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The intricate interplay between the immune system and microbes is an essential part
of the physiological homeostasis in health and disease. Immunological recognition of
commensal microbes, such as bacterial species resident in the gut or lung as well
as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV),
in combination with a balanced immune regulation, is central to achieve immune-
protection. Emerging evidence suggests that immune responses primed to guard
against commensal microbes may cause unexpected pathological outcomes, e.g.,
chronic inflammation and/or malignant transformation. Furthermore, translocation of
immune cells from one anatomical compartment to another, i.e., the gut-lung axis
via the lymphatics or blood has been identified as an important factor in perpetrating
systemic inflammation, tissue destruction, as well as modulating host-protective
immune responses. We present in this review immune response patterns to pathogenic
as well as non-pathogenic microbes and how these immune-recognition profiles
affect local immune responses or malignant transformation. We discuss personalized
immunological therapies which, directly or indirectly, target host biological pathways
modulated by antimicrobial immune responses.

Keywords: pathogens, microbiota, inflammation, neoplasia, immune responses, antibodies, cancer,
immunotherapy

BACKGROUND

Our understanding of the immune system stems, in great part, from studying the host response
to infection, which in most individuals leads to the absence of clinical disease and establishment
of highly apt immunological memory. The host immune response in relation to opportunistic
pathogens as well as to the endogenous microbiota is pivotal to deter not only infectious
diseases, yet also central to providing general physiological health (Manfredo Vieira et al., 2018;
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Mathieu et al., 2018a; Schachter et al., 2018). Chronic infections,
particularly those which are primarily characterized by an
asymptomatic intracellular life cycle, e.g., latent Mycobacterium
tuberculosis infection (LTBI), hepatitis B virus (HBV) infection,
Chlamydia trachomatis infection, cytomegalovirus (CMV) or
Epstein-Barr virus (EBV) infections, present a unique premise
to decipher the fine balance between protective host immune
responses, immunopathology and full-fledged clinical disease.
Nevertheless, while a chronic host immune response driven
by pathogens may be protective against clinical disease, it
may also elevate the risk of inflammation-induced dysplasia.
The association of certain human leukocyte antigen (HLA)
alleles which predispose individuals to a greater risk of harmful
inflammation and disease (Mignot et al., 2001; De la Herran-Arita
et al., 2013; Tafti et al., 2016; Matzaraki et al., 2017) play a central
role in pro-inflammatory processes. We will first highlight some
of the major neoplasia-associated infections of clinical relevance
in the context of neoplasia and immune response modulation.

Although overt inflammatory responses play a major role in
malignant transformation of host cells following an infection,
it is a disbalanced immune responses, which contribute to
drive malignant transformation. Thus, the local immunological
milieu in tissue compartments forms the nature and magnitude
of the host responses, i.e., frequencies of regulatory T cells
(Tregs) vs. T-helper 17 (Th17) cells, amount of pro-inflammatory
cytokines vs. anti-inflammatory cytokines, extent of neutrophilia
and antigen-presenting-cell (APC) activation, among others.
The second part of the review discusses potential host-directed
interventional strategies based on existing translational and
clinical knowledge of infection-induced inflammation, as well as
cancer initiation/progression models.

PATHOGEN-DRIVEN INFLAMMATION
AND NEOPLASIA: EXISTING
KNOWLEDGE AND NEW INSIGHTS

Viral Pathogens and
Immuno-Oncogenesis
Most infection-induced cancers worldwide are attributed to
viral pathogens, possibly representing up to 80% of cases
reported (Chang Y. et al., 2017). Although harbored by at
least 90% of the world’s population, EBV causes malignant
transformation only in a handful of individuals, which has
been in part linked to the genetic variations in the infecting
strain (Tzellos and Farrell, 2012). EBV-induced cancers, such
as nasopharyngeal carcinoma (NPC) and B-cell lymphomas in
the form of severe lymphoproliferative disease (LPD) following
stem cell transplantation, non-Hodgkin’s lymphoma (NHL)
as well as Hodgkin’s lymphoma (HL) are well documented
(comprehensively reviewed in Saha and Robertson, 2011; Farrell,
2019). LPDs can also involve some populations of T cells
(thus, manifesting as a T-cell lymphoma) and natural killer
(NK) cells (Kim et al., 2017). The fact that patients with
some cancer histologies/molecular profiles respond to immune
checkpoint inhibitors (ICI), such as anti-PD-1, anti-CTLA-4,

and anti-PD-L1 allows the study their impact on non-target
T-cell populations (those not directed specifically against cancer-
associated mutations or neoantigens), i.e., on CMV or EBV-
reactive T cells. A clinical study with anti-PD-1 blockade in
patients with lung cancer showed that EBV-specific T cells
were not expanded during lung cancer treatment (Kamphorst
et al., 2017). There is also a clinical trial currently underway
to treat patients with EBV-positive NHL or other LPDs with
EBV-specific cytotoxic T cells activated using antigen-pulsed
dendritic cells in combination with nivolumab (anti-PD-1
antibody) (ClinicalTrials.gov identifier: NCT02973113). EBV-
specific tumour infiltrating lymphocytes (TILs)/T cells have also
been shown to mediate tumor killing in vitro as well as disease
remission in patients with NPC (He et al., 2012; Li et al.,
2015). HLA-B35, along with HLA-B2, -A2 and -A11 have been
shown to be associated with a higher risk of developing post-
transplant lymphoproliferative disease (PTLD) post solid-organ
transplantation (Pourfarziani et al., 2007), while another study
in Denmark showed that HLA-B45 and HLA-DR13 pose an
increased PTLD risk (Vase et al., 2015). Indeed, a HLAB35-
restricted epitope from EBV BZLF1 protein was previously
shown to elicit strong cytotoxic T-cell responses (Tynan et al.,
2005), while circulating IFN-γ+ CD8+ T cells in patients with
PTLD were dominantly reactive to a HLA-B35-restricted epitope
from EBV Epstein-Barr nuclear antigen 1 (EBNA1) (Jones et al.,
2010). Interestingly, EBNA1 is also involved in downregulation
of the HLA class I molecule to avoid immune surveillance
(Levitskaya et al., 1995), while, more recently, the late lytic
cycle associated EBV protein BDLF3 (recombinant EBV probable
membrane antigen GP85) was shown to downregulate HLA class
I and class II, CD54 (ICAM-1, important for cell trafficking
and adhesion) and CD71 (transferrin receptor, necessary for
iron homeostasis) (Quinn et al., 2015). EBV-derived IL-10
has been shown to induce pro-inflammatory polarization in
human monocytes by STAT3 (signal transducer and activator
of transcription 3) downregulation (Jog et al., 2018) and is
more efficient than human IL-10 at inducing B-cell proliferation
along with a high density of IL-10R1 expression on the cell
surface (Yoon et al., 2012). The Cancer Genome Atlas Research
Network published a comprehensive molecular analysis of gastric
cancer (GC) samples to identify possible mutational signatures
and found that an EBV-associated gene expression profile,
particularly in tumor tissue isolated from the gastric fundus
(upper part of the stomach) in line with a DNA hypermethylation
pattern, formed a distinct clinical subtype of GC (Cancer Genome
Atlas Research, 2014).

Merkel cell polyomavirus (MCPyV) is associated with most
cases of Merkel cell carcinoma (MCC), considered an aggressive,
though relatively rare, neuroendocrine skin cancer (DeCaprio,
2017; Miller et al., 2018). Interestingly, both MCC “virus-
positive” or “virus-negative” are very immunogenic and elicit
not only a CD8+ and CD4+ T-cell response (Iyer et al., 2011),
but also a B-cell response against MCPyV T-antigen proteins
(Paulson et al., 2010, 2017). A striking feature concerning
the MCPyV is the fact that it can cause a lifelong, but
relatively innocuous infection, even in people at an early age
(DeCaprio, 2017).
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Merkel cell polyomavirus has two transcriptional units coding
four splices mRNAs encoding four proteins, which includes a
large T-antigen (LT), 57kT, small T-antigen (ST) and ALTO, and
also two viral coat proteins (VP1 and VP2) (Carter et al., 2013;
Theiss et al., 2015). It is described that approximately 80% of all
MCC contains clonally integrated copies of these virus, leading
in mutations resulting in LT truncation with deletion of its DNA
binding and helicase domains and 57 kT growth suppressing
domain at the carboxyl-terminus loss (Shuda et al., 2008; Li
et al., 2013). Typically, virus-positive MCC tumors express ST
and truncated LT, supporting their role in the initiation and
maintenance of MCC. Besides the presence of viral DNA and
protein expression, tumor genomes are significantly different
between virus-positive and virus-negative MCC. Indeed, “virus-
positive” MCC contains few somatic mutations and copy number
alterations. On the other hand, “virus-negative” MCC have a
high frequency of DNA mutations, since these MCC are usually
associated to UV damage (Wong et al., 2015; DeCaprio, 2017;
Starrett et al., 2017). Another difference is that most “virus-
positive” MCC still contains a non-mutated retinoblastoma
suppressor gene (RB1), contrarily to “virus-negative” MCC,
in which RB1 is usually mutated (Harms et al., 2016). The
protein coded by this gene can restrict cell-cycle progression
by inhibiting the entrance to S phase due to E2F family
repression. Therefore, MCPyV MCC will fail to stop in G1/S and
increase the proliferation rate of such cells (Borchert et al., 2014;
DeCaprio, 2017).

There is a close relationship between MCC and other
malignancies associated to immune cells, such as chronic
lymphatic leukemia, multiple myeloma or non-Hodgkin
lymphoma. Indeed there is an increased incidence of MCC in
patients that also have one of the diseases mentioned above
(Tadmor et al., 2011), probably due to the compromised immune
responses in lymphoid malignancies. Indeed, these patients
will probably have a higher propensity for colonization with
MCPyV, which would then increase the incidence of MCC.
Besides, patients with lymphoid malignancies are also frequently
subjected to T-cell-suppressive therapies, that would influence
MCPyV infection and the course of MCC (Tadmor et al., 2011;
Brewer et al., 2012; Triozzi and Fernandez, 2013).

Various human papilloma virus (HPV) genotypes are generally
associated with oncogenesis, although HPV-16 and -18 are
implicated in the pathogenesis of several cancers in addition
to cervical cancer (also HPV-31, -33, -35, -39, -45, -51, -52, -
56, -58, -59), such as cancers of the oral cavity, oropharynx,
and tonsils (Cogliano et al., 2011; Bansal et al., 2016). HPV-
38, which is associated with skin cancer (Kocjan et al., 2009),
interacts with the eukaryotic elongation factor 1 A (eEF1A)
via the viral E7 protein to remodel actin fibers in the
cytoskeleton and thereafter promoting aberrant cell proliferation,
as shown in human keratinocytes (Yue et al., 2011). The double
methylation of eEF1A Lys55 by the human methyltransferase-
like 13 (METTL13) protein was recently found to be a crucial
facilitator of mutant KRAS-driven oncogenesis in the pancreas
and lungs (Liu et al., 2019). METTL13, which is also annotated
as FEAT has anti-apoptotic functions (Liang et al., 2015) and
has been linked to cirrhotic lesions in the human liver adjacent

to hepatocellular carcinoma (HCC) tissue, suggesting a role
in inflammation (Takahashi et al., 2011). The only approved
vaccine against HPV-associated cervical cancer, Gardasil R©, targets
the L1 protein from HPV-6, -16, -11, and -18 and offers
remarkable immunological protection of up to 5 years against
HPV-6/-11-driven genital warts, as well as HPV-16/-18-linked
cervical intraepithelial neoplasia grade 2 (CIN-2+) lesions
(Harper et al., 2010). Patients with HPV+ head and neck cancer
have been shown to have a higher number of PD-1+ CD8+
tumor infiltrative lymphocytes (TIL) infiltrating their tumors,
compared to HPV-naïve patients further to experiencing better
clinical outcomes following standard therapy (Kansy et al.,
2017). In a clinical study testing TIL efficacy against HPV+
cervical cancer, nine patients with metastatic cervical cancer
were given TIL, which in four of the patients had specific
T cell recognizing HPV E6 and E7 peptides that were also
detected post-infusion. Two patients who exhibited complete
responses lasting between 15 and 22 months after T-cell therapy
showed shared CD4+ T-cell reactivity to HPV E75−19 (the
first patient also has CD4+ T-cell responses to two other E7
peptides, including E79−19) (Stevanovic et al., 2015), indicating
the potential of HPV-specific T cells in mediating clinically
meaningful responses in HPV malignancies. In another study,
thirty patients with vulvar intraepithelial neoplasia infected
with HPV-16 who were treated with long peptides from the
HPV-16 E6 and E7 proteins (two patients received three
vaccinations, while the remaining 28 patients were given four
vaccinations) showed very favorable clinical results (9/30 patients
with complete response at 12 months post-vaccination, which
last a further 12 months – thus a total of 24 months) (Kenter
et al., 2009). A cervical cancer-derived CD8+ T cell specific
for an HLA-A2-restricted HPV-16 E6 epitope has also been
shown to be enriched in the tumor compared with peripheral
blood (Draper et al., 2015). Furthermore, the corresponding
TCR was transduced into naïve T cells and tested for anti-
tumor activity against several HPV+ cancer cell lines, resulting
in target-cell elimination. These clinically relevant results are
indicative of the potential anti-tumor functionality of HPV-
specific T cells either directly or by means of modulating the
local immunological milieu by molecular mimicry to potentiate
disease control.

A link between immune evasion in cervical cancer cells,
perpetrated by HPV, has been shown in the context of HLA class
II molecules. The effect of IFN-γ on HPC+ cervical cancer cells
has been shown to mobilize class II-associated invariant chain
peptide (CLIP) and HLA-DMA into the cytoplasm while HLA-
DMA dynamics (HLA-DM being a “molecular editor” for loading
peptides into the MHC class II binding cleft) was not affected,
although HLA-DR expression at the cell surface was increased
(Zehbe et al., 2005). In line with this, IFN-γ treatment of HPV+
ME180 cervical cancer cells promoted immune recognition
by a HLA-DR4-restricted CD4+ T-cell clone CCA1 (which is
specific for a peptide derived from the HPV E7 protein) (Zehbe
et al., 2005). Nevertheless, CLIP expression was not affected
by IFN-γ treatment, hinting at alternate strategies by which
HLA class II immune surveillance may be increased in HPV-
associated malignancies.
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The involvement of hepatitis B and C viruses (HBV/HCV) in
the pathogenesis of HCC is also well-established. A combination
of natural selection of antagonistic HLA class I viral epitopes
and upregulation of PD-1 on infected hepatocytes contributes
to immune evasion of HBC/HCV in the liver (Bertoletti et al.,
1994; Cox et al., 2005; Golden-Mason et al., 2007). Virus-
mediated counter-regulation of cholesterol metabolism in host
cells by manipulating the subtilisin Kexin Isozyme-1 (SKI-
1)/Site-1 Protease (SKI-1/S1P) pathway has been implicated in
the establishment of a successful infection (Olmstead et al.,
2012). This was further strengthened by the finding that
pharmacological inhibition of the SKI-1/S1P pathway limited
viral particle generation by reducing the amount of intracellular
lipid droplet formation. A similar scenario has been observed
in the infection of liver cells with dengue virus, another highly
clinically relevant flavivirus, and it’s blockade with PF-429242,
specific inhibitor of the SKI-1/S1P pathway (Hyrina et al.,
2017). The HBV-encoded HBx protein has been previously
shown to interact with the afore-mentioned eEF1A, which
is a downstream target of the METTL13/FEAT enzyme and
participates in remodeling of actin filaments in hepatoma cells
by blocking eEF1A dimerization (Lin et al., 2012). Anti-PD-1
therapy with nivolumab induced strong anti-viral activity to the
effect of reducing viral load by approximately 4-log, with the viral
load reduced to undetectable levels in two patients (Gardiner
et al., 2013). Similarly, anti-CTLA-4 blockade (tremelimumab)
in patients with HCC and chronic HCV infection extended the
time to disease progression, with almost 60 patients experiencing
stable disease and in addition to dramatic reduction in HCV load
(Sangro et al., 2013). IFN-γ-producing T cells, in response to
HCV antigen exposure, were also detected in peripheral blood
of some patients up to 300 days post tremelimumab treatment
initiation (after at least three cycles had been completed).
Apoptosis-inducing cytotoxic T cells with engineered with anti-
HCV TCRs (directed against the non-structural proteins NS3
and NS5) as well as those targeting HBV are being developed
(Balasiddaiah et al., 2017; Bertoletti et al., 2017; Kah et al., 2017).

Kaposi’s sarcoma herpes virus (KSHV), presently known
as human herpesvirus-8 (HPV-8), is the etiological agent of
Kaposi’s sarcoma, a form of endothelial cancer which can
manifest in mucosal tissue surfaces, i.e., lymph nodes and skin
as well as two other lymphoproliferative disorders, namely
multicentric Castleman’s disease (MCD) and primary effusion
lymphoma (PEL) (Robey et al., 2011). Kaposi’s sarcoma (KS)
was, in the 1980s and early 1990s, identified as a major co-
morbidity of HIV/AIDS-related immunosuppression (Chang
et al., 1994; Strickler et al., 1999). KSHV can dampen
innate immune responses via several strategies (reviewed in
Lee et al., 2010), simultaneously producing viral interleukin
(IL) 6 which promotes the pathogenesis of MCD and PEL
(Sakakibara and Tosato, 2011). Importantly, latent KSHV has
been reported to upregulate host IL-6 production (by infected
cells) triggered by the KSHV latency-associated nuclear antigen
(LANA), hinting at an ongoing inflammatory response despite
absence of clinical disease as well as in MCD and PEL
(An et al., 2002). Central memory T-cell responses (IFN-γ)
to the virus has been observed to the crucial even in the

presence of sirolimus therapy (rapamycin, immunosuppressant)
following renal transplantation (Barozzi et al., 2008). In a recent
clinical study investigating the therapeutic efficacy of anti-PD-1
(nivolumab or pembrolizumab, anti-PD-1 antibodies) blockade
in HIV-associated KS, six out of nine patients who received the
treatment showed objective responses (five patients = partial
responses; one patient = complete remission) (Galanina et al.,
2018). Interestingly, some of the patients who responded to anti-
PD-1 therapy (n = 4) displayed low PD-L1 levels in their tumors,
coupled with low CD4 counts and high HIV burden.

Although not related to cancer, influenza vaccine-mediated
narcolepsy development in susceptible individuals presents a
very clinically relevant human modality pertinent to antigen
cross-reactivity influenced by the restricting HLA elements in an
individual (Mignot et al., 2001; De la Herran-Arita et al., 2013;
Tafti et al., 2016; Bomfim et al., 2017). HLA-DQB1∗0602 confers
protective immune responses against developing type 1 diabetes
mellitus (T1DM), while the same individuals suffer a greater risk
of contracting narcolepsy (Mignot et al., 1997, 2001; Siebold et al.,
2004). Similarly, some HLA class I alleles, i.e., HLA-A11:01, HLA-
C04:01, and HLA-B35:01, are implicated in the susceptibility
of certain groups of individuals to develop narcolepsy (Tafti
et al., 2016). HLA-DQB1∗0602 in association with HLA-
DRB1∗1501/02/03 present a propensity to induce development of
Th17 and Th1 cells, which is necessary for the control of bacterial
infections at very early stages, but not later due to the effect it
has on culminating in autoimmune pathology (more reflective
of Th17 cells) (Mangalam et al., 2013). Asian populations have
a higher frequency of the HLA-DQB1∗0602 allele, while West
African have at least twice as more polymorphisms in the HLA
class II allele pools compared to White Caucasians, which may
have evolved to provide superior protection against the former
populations against infections agents such as Mycobacterium
tuberculosis, Klebsiella sp., Leishmania sp. (Mangalam et al.,
2013). In contrast, HLA-DQB∗0601 is associated with resistance
to developing autoimmune disease, based on studies in mice with
experimental autoimmune encephalomyelitis (Mangalam et al.,
2008), the murine model of multiple sclerosis (MS).

Bacterial Pathogens, Inflammation, and
Oncogenesis
Helicobacter pylori is perhaps the best described and most
known oncogenic bacterial pathogen in relation to gastric cancer
(GC) thus classified as a group I carcinogen (Wroblewski
et al., 2010). Proteins produced by H. pylori, comprising the
vac and cag families, induce molecular changes in stomach
epithelial cells leading to malignant transformation (Wroblewski
et al., 2010). Bacterial urease, on the other hand, promotes
apoptosis of epithelial cells by direct binding to the HLA class
II molecules (Fan et al., 2000). Downregulation of HLA class
II molecules by H. pylori strain N6 via enhanced expression of
CD300E and miRNA-4270 suppression in human macrophages
was recently found to be an immune evasion strategy employed
by this pathogen (Pagliari et al., 2017). H. pylori VacA (from
strain CCUG17874) was previously shown to interfere with the
synthesis and presentation of nascent HLA class II molecules
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(Molinari et al., 1998), as well as the interaction between B7-
H2 and CD28 on CD4+ T cell to trigger immune activation
marked by early IL-17 production to control infection (Lina
et al., 2014). Thus, deterring CD4+ T-cell responses appears to
play an important role in H. pylori-mediated immune evasion,
but the same effect may play potentiate anti-cancer responses.
An interesting example being the observation of IFN-γ+ CD4+
T cells responding to HLA-DRB1∗1501-restricted H. pylori
hemagglutinin (HpaA88−100) in H. pylori-infected patients with
GC who exhibited less severe disease (Chen et al., 2013).

The local immune responses in the stomach to H. pylori
has also been shown to be strain-dependent, augmenting the
release of a panel of pro-inflammatory cytokines, such as IL-
6, TNF-α, IL-12, and IL-1β (Andres et al., 2011). Also, the
suppression of microRNA Let-7b expression in gastric cells by
H. pylori infection promotes TLR4 expression and downstream
Myd88 activation to trigger NF-κB-mediated immune responses
(Teng et al., 2013). The finding that H. pylori infection leads to
upregulation of vitamin D receptor (VDR) expression in gastric
epithelial cells and extracellular supply of vitamin D3 is able to
improve intracellular bacterial killing (Guo et al., 2014) indicates
that a subpopulation of patients may be able to control bacterial
infection via vitamin D-associated mechanisms. A recent review
of clinical trial data suggests that vitamin D may have a protective
effect in cancer although further controlled real-world evidence is
required to strengthen this stance (Grant, 2018).

Escherichia coli-derived colibactin and the risk of
colon/colorectal cancer (CRC) has been proposed due to
the DNA alkylating nature of the bacterial toxin. The strain of
E. coli which produces colibactin is prevalent in the human gut,
but not everyone with colibactin+ E. coli develops malignancies.
An earlier preclinical study showed that the colibactin gene is
encoded in the pks genomic island of certain E. coli strains,
which have also been recovered from some patients with CRC
(Dalmasso et al., 2014). Furthermore, using cell culture and a
mouse model of human CRC, pks+ E. coli negatively affects p53
SUMOylation and, thereafter, the structural integrity of the p53
protein leading to DNA breaks. Infection of cells (as well as mice)
with pks + E. coli also induced the production of growth factors,
i.e., HGF, FGF, and GM-CSF associated with tumor outgrowth
and poor outcome. Enteropathogenic E. coli (EPEC) which
produces Shiga toxin, the causative agent of haemolytic uraemic
syndrome (HUS), may also be involved in the pathogenesis of
CRC based on the findings of a clinical study published in 2015
(Magdy et al., 2015). Citrobacter rodentium infection of the
mouse colon, which represents similar pathological features to
EPEC infection and intestinal inflammation in humans, has been
shown to promote Th17 induction with the involvement of the
resistin-like molecule alpha (RELMα) (Osborne et al., 2013).

In their meta-analysis of 22 clinical studies, Zhu and
colleagues further strengthened the existing link between
C. trachomatis infection and the occurrence of cervical cancer
(Paavonen, 2001), while identifying co-infection with HPV to
promote a higher risk of developing malignant disease. A 2019
clinical study showed that women with serum antibodies against
the Pgp3 protein of C. trachomatis suffer a twofold risk of
developing ovarian cancer (Trabert et al., 2019). Pgp3 is a

plasmid-encoded virulence factor which can form a complex with
human cathelicidin (also known as LL-37) to induce IL-6 and
IL-8 production in neutrophils (Hou et al., 2019). Mechanistic
studies using cell culture systems have provided empirical proof
that infection with C. trachomatis induces DNA double-strand
breaks (DSBs) in cells while impairing the repair process by
inhibiting recruitment of ataxia telangiectasia mutated kinases
(ATM) and p53-binding protein 1 (53BP1), further to inducing
production of the epidermal growth factor (EGF), which is
implicated in dysplasia (Chumduri et al., 2013; Patel et al., 2014).

To date, no direct link has been established between
Mycobacterium tuberculosis (Mtb) infection and oncogenesis in
the lungs. However, some existing clinical and translational
evidence suggest that Mtb infection-induced fibrotic lesions in
the lungs may contribute to malignant transformation, partly
due to genetic aberrations caused by the local inflammatory
response comprising an armament of IFN-γ, TNF-α, IL-12, IL-
18, IL-17, and IL-6 to clear the pathogen (Kaufmann et al.,
2014; Zumla et al., 2015; Nikitina et al., 2018). Mutations in
the epidermal growth factor receptor (EGFR) gene, associated
with lung adenocarcinoma pathogenesis, have been linked to the
presence of old pulmonary tuberculosis (TB) lesions in patients
with lung cancer (Luo et al., 2012). In agreement with this, the
presence of old pulmonary TB lesions has been shown to be
an independent predictor of shortened survival among patients
with squamous cell carcinoma of the lung (SCC) (Zhou et al.,
2013). A 2006 report showed that 25% of patients in a New York
City study cohort with an underlying cancer diagnosis, i.e., lung
cancer, Hodgkin’s and NHL, head and neck cancer or leukemia,
died within three months of being diagnosed with pulmonary TB
(Kamboj and Sepkowitz, 2006). Taiwanese patients with various
solid cancers (particularly lung cancer) and TB, compared to
those who did not have cancer, exhibited a significantly lower
anti-TB treatment success rate (43 vs. 75.8%) and almost four
times the mortality rate (48.4 vs. 13.9%) (Chiang et al., 2009). Mtb
infection has been shown to induce DSBs in host macrophages,
reminiscent of pre-apoptotic DNA fragmentation (Castro-Garza
et al., 2018), hinting at an added mechanism of promoting
malignant transformation of host cells.

Some bacterial pathogens, such as Salmonella, Klebsiella, and
Yersinia sp., which are etiological agents of enteric infection,
have been associated with downregulation of the HLA-B27
allele in PBMCs of infected patients (Kirveskari et al., 1999).
These pathogens have also been associated with the pathogenesis
of ankylosing spondylitis (AS), particularly in HLA-B27+
individuals (Martínez et al., 2004). HLA-B27 expression is a
risk factor for AS and patients with AS have an increased risk
for developing hematological malignancies, colon, bone as well
as prostate cancer (Chang C.C. et al., 2017). An association
between HLA-B27 and immune responses against ovarian cancer
– associated antigens has been reported (Szender et al., 2016).
Taking these into consideration, it would be clinically relevant
to investigate the relationship between bacterial infection at
mucosal surfaces, local immune responses therein and the
modulation of HLA alleles in relation to neoplasia. Although
beyond the scope of this paper, a recent genome-wide association
study (GWAS) in more than 200,000 individuals of European
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ancestry provided evidence of susceptibility loci in the HLA class
I and class II alleles (Tian et al., 2017) to various infections
(bacterial, viral, and fungal), thus paving the way for future
high-throughput large-scale studies to better understand the fine
details of infection and immunomodulation.

Helminths in the Inflammation-Induced
Oncogenesis
Besides the role of viral and bacterial pathogens as well as
the microbiome discussed above, several helminth infections –
mainly affecting the developing world – are an important cause
of infection-induced inflammation and oncogenesis. Schistosoma
haematobium, commonly known as the urinary blood fluke,
is a parasitic flatworm prevalent in Sub-Saharan Africa and
the Middle East and recognized by the IACR as a human
carcinogen (Cogliano et al., 2011). Eggs deposited in the
bladder wall has been shown to induce chronic inflammation
following long-term interaction with the host’s immune cells
(Ishida and Hsieh, 2018). Furthermore, S. haematobium-
induced inflammation can result in KRAS mutations leading
to oncogenic transformation of bladder cells (Botelho et al.,
2013), while parasite-derived antigen preparations can directly
induce inflammation leading to dysplasia in otherwise normal
and healthy mice (Botelho et al., 2011). Similarly, the Southeast
Asian liver fluke Opisthorchis viverrini and Chinese blood
fluke Clonorchis sinensis have also been shown to perpetrate
liver and bile duct cancer by means of establishing chronic
inflammation (Sripa et al., 2007, 2012; Kim et al., 2016).
O. viverrini also secretes an important mitogenic factor, namely
granulin-like Ov-GRN-1, which promotes aberrant growth of
host cells in the bile duct further to activating Myd88-dependent
NF-κB-driven inflammation (Sripa et al., 2012). During the
chronic phase of C. sinensis infection, a disrupted balance
between pro- and anti-inflammatory immune responses (Th1
suppression, Th2 increase) leads to DNA damage and neoplastic
transformation of host cells (Kim et al., 2016). As such, the
immunological axes involved in helminth-induced oncogenesis
are akin to those observed in cancers with bacterial and
viral pathogens.

THE MICROBIOME IN
INFLAMMATION-INDUCED NEOPLASIA

The role of the microbiome, especially in the gut, play a
quintessential role in maintaining physiological balance and
homeostasis in health and disease (Roy and Trinchieri, 2017).
Metabolites derived from gut bacteria, such as butyrate, are
essential for maintaining gut barrier function (Zheng et al., 2017),
which is necessary for deterring unwanted inflammation. The
gut microbiota is also directly involved in drug metabolism
and control of drug-associated toxicity (Zimmermann et al.,
2019). Dysbiosis of the lung microbiota is implicated in the
development of autoimmune pathology (O’Dwyer et al., 2016),
while immune activation of gut fungal microbiota-specific T cells
can influence and alter immune responses in the lung (Bacher
et al., 2019). Among the constituents of the microbiome which

often emerge in clinical studies are Bacteroides and Prevotella
species which, in addition to the gut, are also members of the
lung microbiome (Mathieu et al., 2018b; Pragman et al., 2018).
The former has been associated with desirable clinical outcomes
in patients with metastatic melanoma who undergo anti-CTLA-
4 therapy (Chaput et al., 2017). Translational and clinical studies
have linked an abundance of Prevotella sp. in the gut to improved
protection to influenza infection (Lee et al., 2019), clinical TB
(Maji et al., 2018), and general immunological homeostasis in the
airways (Huffnagle et al., 2017), thus providing a link between
this commensal and pulmonary immune equilibrium. Prevotella
abundance has been reported in patients with ulcerative colitis
(UC) who are also smokers (Pascal et al., 2017), in agreement with
a previous study which also found an abundance of Bacteroides
(Lucke et al., 2006). In contrast, pediatric patients with new-
onset Crohn disease (CD) (thus, treatment-naive) do not have
a link to Prevotella in the gut microbiota but, however, display
a reduced abundance of Bacteroidales (Gevers et al., 2017). It is
also relevant to refer to another recent finding of a megaphage
that specifically targets Prevotella species in the human gut
(Devoto et al., 2019), warranting further investigation in relation
to induction of intestinal inflammation and neoplasia.

Mechanistic studies performed in preclinical models
have shed light on some hitherto unknown immune-related
mechanisms driving – potentially also contributing to neoplastic
transformation of tissue – with a link to the local microbiota.
IL-17B production by APCs following exposure to bacterial
outer membrane vesicles (OMVs) has recently been shown to
enhance the development pathogenesis of bleomycin-induced
pulmonary fibrosis (PF) (Yang et al., 2019). Most strikingly,
the OMV which appeared to be most prominently promoting
fibrotic transformation in the alveoli of mice derived from
Bacteroides and Prevotella species. The lung microbiome in
mice – but not including Bacteroides and Prevotella – were
shown to augment IL-1β and IL-23-driven (also involved in
IL-17 production) T-cell pathology which promoted mutant
KRAS and p53 lung adenocarcinoma development (Jin et al.,
2019). This pathway was eventually mapped to the activation of
Vγ6Vδ1+ T cells and their local production of IL-17 perpetrating
malignant transformation. In another study that investigated the
role of TCR γδ T cells in celiac disease, a specific population of
intraepithelial lymphocytes (IEL) comprising cytolytic Vγ4Vδ1+
T cells recognizing butyrophilin (BTLN) 8/3 were shown to be
decreased following gluten-induced inflammation concomitant
with BTLN8 downregulation (Mayassi et al., 2019). Instead, a
new subset of Vδ1+ T cells, which did not recognize BTLN8/3,
occupied the same IEL niche. Provision of a gluten-free diet
allowed for recuperation of BTLN8 expression, although
the host-protective Vγ4Vδ1+ IEL populations could not be
rejuvenated. Celiac disease has been linked to predisposing
patients to a higher risk of developing esophageal cancer (Han
et al., 2015), thus making it a relevant model to study early events
in inflammation-induced neoplasia.

Commensal bacteria which trigger IL-17 and IL-22 production
in the gut may in fact do so via Mincle-Syk kinase and C-type
lectin 4e (Clec4e) signaling in dendritic cells (DCs), as recently
shown in murine Peyer’s patches (Martínez-López et al., 2019).
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The signaling pathway, in response to sensing of microbiome-
associated molecular patterns, produce IL-6 and IL-23p19,
which in turn promote the development of Th17 and the
production of IL-22 from type 3 innate lymphoid cells (ILC3)
in the intestines. Aberrations in the Mincle-Syk pathway led to
reduced gut barrier integrity, bacterial translocation to the liver
and promotion of inflammation, in addition to compromised
production of IgA by resident plasma cells. Adhesion-mediated
endocytic uptake of antigenic cargo derived from the cell wall
components of commensal gut bacteria by intestinal epithelial
cells (IECs) appears to induce Th17 development in mice,
requiring the activity of cell division control protein 42 homolog
(CDC42) (Ladinsky et al., 2019). Thus, this system postulates
one important mechanism by which microbiota-directed T-cell
responses are primed in the gut and how this may play an
induction of deleterious inflammation in disease.

Elevated levels of CD4+ T cells which produce IL-17 (Th17
subset) in peripheral blood of patients with type 2 diabetes
mellitus (T2DM) has been recognized as a major contributor to
chronic inflammation in these individuals (Jagannathan-Bogdan
et al., 2011). Importantly, perturbation in the gut microbiome
is very intimately linked to DM development (Harsch and
Konturek, 2018), thus making the IL-17 axis a very relevant
accomplice in this regard. More recently, a meta-analysis of
121 cohorts comprising 20 million individuals from across the
globe confirmed that DM predisposes patients to developing
various cancers, generally putting women more at risk than
men (Ohkuma et al., 2018). A clinical study reported in 2016
showed that patients with T1DM and chronic periodontitis (oral
bacterial infection) carry polymorphisms in the IL17A gene
perpetrating exaggerated cytokine production and pathology
(Borilova Linhartova et al., 2016). Patients with T2DM and
pulmonary TB also exhibit high levels of serum IL-17A, in
addition to TNF-α and IFN-γ, concomitant with disease severity
in the lungs and reduced functionality of CD8+ cytotoxic T cells
and NK cells (Kumar et al., 2013, 2015). These findings hint at a
role for IL-17A in predisposing individuals with DM, particularly
those harboring infections which trigger IL-17 responses, to
neoplastic transformation.

Another interesting point was raised by Yoshimoto et al.
(2013), that an obesity-associated distinct microbiome appears
to be associated with higher incidence of liver cancer;
the increase in deoxycholic acid (DCA) – associated to
microbiome alterations, as a result of obesity – may provoke
a senescence-associated secretory phenotype (SASP) in hepatic
stellate cells, and subsequently increase the production of
inflammatory molecules and tumor-promoting factors in the
liver associated with an increase in HCC development after
exposure to chemical carcinogens (Yoshimoto et al., 2013).
Another study showed evidence of SASP signs in hepatic
stellate cells in non-alcoholic steatohepatitis (Sun and Karin,
2012), demonstrating that a broad array of different factors
may affect the microbiome and its complex impact on harmful
or protective immune responses. Preferential colonization of
mucosal tissues by certain microbiome-associated bacterial
species – influenced by infections, drug intake, dietary changes
and other lifestyle practices, e.g., smoking, breastfeeding

(Victora et al., 2016) – can trigger unexpected immunological
programs which can either promote neoplastic disease or
offer protection. The microbiome does not only impact on
the clinical outcome of patients with cancer treated with
checkpoint inhibitors, yet also in long term survival of
patients with pancreatic cancer. A high tumor microbiome
diversity appears to be associated with immune activation;
even a distinct intratumoral microbiome signature, defined
by Pseudoxanthomonas, Streptomyces, Saccaropolyspora, and
Bacillus clausii, has been shown to be associated with increased
survival in patients with pancreatic cancer (Riquelme et al., 2019).
In contrast to these beneficial microbiome signatures, bacterial or
fungal species may drive harmful inflammation: Saccaropolyspora
rectivirgula drives in general a pro-inflammatory environment,
including hypersensitivity pneumonitis (Kim et al., 2010): the
mycobiome (i.e., fungal commensals or pathogens) impacts on
PDAC development mediated via (intratumoral) Malassezia
that drives PDAC progression via complement activated
inflammation (Aykut et al., 2019).

Among the currently discussed strategies to manipulate the
microbiota, particularly in the gut and possibly also in the
lung, is the use of CRISPR technology as well as the use
of bacteriophages to select for preferential colonization of
tissue with bacteria, fungi, perhaps in conjunction with certain
bacteriophages, to promote host-beneficial immuno-physiology
(Lee et al., 2018). Another use of CRISPR has also been to
study the horizontal gene transfer between bacterial species
comprising the microbiota and potentially pathogenic genetic
islands that can perpetrate strong inflammatory responses and
tissue transformation (Munck et al., 2018).

MOLECULAR MIMICRY OF PATHOGEN-
AND HOST-DERIVED TARGETS:
IMPLICATIONS IN ANTI-CANCER
IMMUNE RESPONSES

Early work using T-cell lines specific for the melanoma-associated
antigen Melan-A/MART-127−35 HLA-A2 epitope (AAGIGILTV)
showed cross-reactivity with an E. coli methionine synthase-
derived peptide (AAGIGIIQI) and a peptide from the HSV-
1 glycoprotein C (GIGIGVLAA), eliciting lysis and IL-2
production (Loftus et al., 1996; Carrabba et al., 2003). The
binding of Mtb-derived epitopes with mimicry to host peptides
to common HLA class I and class II molecules has also
been shown using bioinformatic analysis (Chodisetti et al.,
2012). This concept has now been reawakened in line with
clinical biomarkers and immunotherapy in cancer, with a
seminal article dissecting the immunological characteristics of
long-term survivors of pancreatic cancer in whom polyclonal,
neoantigen-specific CD8+ T-cell responses along with a high
load of neoantigens emerged as the quintessential determinant
of protection against disease progression (Balachandran et al.,
2017). The authors also incorporated data linking the high
quality of neoantigen-directed TCRs – which had not been
negatively selected during disease pathogenesis due to their cross
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reactivity to microbial peptides (Balachandran et al., 2017). These
cross-reactive T cells were found in blood and tumor tissue. This
appears to be biologically (and immunologically) plausible, as it
is in the host’s interest to fight pathogens and, therefore, not to
remove these TCRs from the memory pool.

Another study, based on mathematical modeling of
neoantigen characteristics and mimicry of pathogen-derived
targets, showed that increased dissimilarity of neoantigens
to (non mutant) target sequences increased the possibility to
produce meaningful immuno-protective responses after immune
checkpoint blockade therapy – designated as “neoantigen
fitness” – further to binding to TCRs which also recognize
infectious disease-related targets (Luksza et al., 2017). Thus, the
concept of molecular mimicry which allows for pathogen- and
host-reactive T cells to elicit immune responses may be crucial
in mediating clinically relevant responses in cancer as well as
infectious diseases.

INFECTION, INFLAMMATION, AND
NEOPLASIA: IMPLICATIONS FOR
PERSONALIZED IMMUNOTHERAPY

Targeting the immune system at early stages of infection may be
detrimental, as the developing anti-pathogen response mounted
by the host is crucial for augmenting innate and adaptive
immune responses to control the pathogen’s replication as well
as to form long-term immunological memory. The window of
opportunity for modulating the host immune responses lies in
clinically intervening when the inflammatory milieu becomes
overt and perpetrates unnecessary tissue pathology – potentially
leading to oncogenesis. Particularly, this time point is almost
impossible to capture in humans, with some exceptions, as tissue
transformation in patients with H. pylori (Dore et al., 2018)
or EBV infection (post-transplantation) (Shannon-Lowe et al.,
2017), which can be monitored more closely using appropriate
diagnostics and immunological testing, respectively. Primarily,
the timing of intervention herein is of utmost importance.
For instance, in patients with drug-sensitive pulmonary TB
who undergo the standard 6-month antibiotic therapy, IL-6
overproduction at diagnosis (serum levels) can be predictive of
individuals who will sustain severe lung damage at the end of
treatment – albeit successfully clearing the pathogen from the
lungs (Nagu, 2017). In contrast, patients who produce too little
IL-6 are more likely to succumb to TB and die within the first
2 months post-diagnosis and after initiating treatment. Thus, and
as previously shown, IL-6 is necessary to control Mtb infection
in patients, but overt circulating amounts of the cytokine may
be deleterious and can, therefore, be considered for therapeutic
targeting. Therefore, aberrant inflammatory processes which
do not result in optimal clinical outcomes offer the ideal
Achilles heel for intervention. Along these lines, platforms such
as spatial transcriptomics (ST) (Berglund et al., 2018) and
immunohistology-based mathematical modeling (hyperspectral
cell sociology) (Enfield et al., 2019) can be useful in determining
areas in diseased tissue where inflammation occurs and how
this affects neoplastic transformation at the gene expression

level even before pathological features and clinical symptoms
can be observed.

Another important fact is the existence of microbiome
variations due to geographical and ethnical differences, which
should also be considered in personalized therapy. Indeed, there
are several studies reporting significant variations in microbiome
composition in healthy individuals from different ethnicities
(Nasidze et al., 2009; Nam et al., 2011; Yap et al., 2011;
Yatsunenko et al., 2012; Gupta et al., 2017). These differences
may also predispose individuals for some malignancies, such as
inflammatory bowel disease (IBD), or increase the risk of a viral
infection with oncogenic potential. An example is association
between EBV and NPC, which is endemic in southern Chinese
population, with special incidence in individuals of Cantonese
origin. Most likely, genetic susceptibility and environmental
factors, such as the consumption of dietary nitrosamines, play a
role in EBV and NPC incidence (Tsao et al., 2017).

Using Immunological Effectors as
Host-Directed Therapeutics
Recent evaluation of human T-cell responses to opportunistic
pathogens has also revealed some interesting insights into
immune priming and the risk of tissue pathology. Bacher et al.
(2019) showed that CD4+ T cells which produce in response
to Candida albicans, a commensal fungus which can cause
opportunistic infections, readily cross-react with at least 30 other
fungal species, based on assessment of peripheral blood-derived
T-cell responses. Importantly, IL-17+ CD4+ T cells which
recognize C. albicans antigens and cross-react with Aspergillus
fumigatus, were identified to be specifically expanded in tissue
samples from patients with airway disease (chronic obstructive
pulmonary disease, asthma, and cystic fibrosis). The same cell
subset was found to be increased in blood from patients with
Crohn’s disease, indicating their potential to travel to the lung
and promote pulmonary inflammation. Effector memory CD4+
T cells which arise early in development and produce tumor
necrosis factor (TNF-α) have also been shown to promote
intestinal tissue growth, which is compromised in prematurely
born infants (Schreurs et al., 2019).

For instance, influenza-specific tissue-resident memory
(TRM) CD8+ T cells are indispensable for protection to full-
fledged flu-associated pathology in the lung (Pizzolla et al.,
2018). TRM cells are likely to be established in non-lymphoid
tissue compartments and not even detected in blood, meaning
that the highly specialized TCR repertoire in tissue differs from
that seen in peripheral circulation. Indeed, TIL from human
cancer tissue have an arsenal of TCRs which are specific for
viral antigens, i.e., influenza CMV and EBV, but also react to
cancer neoantigens (Simoni et al., 2018; Scheper et al., 2019).
Thus, there is a high chance that a ‘pre-wired’ matrix of the
tissue-resident TCR repertoire might participate in orchestrating
pathology and disease due to molecular mimicry between
immunogenic epitopes of microbes and host-associated antigens.
One preclinical study showed that influenza-primed T-cell
responses were able to recognize the overexpression of host
proteins by the 3LL lung tumor cell line and confer protection
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against lung cancer development in a murine model (Iheagwara
et al., 2014). TRM CD8+ T-cells have been shown to express
a similar gene program as compared to TIL (Milner et al.,
2017). These TRMs, characterized by a specific transcription
factors (Hobbit, Blimp-1, Notch, Runx3) (Milner et al., 2017)
are believed to reside in non-lymphoid tissues in order to be
able to rapidly respond to infectious pathogens – or to cancer
(Kumar et al., 2017) TRMs require mitochondria dependent
lipid oxidation (Pan et al., 2017), a pathway that is not properly
functioning in chronic inflammation, chronic infection as well as
in cancer lesions, due to the immune-suppressive environment
and a “frozen,” non-functional chromatin state (Philip et al.,
2017), that appears to be at least in part be reversible (Li et al.,
2019). The transcription factor Bhlhe40 maintains immune
fitness in TRMs and in TIL, where a subpopulation of stem-
cell like TCF1+ TIL have been shown to be responsive to
checkpoint inhibition – and may indeed by responsible for
clonal expansion in response to pathogens or cancer cells. Of
note, checkpoint inhibitors are thought to revert dysfunctional
in situ T-cell responses leading to clinically relevant anti-tumor
responses (Pauken et al., 2016). However, clinically relevant
immune responses were associated with recruitment of new
T-cell clones accumulating into cancer lesions, since pre-existing
(exhausted) in situ T-cell clones could not be reverted by
checkpoint inhibitors, most likely due to “fixed” epigenetic
imprints (Kurtulus et al., 2019; Yost et al., 2019). A “fixed”
epigenetic landscape appears also to be associated with T-cell
phenotypes (Ghoneim et al., 2017) that can be manipulated
by affecting the transcriptional regulator Tcf7/Tcf1 (Kurtulus
et al., 2019) or Bhlhe40 (Mehta et al., 2017) promoting and
maintaining TRMs and tumor-infiltrating immune cells by
increased mitochondrial metabolism (Li et al., 2019), a situation
that can be also be achieved using the genetic modifier HDAC
(histone deacetylase inhibitor tubastatin A) or fatty acid acetate
by affecting (Bhlhe40-negative) T-cells leading to increased
IFN-γ production (Li et al., 2019).

The pathogenesis of IBDs, such as CD and UC, have also
been attributed to arise from dysregulated host responses to
microbial products, i.e., increased prevalence of gut microbiota-
derived sphingolipids such as ceramide and induction of pro-
inflammatory responses locally (Bryan et al., 2016; Franzosa
et al., 2019). Bacterial strains from the gut microbiota of
a patient with UC have also been shown to induce Th17
cells in germ-free mice following oral inoculation (Atarashi
et al., 2015). As IBDs pose a high risk for CRC development
(Althumairi et al., 2016), therapeutic interventions manipulating
the microbiome and inflammation may represent a viable option
to prevent malignant transformation. Along these lines, α4β7
integrin-expressing regulatory T cells (Tregs) can be used a
cellular product to neutralize deleterious local inflammation
to improve disease outcomes (Goldberg et al., 2019). Since
Tregs from patients with IBDs express low levels of α4β7, a
combination of rapamycin (sirolimus) and all-trans retinoic
acid (ATRA) can be used to generate α4β7-expressing Tregs
in vitro for cellular therapy. Pertaining to resolution of intestinal
inflammation and antimicrobial defense, administration of BT-
11, a locally active immuno-modulatory drug which enhances

oxidative phosphorylation in immune cells, was shown to
potentiate Treg induction and suppression of Th1 as well
as Th17 responses in the murine model of C. rodentium-
driven intestinal inflammation without compromising anti-
C. rodentium immunological memory and clearance (Leber et al.,
2019). Importantly, BT-11 targets the lanthionine synthetase
C-like 2 (LANCL2) pathway, which happens to be central
to inducing IL-10 production and amelioration of overt
inflammation during infection, as shown in the context of
influenza virus (Leber et al., 2017) and H. pylori (Leber et al.,
2016) infections. These findings highlight LANCL2 as a host-
directed therapy (HDT) target, which is expressed in the cell
membrane of immune cells. Whether this approach would
concomitantly promote exacerbation of an underlying bacterial
infection in humans has to be formally tested in a suitable
preclinical setting prior to clinical evaluation in patients.

Killer receptor NKG2D-expressing immune effector cells such
as Vγ9Vδ2 T cells, NK cells and some populations of TCR αβ

CD8+ cytotoxic T cells which recognize the HLA class I-like
molecules MICA/B, represent an essential component of the
immune system’s arsenal against targeted elimination of diseased
tissue, i.e., transformed cells in cancer and infectious diseases
(Huergo-Zapico et al., 2014). For example, the FAK/Src pathway
has been shown to trigger downregulation of the MICA in
cells, which is reversible with the use of focal adhesion kinase
(FAK) inhibitors (Moncayo et al., 2017). Although MICA/B
were recently described to be localized intracellularly in many
tumor cell types (Ghadially et al., 2017), inhibition of FAK
may be able to increase its expression on the cell surface to
promote cell-mediated cytotoxicity. At the transcriptional level,
miR-10b has been shown to downregulate MICB expression in
tumor cells, which is also reversible (Tsukerman et al., 2012).
HBV, via upregulation of the transcription factors GATA2 and
GATA3 – which is also involved in Th2 and ILC2 development
in humans (Wan, 2014), can force the downregulation of
MICA/B in hepatoma cells to escape NK-cell surveillance
(Guan et al., 2016). As mentioned in the first part of this
review, pharmacological inhibition of FAK, with the clinical
candidates GSK2256098, defactinib and BI-853520, which are
already in several clinical trials involving patients with solid
and hematological malignancies [Clinical Trials.gov identifiers
NCT00787033, NCT01778803, NCT03727880, NCT01951690,
NCT01943292, NCT01138033 (Doi et al., 2019)], may also
augment NKG2D-mediated immunomodulation. Figure 1 is
a schematic representation of how these above-mentioned
pathogen-directed immune responses may be used for HDT
for timely intervention after host responses to infectious
agent are detected.

Pharmacological Agents for Therapeutic
Immunomodulation in Infection and
Neoplasia
Small molecules, such as valproic acid (VPA), a histone
deacetylase inhibitor (HDI) and hydralazine may be used as
adjuvants to improve immune responses in HPV+ patients and
therefore may be a viable option due to the drugs’ capacity to
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FIGURE 1 | Targeted immunotherapeutic strategies against infection- and inflammation-induced neoplasia. The schematic shows some of the possible strategies
which can be pursued in developing targeted host-directed immunotherapies based on biomarkers in infection-induced inflammation and oncogenesis. Cells
infected with viruses or bacteria may induce physiological and anatomical changes in tissue, leading to reduced barrier functions and tissue integrity. This contributes
to the overall local immunological milieu associated with the production of pro-inflammatory cytokines, as IL-6, IL-18, IL-12, and GM-CSF. In some cases of viral
infection, VEGF production is also observed, which leads to neovascularization and poses a risk for malignant transformation. The same is true for EGF release by
host cells in some bacterial infections. The ensuing T-cell activation culminates in production of IFN-γ, TNF-α, IL-2 as well as IL-17 in several infections – which can
be pathogenic and contribute to chronic inflammation and neoplasia. To the right of the schematic are dysplastic cells, which can present antigenic epitopes to T
cells, some of which may be protective (HLA class I-restricted pathogen- or host cell-derived structures), while others may exacerbate the IL-17 response (HLA
class-II-restricted Th17 epitopes). Excess IL-17 as well as IL-6 can be neutralized using therapeutic antibodies which are clinically licensed. VEGF neutralization, as
well as EGFR blockade, may be clinically useful in halting disease progression due to aberrant inflammation induced by infection. Hydralazine and valproic acid, both
of which are clinically approved medications, can increase HLA class I expression in host cells, thereby augmenting and enhancing CD8+ T cell-mediated immune
control. FAK inhibitors may be able to increase MICA/B expression in neoplastic cells (as well dysplastic ones) to improve immune surveillance by TCR Vγ9Vδ2 T
cells and NK cells expressing the killer receptor NKG2D. Virus-induced T-cell responses against certain host-cell epitopes may educate T cells to subsequently
recognize tumor cells; such T-cell populations may be used in active cell therapies and the nominal (antigen-specific) TCR may be utilized for transfer into recipient
surrogate immune cells. Host cell surface molecules associated with malignant transformation induced by infection and inflammation, if recognized by circulating as
well as tissue-associated antibodies, may be used as as templates for inducing ADCC as well as viable targets for biologically and clinically relevant chimeric antigen
receptors (CARs) transgenically expressed by immune effector cells.

upregulate HLA class expression in infected cells and CD8+
T-cell responses against them (Mora-Garcia Mde et al., 2006).
Vorinostat, another HDI currently in clinical trials for cancer
treatment (Bubna, 2015), along with VPA can actively inhibit Mtb
growth in human cells and may shorten the treatment period with
conventional first-line anti-TB drugs (Rao et al., 2018). Studies
in mice suggest that carboplatin-derived cancer drugs exert their
effects also via autophagy (Michaud et al., 2011), which facilitates
anti-bacterial immune responses and clearance (Jo et al., 2013;

Kaufmann et al., 2014). It may, therefore, be possible to
investigate the immunological profile of cells isolated from
platinum-treated patients with cancer for their responsiveness to
pathogen-derived antigens and whether these cells can be used
for therapeutic purposes. Rifampicin, which is a first-line anti-TB
drug, has shown anti-angiogenic properties in preclinical studies,
with inhibitory effects on human liver cancer cells and sarcoma
cells (Shichiri and Tanaka, 2010), further to decreasing HCC to
only a single occurrence in six patients who were HCV+ in
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over 97 months (8 years) (Shichiri et al., 2009). Since rifampicin
is used not only to treat mycobacterial infections, but also
those caused by meningococci, staphylococci and enterococci
(Forrest and Tamura, 2010), the immunomodulatory properties
of this drug may apply across the gastrointestinal and pulmonary
organ systems. Based on experience in cancer treatment, low-
dose cyclophosphamide-induced immunological fine-tuning by
modulating CD8+ T and regulatory T-cell activity may also be
useful in changing the immune milieu in immunocompetent
individuals (Sistigu et al., 2011).

With regard to helminth infections, praziquantel has shown
very good efficacy particularly in women and children based
on the WHO-recommended parasite egg reduction rate (ERR)
to measure control of parasite burden (Sayasone et al., 2017;
Kabuyaya et al., 2018). While S. haematobium and O. viverrini
infections exhibit better treatment outcomes, the treatment
efficacy is somewhat reduced in the context of C. sinensis, with
repeated doses required (Hong et al., 2001). This also increases
the chances of drug resistance while not addressing the existing
chronic inflammation in patients. Furthermore, praziquantel
on its own can induce neutrophil activity in the bladder after
treatment of patients with S. haematobium infection (Stecher
et al., 2017). Allicin, a sulfur-containing compound extracted
from garlic and available over-the-counter, was able to reduce
inflammation as well as parasite burden albeit to a lesser extent
than praziquantel in a mouse model of schistosomiasis (Metwally
et al., 2018). Interestingly, allicin was also shown to reduce
the viability of human CRC, breast and lung cancer cell lines
in a dose-dependent manner (Gruhlke et al., 2016) resonating
with a preclinical study in mice reported in 1960 (DiPaolo and
Carruthers, 1960), thus making it a good candidate for testing in
patients with helminth-induced liver and bile duct cancers.

CONCLUSION

The chain of molecular and immunological events occurring
between infection and neoplasia in humans is challenging
to study. Nevertheless, biomarkers obtained via clinical and
translational studies (the role of METTL13/FEAT in infection-
driven neoplasia is a good example), as well as ongoing
drug trials provide an avenue to examine fluctuations which
reflect different stages of the immunopathological process.
A combination of measurement of soluble biological mediators
in blood, immunohistological methods, next-generation
sequencing and existing clinical knowledge will be able to
identify and design personalized therapies. Furthermore,
constituents of the study cohorts in question, as inclusion
of uninfected household contacts, unrelated healthy donors
and geographical distribution play a remarkably important
role to more accurately decipher the tenets of protective vs.
pathological immune and genetic biomarkers which may have
theranostic value.
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