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The highly conserved Argonaute protein family members play a central role in the
regulation of gene expression networks, orchestrating the establishment and the
maintenance of cell identity throughout the entire life cycle, as well as in several human
disorders, including cancers. Four functional Argonaute proteins (AGO1–4), with high
structure similarity, have been described in humans and mice. Interestingly, only AGO2
is robustly expressed during human and mouse early development, in contrast to the
other AGOs. Consequently, AGO2 is indispensable for early development in vivo and
in vitro. Here, we review the roles of Argonaute proteins during early development by
focusing on the interplay between specific domains of the protein and their function.
Moreover, we report recent works highlighting the importance of AGO posttranslational
modifications in cancer.
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INTRODUCTION

Historically, the Argonaute (AGO) protein family has been discovered in a plant mutagenesis
screen, performed to identify new genes involved in Arabidopsis thaliana development (Bohmert
et al., 1998). This first report already highlighted the conservation of the Argonaute gene family in
multicellular organisms suggesting its important functions. It was later demonstrated that AGOs
are conserved throughout all domains of life (Swarts et al., 2014). Eukaryotic AGOs are involved in
many cellular processes and act as mediators of gene silencing (Bartel, 2018). In mammals, AGOs
have been mainly described for their cytoplasmic role in small RNA (smRNA) biogenesis, as key
components of the RNA-induced silencing complex (RISC) (Bodak et al., 2017a).

Two types of ∼22 nt smRNAs can be loaded into AGOs to induce translational inhibition
or exonucleolytic messenger RNA (mRNA) decay of specific transcripts: small interfering RNAs
(siRNAs) and microRNAs (miRNAs). Both species are processed in the cytoplasm by DICER,
leading to the release of double-stranded RNA (dsRNA) duplexes, which will be loaded into the
RISC complex to achieve its RNA interference (RNAi) functions [for reviews (Bodak et al., 2017a;
Treiber et al., 2019)].

Furthermore, the regulatory role of smRNAs expands beyond the posttranscriptional regulation
mediated by miRNAs. In fact, smRNAs with AGOs as their effector proteins have been described to
be involved in transcriptional gene silencing or activation (Malecová and Morris, 2010), alternative
splicing (Alló et al., 2009; Harel-Bellan et al., 2013), antiviral defense (Maillard et al., 2013),
genome integrity control (Svoboda et al., 2004; Kanellopoulou et al., 2005; Bodak et al., 2017b),
DNA repair (Hawley et al., 2017), and epigenetic modification of the chromatin (Li, 2014).
Although the expression of new smRNA species such as small nucleolar RNA (sno-RNA)- and
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transfer RNA (tRNA)-derived fragments has been recently
described to be altered in the context of cancer, their functions
remain largely unexplored (Martens-Uzunova et al., 2013; Schorn
et al., 2017; Kuscu et al., 2018). However, recent evidence
shows that the functions and biogenesis of these new smRNA
species are tightly connected to the RNAi pathway, functioning
both in the cytoplasm and the nucleus (Huang and Li, 2014;
Sarshad et al., 2018).

In this review, we highlight novel findings on the structures of
AGO proteins since the description of the human AGO2 (Schirle
and Macrae, 2012) and link these with their roles in mammalian
early development and carcinogenesis.

STRUCTURE AND DOMAINS OF THE
ARGONAUTE PROTEINS

Structures of prokaryotic and mammalian Argonaute proteins
have been extensively studied in the past decades and have given
revealing insights into the mechanism of translational inhibition
by miRNAs. In this part, we only focus on the structural data
of the human AGO proteins, which are highly conserved and
share ∼85% of sequence identity (https://myhits.isb-sib.ch/cgi-
bin/profile_search?data=5485215623128241).

Four Argonaute proteins (AGO1–4) are expressed in humans.
AGO2 is described best and has long been thought to be the only
Argonaute protein member having mRNA slicing activity, due
to its unique structural characteristics (Liu et al., 2004; Meister
et al., 2004). Nevertheless, AGO3 has recently been shown to slice
target RNAs, however, only when loaded with certain miRNAs
(Park et al., 2017). In these cases compared to AGO2, the slicing
activity depended strongly on the pairing of the postseed region
of the guide RNA as well as on the 5′ and 3′ flanking regions of
the target RNA (Park et al., 2017).

The four human Argonaute proteins are structurally very
similar but nevertheless contain few non-conserved amino acids
in their functional domains. The AGO2 full-length protein
structure was resolved first and was largely studied (Elkayam
et al., 2012; Schirle and Macrae, 2012; Figure 1A). Since then,
structural data on all the others, AGO1, 3, 4 full proteins
have become available (Faehnle et al., 2013; Nakanishi et al.,
2013; Park et al., 2017, 2019). These studies have revealed
four conserved domains: the N-terminal domain (N), the
PIWI/Argonaute/Zwille (PAZ) domain, the MID domain, and
the P-element-induced whimpy tested (PIWI) domain. The PAZ
domain, which is required for anchoring the 3′ end of guide
RNAs, and the MID domain, which binds the 5′ phosphate of
guide RNAs (Lingel et al., 2003; Song et al., 2003, 2004; Ma et al.,
2004; Yan et al., 2004; Boland et al., 2010, 2011; Frank et al., 2010),
are very similar between the four AGOs (Figure 1A).

The N-terminal domain, however, differs between AGO1–4.
In AGO2, the N-terminal domain comprises two motifs (residues
44–48 and 134–166), which are required for its full catalytic
activity. Upon mutation of these motifs, AGO2 fails to initiate
RISC activation and mRNA cleavage. During protein folding,
these residues are located in the vicinity of the PIWI domain
and hence are required for correct guide-target positioning

(Hauptmann et al., 2013; Schürmann et al., 2013; Figure 1A).
On the other hand, AGO1 harbors only one of the N-terminal
motifs, required for full catalytic activity (Faehnle et al., 2013;
Hauptmann et al., 2013, 2014; Figure 1A), whereas AGO3
and AGO4 possess none, which was thought to render them
catalytically inactive (Faehnle et al., 2013; Hauptmann et al.,
2013, 2014; Nakanishi et al., 2013; Schürmann et al., 2013;
Park et al., 2019). In addition, AGO3 has a specific insertion
(3SI) in the N-terminal domain, which leads to a wider and
imperfect nucleic-acid binding channel compared to AGO2
(Park et al., 2017).

The PIWI domain is similar to an RNAse H domain,
harboring the catalytic triad DDH, which is critical for the
slicing activity of AGO2 (Parker et al., 2004, 2005; Song et al.,
2004; Ma et al., 2005; Rivas et al., 2005; Yuan et al., 2005).
This work has later been challenged by Nakanishi et al. (2012),
who demonstrated that not only is a catalytic triad but also
a catalytic tetrad (DEDH) is essential for the AGO2 slicing
activity (Figure 1A). Indeed, mutation of the glutamate in this
catalytic tetrad abolishes the ability of the protein to induce
RNAi (Nakanishi et al., 2012). AGO3, like AGO2, has a fully
functional PIWI domain with a DEDH. The slicing activity of this
domain has been proven by domain swap experiments, showing
that AGO3 PIWI domain introduced in an AGO2–AGO3 PIWI
chimeric protein can be catalytically active (Hauptmann et al.,
2013; Schürmann et al., 2013). AGO1 comprises also several
domain changes, the first one being a residue change in the
catalytic tetrad of the PIWI domain (Figure 1A). Second, two
proline residues at position 670 and 675 in the unique structural
element, called cluster 2 (CL2) [also known as conserved
segment (CS7)] can bend the protein, which sterically hinders
the positioning of the guide/target complex (Nakanishi et al.,
2013). In the same conserved segment, another mutated residue,
L674, has been shown to decrease the slicing efficiency of
AGO1 (Faehnle et al., 2013). Similar to AGO1, AGO4 lacks key
catalytic residues and has an additional AGO4-specific insertion
(4SI) in the PIWI domain, together with the cluster 2, already
observed in AGO1. Only swapping of these domains with their
AGO2 counterparts has enabled AGO4 to be catalytically active.
Therefore, the native AGO4 is thought to be slicing incompetent
(Nakanishi et al., 2013; Hauptmann et al., 2014; Park et al.,
2019; Figure 1A). In addition, in the recently published AGO4
structure, the so-called LAKEs were observed, which are an
accumulation of water molecules below the nucleic acid binding
channel. This formation is conserved in all human AGOs. LAKE
formation aids to establish the RISC assembly and is important
for smRNA duplex loading (Park et al., 2019).

Finally, AGO1 has also been detected as a candidate for
programed translational readthrough, a process generating
longer isoforms by continuing translation beyond the stop codon
(Eswarappa et al., 2014). Two recent studies demonstrated the
presence of this translational readthrough product of AGO1
in cells, termed AGO1x (Ghosh et al., 2019; Singh et al.,
2019). AGO1x is a protein isoform, which is 33 amino acids
longer than AGO1 (Figure 1A). Initially, it was shown in
HeLa cells that AGO1x can interact with miRNAs and their
mRNA targets; however, no interaction with GW182 has
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FIGURE 1 | Continued
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FIGURE 1 | (A) Domain organization of AGO1–4 (adapted from Elkayam et al., 2012). Indicated are the two N-terminal motifs labeled I and II and the residues of the
catalytic tetrad in the PIWI domain D, E, D, H, R, and G. Also highlighted in AGO1 and AGO4 is cluster 2 (CL2), the AGO3-specific insertion (3SI) and the
AGO4-specific insertion (4SI). N, N-terminus; L1, linker domain 1; PAZ, PIWI/Argonaute/Zwille domain; L2, linker domain 2; MID, MID domain; PIWI,
P-element-induced whimpy testes domain; X, AGO1x additional 33 aa; D, aspartate; E, glutamate; H, histidine; R, arginine; G, glycine. (B) Expression of human and
mouse AGO1–4 in the zygote, four-cell, eight-cell, compacted morula, early inner cell mass (ICM) and late ICM, according to single-cell expression data from
Boroviak et al. (2018). ZGA, first major wave of zygotic gene activation. (C) Posttranslational modifications of the human Argonaute 2 protein.

been observed. GW182 proteins normally interact with the
Argonautes, mediating translational repression (Eulalio et al.,
2009). Since AGO1x is incapable of interacting with GW182, it
cannot induce translational repression. It is therefore thought
that AGO1x competes with the canonical miRNA pathway
and thereby leads to reduced posttranscriptional repression of
target mRNAs (Singh et al., 2019). Second, in breast cancer
cells, AGO1x has been shown to prevent the accumulation of
dsRNAs and thereby suppresses the interferon response in these
cells, a function independent of the canonical miRNA pathway
(Ghosh et al., 2019).

EXPRESSION OF THE ARGONAUTE
PROTEINS IN EARLY DEVELOPMENT

Although structurally very similar, the expression of AGOs
can differ greatly during early development. We focus in this
part on the difference in expression of mammalian AGO1–4
during early embryonic development. The mouse and human
AGOs are highly conserved with almost identical protein
sequences [99% for AGO2, 3, and 4 and 100% for AGO1
between mouse and human (https://myhits.isb-sib.ch/cgi-bin/
profile_search?data=5485215623128241)].

The expression of the four AGOs during mouse early
development was originally monitored using reverse
transcription followed by PCR approaches and revealed the
expression of the four transcripts in oocytes and at early stages
of development (Lykke-Andersen et al., 2008). Nowadays,
newer technologies allow to determine the expression of certain
transcripts on a single-cell level (Stuart and Satija, 2019). A recent
study, using this single-cell sequencing technology at different
stages of preimplantation development in humans and mice
allowed us to look into the detailed expression of the Argonautes
throughout preimplantation development (Boroviak et al., 2018).
Two cell fate decision events occur during preimplantation
development (Niakan and Eggan, 2013). At the blastocyst stage,
two populations of cells are segregating to create two distinct
lineages: the trophectoderm, an extraembryonic tissue at the
origin of the placenta, and the inner cell mass (ICM), the future
epiblast at the origin of the three germ layers of the embryo. This
first cell fate choice takes place 3 days postfertilization (dpf) in
mice and 5 dpf in humans. The second cell fate specification event
allows the segregation of the ICM and another extraembryonic
layer: the primitive endoderm at the origin of the yolk sac,
which appears 4 and 7 dpf in mice and humans, respectively
(Niakan and Eggan, 2013).

For both species, the monitored expression of Ago1, 3, and
4 mRNAs during preimplantation stages is low compared to

Ago2 transcripts (Figure 1B). However, it is to note that, in
both species, Ago2 represents still <1% of all detected transcripts
(Boroviak et al., 2018). In mouse, Ago1, 3, and 4 mRNAs are lowly
expressed from the zygote to the early ICM and the primitive
endoderm, compared to Ago2 (Figure 1B). Interestingly, at the
late blastocyst stage, a decrease in Ago2 is observed, in parallel
with an increase in Ago1, suggesting a possible novel role for
AGO1 just before implantation (Figure 1B). The expression
profiles of the AGOs seem very different in human early
embryos. AGO1 mRNAs increase continuously from the eight-
cell stage to reach comparable levels of AGO2 expression, or
even slightly higher at the late ICM stage (Figure 1B). In
both species, however, AGO2 is the most expressed Argonaute
mRNA during early preimplantation development, in embryonic
and primitive endoderm lineages. However, maximal expression
occurs at different stages in human and mouse. Human AGO2
(hAGO2) peaks at the four-cell stage, whereas mouse Ago2
(mAgo2) peaks at the morula stage (Figure 1B). As AGOs are
actually required in early stages to degrade maternally deposited
transcripts (Lykke-Andersen et al., 2008), the question arises
whether the expression of AGO2 coincides with zygotic gene
activation (ZGA). In humans, the first major wave of ZGA occurs
at the 4- to 8-cell stages followed by a second one at the 8- to 16-
cell stages [for review, see Jukam et al. (2017)]. This, however,
does not anymore correlate with the expression of hAGO2
transcripts, which decreases after the four-cell stage. Moreover,
it raises the question whether most of the hAGO2 in early
development is actually maternally deposited. On the contrary,
the first major wave of ZGA in mice is already detectable at the
two-cell stage, followed by a second wave at the four- to eight-
cell stages [for review, see Jukam et al. (2017)]. This correlates
with the increasing expression of mAgo2, which reaches its
peak at the morula stage. Interestingly, recent studies in mice
preimplantation development have demonstrated that mRNA
levels do not always correlate with the protein levels (Gao et al.,
2017). Moreover, protein expression often lags behind the mRNA
expression in the process of ZGA. Therefore, we do not know
whether the mRNA expression levels of the Argonautes discussed
above reflect the protein levels within each cell (Gao et al., 2017).

Posttranslational Modifications of
Argonaute Proteins and Their Functions
Posttranslational modifications (PTMs) of proteins mediate a
huge range of signaling events within a cell and are therefore
critical for distinct processes such as developmental timing (Seet
et al., 2006). In fact, in Caenorhabditis elegans, phosphorylation
of the ALG-1 protein, an ortholog of the human Argonaute
proteins, is required for miRNA-mediated gene silencing and the
proper animal development (Quévillon Huberdeau et al., 2017).
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TABLE 1 | Posttranslational modifications of the human Argonaute 2 protein (Jee and Lai, 2014; Gebert and MacRae, 2019).

Posttranslational
modifications

Conserved between
hAGO1-4

Molecular functions Cellular system
identified

References

P700 Hydroxylation Yes • Increases AGO2 stability
• Increases RISC function

HEK-293T, HeLa S3,
U2OS, MEF and PASMCs

Qi et al., 2008; Wu et al., 2011

C691 S-Nitrosylation Yes • Disrupts interaction with GW182
and consequently miRNA
mediated repression

HEK-293 and HeLa Seth et al., 2019

K402 Sumoylation Only in AGO1 • Destabilizes AGO2
• Increases siRNA activity

HeLa, N2a, MEFs, HT1080 Sahin et al., 2014; Josa-Prado et al.,
2015

Ubiquitylation
(sites unknown)

Only in AGO2
investigated

• Decreases AGO2 stability
• Represses miRNA activity

HEK-293, EC, MEFs,
CD4+ T, MDA-MB-231

Adams et al., 2009;
Rybak et al., 2009; Bronevetsky
et al., 2013; Smibert et al., 2013

Poly(ADP-ribose)ylated
(sites unknown)

AGO1-4 modified but
sites unknown

• Inhibits slicing activity
• Reduces RNAi activity

HeLa S3, HEK-293 Leung et al., 2011; Seo et al., 2013

K720, K493, K355
Acetylation

Only in AGO2
investigated

• Recruitment of AGO2 to
miR-19b1 precursor

HEK-293T, A549, lung
cancer tissue arrays,
mouse xenografted tumor
model

Zhang et al., 2019

Phosphorylation

S387 Not conserved in
AGO3 (others Yes)

• Increases translational repression
• Decreases cleavage activity
• Reduces sorting into exosomes

HeLa, HEK-293T,
HEK-293, DLD1 colon
cancer lines, MEFs, U2OS,
H1299

Zeng et al., 2008; Rüdel et al., 2011;
Horman et al., 2013; Lopez-Orozco
et al., 2015; McKenzie et al., 2016;
Bridge et al., 2017; Quévillon
Huberdeau et al., 2017

Y393 Not conserved in
AGO3 (others yes)

• Decreases maturation of AGO2-
mediated miRNA under hypoxia
• Inhibits loading of miRNA

HEK-293, HEK-293T,
HeLa, MDA-MB-231,
IMR90

Rüdel et al., 2011; Shen et al.,
2013; Yang et al., 2014

Y529 Yes • Disrupts interaction with mRNA
targets and cleavage

HEK-293, HeLa,
LPS-activated RAW 264.7,
primary macrophages

Rüdel et al., 2011; Mazumder et al.,
2013; Lopez-Orozco et al., 2015

S798 Yes • AGO2 loses its association with
P-bodies and stress granules

HeLa Lopez-Orozco et al., 2015

S253, T303, T307 Yes for S253 and
T307, T303 not
conserved in AGO4

• Unknown HEK-293 Rüdel et al., 2011

T555-S561 cluster Yes • Impaired localization to P-bodies
and silencing

HEK-293T, HeLa Quévillon Huberdeau et al., 2017

S824-S834 cluster Yes • Affects mRNA target association HEK-293T, HeLa, HCT116 Golden et al., 2017; Quévillon
Huberdeau et al., 2017

Animals expressing a phosphomutant ALG-1 display
developmental defects and die at the adult stage, exemplifying
the importance of posttranslational modification of Argonaute
proteins during development (Quévillon Huberdeau et al., 2017).

AGO2 has been shown to be highly posttranslationally
modified, which affects its protein stability and miRNA activity
(Figure 1C) (Meister, 2013). Most of the posttranslational
modifications have been observed in human cancer cells, yet
their amino acids are conserved between mice and humans.
The regulation of PTM of AGO proteins was recently related
to the activity of well-characterized oncogenes, underlining the
relevance of AGO-dependent pathways deregulation in cancer
development. However, their importance in early development
has not been assessed in mammals. In Table 1, we highlight the
reported PTM sites of AGO2 and their molecular consequences.

As previously described, Argonaute proteins, through the
formation of a RISC complex, enable miRNAs to downregulate
partially complementary target mRNAs, making them relevant

in normal physiology and disease. PTMs of AGOs can impact
several features of RISC-mediated silencing. For example, a rapid
cycle of AGO2 phosphorylation and dephosphorylation of a
serine/threonine cluster located on a loop on the surface of the
PIWI domain is relevant for miRNA binding to target mRNAs
and for miRNA-mediated gene silencing. The dissection of the
upstream signaling pathways that impact on AGO2 PTM and,
consequently, on its cyclic functional activity would represent
a relevant advance in the understanding of AGO2 activity and
might possibly provide new ways to modulate the global activity
of miRNAs (Golden et al., 2017).

The phosphorylation status of AGOs is also critical
for the regulation of the miRNA function in humans
(Quévillon Huberdeau et al., 2017). In particular, AGOs are
hyperphosphorylated at a C-terminal serine/threonine cluster
upon miRNA binding and repression of the mRNA target. The
negative charge of phosphates within this region impairs the
mRNA/AGO interaction and favors the release of target mRNA.
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The balance between the phosphorylated and dephosphorylated
status of AGO may be relevant also for redirecting AGO to
a new target mRNA and for modulation of its degradation
(Quévillon Huberdeau et al., 2017).

Furthermore, PTMs of AGOs are involved in miRNA
processing. AGO2 phosphorylation has been related to
certain cancer phenotypes. In these cases, specific AGO2
phosphorylation leads to reduced interaction between DICER
and AGO2 with consequent impairment of miRNA processing
(Shen et al., 2013).

In addition, the acetylation of specific lysine residues of AGO2
has been reported. This represents a relevant modification for
the recruitment of AGO2 to the miR-19b1 precursor, resulting
in the enhancement of oncogenic miR-19b processing. Notably,
in lung cancer patients, high levels of both miR-19b and AGO2
acetylation correlate with a poor prognosis (Zhang et al., 2019).

Finally, AGO2 phosphorylation also impacts its localization
within the cell. Specific AGO2 phosphorylation has been
reported to be essential for its localization into processing
bodies (P-bodies), impinging on AGO2-dependent regulation
of RNA-silencing activity (Zeng et al., 2008). Horman et al.
(2013) subsequently show that AGO2 phosphorylation is
critical for the interaction with GW182 protein and AGO2
localization in P-bodies. Furthermore, this modification was
also shown to regulate localization of AGO2 into multivesicular
endosomes resulting in the suppression of AGO2 secretion
and influencing the sorting of specific miRNAs into exosomes
(McKenzie et al., 2016).

In summary, PTMs affect several AGO exerted functions. In
this paragraph, we have given only a few examples. A broader
overview can be found in Table 1.

THE FUNCTIONS OF ARGONAUTE
PROTEINS IN MAMMALIAN EARLY
DEVELOPMENT

Several studies have examined the roles of AGOs during
mouse early development. Earliest works demonstrated that the
knockout (KO) of Ago2 is lethal during early mouse development
at postimplantation stages (Liu et al., 2004; Alisch et al., 2007;
Morita et al., 2007; Cheloufi et al., 2010). In contrast Ago1, 3, and
4 KO mice are viable (Modzelewski et al., 2012; Van Stry et al.,
2012). These studies have shown that Ago2-deficient embryos
are growth retarded and developmentally delayed. In addition,
they display severe phenotypic defects, such as cardiac failure and
impaired neuronal tube closure (Liu et al., 2004; Alisch et al.,
2007; Cheloufi et al., 2010).

Interestingly, the phenotype of the Ago2-deficient mice
compared to other RNAi-deficient mice is not identical. In
addition to other phenotypic differences, Dicer- or Drosha-
deficient mice, for example, display earlier embryonic lethality
compared to Ago2-deficient mice, suggesting individual roles for
the RNAi effector proteins in regulating embryonic development
(Bernstein et al., 2003; Chong et al., 2010).

The function of AGO2 in the embryonic development
has already been given ample attention with the help of

several mouse models (Liu et al., 2004; Alisch et al., 2007;
Morita et al., 2007; Cheloufi et al., 2010). However, detailed
analyses of AGO2 in the development of the extraembryonic
lineages are still missing. Recently, it has been reported that
early mice lethality is often associated with placental defects
(Perez-Garcia et al., 2018). Interestingly, previous histological
analyses have already indicated that Ago2-deficient mice display
extraembryonic defects. Supplementing these mice with wild-
type extraembryonic tissue is able to rescue the mid-gestation
death of Ago2 KO mice (Liu et al., 2004; Cheloufi et al.,
2010). These defects might explain why Ago2-deficient mice
die at the postimplantation stage; however, this has not
been assessed yet.

Ngondo et al. (2018) have recently demonstrated a novel
function of AGO2 in the development of the extraembryonic
endoderm, in vitro. Using mouse embryonic stem cells (mESCs),
which are derived from the blastocyst stage, they generated Ago2
KO mESCs, by CRISPR/Cas9 genome engineering (Wettstein
et al., 2016). Upon in vitro differentiation, Ago2 KO mESCs
were able to form all three embryonic germ layers; however,
they showed impaired differentiation toward the extraembryonic
endoderm (Ngondo et al., 2018). This differentiation defect
was rescued by the reintroduction of a wild-type AGO2 or a
catalytic dead AGO2 in mESCs, but not by an RNA-binding-
deficient AGO2 (Ngondo et al., 2018). In line with these results,
Ago2 catalytic dead mice were previously shown to be viable
until a few hours after birth and subsequently died of anemia
(Cheloufi et al., 2010; Jee et al., 2018). In these cases, the slicing
activity of AGO2 is needed to process the pre-miRNA-451 and
miRNA-486-3p, two miRNAs required in the development of
the erythroblasts (Cheloufi et al., 2010; Papapetrou et al., 2010;
Jee et al., 2018).

Notably, the molecular mechanism by which AGO2 regulates
the formation of the extraembryonic endoderm still remains
elusive. Interestingly, the differentiation defect of the Ago2 KO
mESCs is comparable to what was observed previously for Gata6
KO mESCs, a key transcription factor required for the formation
of the primitive endoderm lineage in vivo (Capo-Chichi et al.,
2005). Together, these reports indicate a function of AGO2 not
only in the development of the embryo proper but also in the
extraembryonic lineages.

Mouse embryonic stem cells are a very informative in vitro
culture system to mimic mouse early development at the
blastocyst stage. Nevertheless, a stable in vitro system mimicking
the earliest stages of development is still missing. Most of the
studies focusing on the first cell fate decisions in early mouse
development were performed by imaging wild-type or mutant
embryos and relied on specific antibodies for the protein of
interest, which were not available for a long time for the
mouse AGO proteins. Furthermore, single-cell bulk analysis
requires a lot of material, which is hard to obtain from early
embryos. However, a powerful tool to study the earliest cell fate
decision, the two-cell stage-like (2C) ESCs, has been discovered
a few years ago (Macfarlan et al., 2012). Two-cell like cells
are totipotent and therefore can still differentiate into the
extraembryonic as well as embryonic lineages (Baker and Pera,
2018). MESCs have been shown to present a heterogeneous
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population, where a small subpopulation (<1%) cycles in
and out of a two-cell stage (Macfarlan et al., 2012; Morgani
et al., 2013; Ishiuchi et al., 2015). The totipotent two-cell stage
subpopulation might provide a powerful way to study the impact
of AGO2 on the early stages of mouse development, not only
for the epiblast but also for the trophoblast lineage, where
the impact of AGO2 loss has not been assessed yet. So far,
we still do not know whether AGO2 is the only Argonaute
protein well expressed in this lineage and whether it impacts
trophoblast differentiation.

Since AGO2-deficient mice only die at the postimplantation
stage, the question is raised, whether AGO2 is dispensable for
preimplantation development or, whether maternally supplied
AGO2 regulates these early stages. One important in vivo study
assessed the requirement of AGO proteins before the blastocyst
stage (Lykke-Andersen et al., 2008). Using injection of dsRNAs
against maternally supplied Argonautes, they demonstrated
that only AGO2 is essential for the development of mouse
oocytes to the two-cell stage. Nevertheless, the molecular
mechanism by which AGO2 regulates this early transition is
still unknown. Strikingly, the loss of another RNAi effector
protein in oocytes, DGCR8, displays a very different phenotype
compared to the loss of AGO2. Dgcr8 KO oocytes are able
to develop beyond the 2-cell stage to blastocysts. As DGCR8
is only involved in the processing of canonical miRNAs, this
suggests that canonical miRNAs might be dispensable for early
development (Suh et al., 2010). This is in line with the previous
assumptions that miRNA function is lost in oocytes. One reason
for the loss of miRNA function in oocytes was proposed to
be due to an AGO2-specific oocyte isoform (Freimer et al.,
2018). However, a recent report shows that miRNA activity
might not be lost in oocytes but that the miRNA/mRNA
stoichiometry is impaired in oocytes due to the low abundance
of miRNAs (Kataruka et al., 2019). Furthermore, Ago2 KO
oocytes seem very similar to Dicer KO oocytes. Both show
abnormal spindle and chromosome positioning and fail to
undergo the first cleavage to the two-cell stage (Murchison
et al., 2007; Tang et al., 2007; Kaneda et al., 2009). Moreover,
changes in gene transcripts in Dicer KO oocytes are claimed
to be provoked by endo-siRNAs (Watanabe et al., 2008), which
are the most prominently expressed smRNAs in oocytes and
not preprocessed by DGCR8 (Tam et al., 2008; Watanabe
et al., 2008; Suh et al., 2010). The loss of DICER and
AGO2 in oocytes decreases siRNAs (Watanabe et al., 2008).
It is therefore possible that the phenotype observed in Ago2
KO oocytes is a result of the loss of endo-siRNA-induced
target silencing.

Hence, the exact function of AGO2 in early development still
needs to be elucidated, as it is undoubtedly the only one leading
to a lethal phenotype.

CONCLUSION

In this review, we highlight various differences and similarities
between the Argonaute proteins to better understand their
specialized roles within the cell, especially in regard to AGO2.

With the structural information available nowadays, it is
possible to pinpoint the exact residues responsible for the
catalytic function or disfunction of the AGOs. This has clarified
why AGO2 specifically was thought for a long time to be the only
slicer molecule of this family.

Interestingly, however, from available sequencing data, it
seems that AGO2 is the only AGO protein well expressed in
early mice or human development, at least at the transcriptional
level (Boroviak et al., 2018). This, when reflected on protein
levels, might also explain the severe defects observed upon the
loss of AGO2 in early embryos when compared to AGO1,
3, and 4. Strikingly, the Ago2 KO phenotypes observed are
not just linked to the embryonic development but also cause
impairments in extraembryonic development, as studies show
placental defects associated with the loss of AGO2 (Liu et al.,
2004; Cheloufi et al., 2010). We argue that a deeper exploration
in the early development of extraembryonic tissues is warranted
in the context of AGO2 loss in vivo and in vitro.

Lastly, we present an overview of multiple to date known
posttranslational modifications of AGO2. These modifications
have so far been studied in several cancer models and
furthermore have been linked to disease phenotypes. From such
studies, we know that PTMs can impact the RISC activity
as well as AGO2 stability, either positively or negatively.
However, a detailed analysis of such modifications during early
development is still missing. We still do not know which
modifications are present in early embryos nor whether there
is a switch of modification when going through different
stages of embryonic or extraembryonic development. Hence, to
better understand how AGO2 functions in these early stages of
embryonic development, the PTMs of AGO2 must also be taken
into consideration.
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