mesoderm was resected, dissociated and cultured
from embryonic mice at E11.5, the stage when mesenchymal
condensation initiates. Cells from conditional knockouts were
compared to wild type cells under exposure to low amplitude
(1 dyn/cm2) flow. Exposure of primary murine mesodermal
cells to stress via fluid flow significantly up-regulated Col1a1
transcription in the cells lacking β-catenin and down-regulated
transcription in cells not lacking β-catenin. Transcription of Sox9
and AGC, Runx2 and Osx, and Ppar-γ (transcriptional markers
of chondrogenesis, osteogenesis, and adipogenesis, respectfully)
was not significantly affected by exposure to flow. Previous
studies showed that cells lacking β-catenin do not reassociate
in culture to the same degree as normal cells after dissociation
from the mesoderm. Using computer models, we demonstrated
that more isolated cells (lacking β-catenin) would be exposed
to higher levels of stress than reassociated, normal cells. These
data showed, for the first time to our knowledge, that gene
transcription activity of primary embryonic mesenchymal cells
can be modulated by mechanical cues even in the absence of
β-catenin, a protein that links cadherins to the cytoskeleton (Falls
et al., 2008; Knothe Tate et al., 2010b).

In a second study we created a biosynthetic platform
to mimic processes of cellular self assembly and emergent
phenotype at early stages of tissue neogenesis, e.g., during
postnatal healing. Using primary mesenchymal stem cells derived
from human periosteum (PDCs), our consortium engineered
solid-supported lipid bilayers (SSLB) to model large scale cell
membranes. PDCs express both N-cadherin, a hallmark of
mesenchymal condensation, and ZO-1 proteins which build
tight junctions and confer epithelial membrane function. By
functionalizing the SSLBs with recombinant N-cadherin and
using different cell seeding densities and protocols to probe cell
aggregation and emergent tissue architectures it was possible to
engineer prospectively cellular contexts similar to mesenchymal
condensations and formation of epithelia, two key tissue
architectures underpinning tissue and organ development and
physiology (Evans et al., 2013).

Coupled Computational – In vivo Models
of Postnatal Tissue Genesis in Critical
Sized Defects
While in vitro experimental platforms enable significantly greater
control of variables than in vivo approaches, it is essential
to observe processes in physiologically relevant contexts to

maximize translation to human wellbeing and health outcomes.
In vivo models themselves are also idealized approximations
of true system complexity intrinsic to human physiology and,
though idealizing true system complexity, are in some cases
invaluable for understanding and elucidating mechanisms of
adaptation. For example, our consortium carried out a series of
in vivo ovine experiments to study postnatal healing of critical
sized bone defects via stem cells. The series of studies tested the
efficacy of periosteum, a niche for stem cells, and/or periosteum
substitutes mimicking the natural tissue as a delivery vehicle for
stem cells and tissue genesis via the stem cells. Though the study
design was relatively simple, the number of variables and their
interactions was not trivial (Knothe Tate et al., 2007, 2010a, 2011;
Knothe et al., 2010; McBride et al., 2011a,b,c; Moore et al., 2016).

To understand the interplay between mechanics, mechanically
modulated transport of cells and molecular factors, tissue
genesis via stem cells, and subsequent cell and tissue
differentiation in the series of in vivo ovine models, we
would have had to carry out thousands of experiments
to probe each permutation as well as interactions of the
respective variables. Instead we developed a mechanistic,
mathematical model to predict the dynamics of tissue
neogenesis by mesenchymal stem cells deriving from the
periosteum or a periosteum substitute implant. By coupling
a mechanical finite element model with a cell dynamics
model, we simulated the clinical scenario by which a patient’s
own periosteum or a novel substitute periosteum implant
would be used to heal a critical sized bone defect in a
human patient. The model predictions, which incorporated
mechanical feedback, matched spatial and temporal patterns
of tissue neogenesis and differentiation observed in the
series of preclinical (ovine) experiments. The model platform
incorporating computational, physical and engineering science
approaches with an understanding of cell and developmental
biology, provides a platform to test new hypotheses in silico
(Moore et al., 2014, 2016).

In situ Imaging – Mechanical Regulation
of Live Progenitor Cell Niche Quiescence
ex vivo
In the in vivo model we observed, from quantitative histological
analysis coupled with cellular resolution digital image correlation
(live mechanical testing) of tissue strains under stance shift
loading, that volumes of maximal tissue genesis in the defect
correlated with areas of periosteum which had the greatest shift
in baseline strain prior to and after surgery (Figures 2A,B)
(McBride et al., 2011a,b). Previous in vitro studies showed
that periosteum is prestressed in situ, like curly hair that is
stretched and held in place; upon release of the periosteum
from bone surfaces, the tissue shrinks (Figures 2C,D) (McBride
et al., 2011c). We hypothesized that stem cell adherence and
motility are regulated mechanically but needed a way to see
how changes in stress state of the periosteum were felt by
individual cells. We initiated a live cell and second harmonic
imaging of collagen study on fresh, ex vivo tissue preparations
of periosteum. In the natural, prestressed state, collagen was
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stretched out and cells were adherent with a flattened shape.
Upon release of the prestress, collagen curled up slightly and cells
rounded (Figures 2C–E), providing evidence for our working
hypothesis that the mechanical state of the tissue may regulate
stem cell shape and, potentially motility and later lineage
commitment (Figure 2E) (Yu et al., 2017).

While these studies continue, the concept that injury to a
stem cell niche exerts mechanical effects that may modulate
cell behavior is new. Of course, these mechanical effects
occur simultaneous to release of cytokines and other healing
modulatory biochemical factors, the molecular transport of
which is modulated by prevailing mechanical stress states.
Nonetheless, the concept of a mechanical trigger for regulation
of stem cell quiescence is quite exciting in a therapeutic and in an
engineering design context (Knothe Tate et al., 2016b).

CURRENT GAPS AND FUTURE
DEVELOPMENTS IN THE FIELD

Given the burgeoning body of evidence, at virtually every length
and time scale addressed by scientific investigation and discovery
to date, an understanding of mechanomics is key to elucidating
mechanisms of stem cell behavior in context of tissue neogenesis,
both during prenatal development as well as postnatal healing.
Integration of top–down and bottom–up approaches, and use of
a multivalent toolset including live imaging across length and
time scales, computational modeling, creation of benchmarking
research tools such as validated flow/imaging chambers and
microfluidics platforms, and models that cross species as well
as development contexts, enables unraveling of the system
complexity in different physiological contexts. Integration of
engineering with fundamental biology and chemistry and physics
approaches is also key; until educational training catches up with
these multidisciplinary needs, research and development teams
can aim for diversity across disciplines and cultural contexts
to develop, test and probe with new scientific platforms that
enable deciphering of emergent behavior underpinning life and
living architectures of tissues, organs, and organisms comprising
organ systems (Knothe Tate, 2017). Validation of new platforms,
from microfluidics to organoid models, is essential, to insure that
datasets are comparable between labs and are relatable across
length scales and experimental models.
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