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Lipid-transfer proteins (LTPs) were initially discovered as cytosolic factors that facilitate
lipid transport between membrane bilayers in vitro. Since then, many LTPs have been
isolated from bacteria, plants, yeast, and mammals, and extensively studied in cell-free
systems and intact cells. A major advance in the LTP field was associated with the
discovery of intracellular membrane contact sites (MCSs), small cytosolic gaps between
the endoplasmic reticulum (ER) and other cellular membranes, which accelerate lipid
transfer by LTPs. As LTPs modulate the distribution of lipids within cellular membranes,
and many lipid species function as second messengers in key signaling pathways that
control cell survival, proliferation, and migration, LTPs have been implicated in cancer-
associated signal transduction cascades. Increasing evidence suggests that LTPs play
an important role in cancer progression and metastasis. This review describes how
different LTPs as well as MCSs can contribute to cell transformation and malignant
phenotype, and discusses how “aberrant” MCSs are associated with tumorigenesis
in human.
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INTRODUCTION

Lipid-transfer proteins (LTPs) are highly conserved lipid carriers that bind monomeric lipids
in a hydrophobic pocket, and transfer them between donor and acceptor membranes through
an aqueous phase (Zilversmit, 1983; Holthuis and Levine, 2005). Based on their lipid binding
specificity, LTPs can be divided into several subgroups including: (1) sphingolipid-, (2) sterol-,
and (3) phospholipid-transfer proteins (Lev, 2010). A close proximity between the donor and the
acceptor membranes, as occurs at MCSs, reduces the diffusion distance of LTPs and accelerates
intermembrane lipid transport. Although LTPs were discovered in the late 1970s (Wirtz, 1974;
Wirtz et al., 1980) and MCSs already observed by electron microscopy in the 1950s (Porter, 1953),
their physiological functions and regulatory properties have only been emerged in the last few years
(Levine, 2004; Selitrennik and Lev, 2016).

Numerous studies on LTPs and MCSs from the last five years highlighted their important
roles in regulating intracellular lipid distribution and signaling, and demonstrated the diversity of
MCSs, their dynamics, tethering mechanisms, and various physiological functions (Saheki and De
Camilli, 2017). These studies suggest that LTPs and MCSs are involved in central cellular processes,
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including cell growth and migration, cellular metabolism, and
proteostasis (Sassano et al., 2017). Abnormal regulation of
these processes is frequently associated with tumorigenesis,
implying that LTPs and MCSs can contribute to tumor
development and metastasis.

Indeed, increasing evidence suggests that LTPs can modulate
local lipid composition of membranes, and thus, influence their
biophysical properties (fluidity, curvature) as well as the content
of lipid second messengers (van Meer, 1993; Levine, 2007; Van
Meer et al., 2008). Of the various lipid second messengers,
phosphoinositides, and in particular, phosphatidylinositol-3,4,5-
trisphosphate (PIP3) and its precursor phosphatidylinositol-
4,5-bisphosphate (PIP2) are tightly associated with human
cancer (Toker, 2002; Brown and Toker, 2015). Other signaling
lipids such as sphingolipids and fatty acids also play a role
in cancer progression and metastasis (Luo et al., 2018),
and further information on the function of lipids and lipid
metabolism in cancer can be found elsewhere (Murai, 2015;
Kim et al., 2016; Long et al., 2018). In this review, we discuss
the role of several LTPs, including phosphatidylinositol (PI)-
transfer proteins (PITPs) and steroidogenic acute regulatory
protein (StAR)-related lipid transfer (START family) (Soccio and
Breslow, 2003; Alpy and Tomasetto, 2005) in human cancer, and
further describe the heterogeneity of MCSs, their function in lipid
transport and calcium signaling, and their implication in cancer
biology. Additional information related to LTPs and MCSs had
been previously described in many excellent reviews and are not
covered here (Cohen et al., 2018; Prinz et al., 2019; Scorrano et al.,
2019; Wong et al., 2019).

PHOSPHOINOSITIDES AND CANCER

All phosphoinositides are derivatives of PI, a phospholipid that
is synthesized in the ER and is composed of a hydrophobic
diacylglycerol (DAG) coupled to inositol 1-monophosphate
ring (Lev, 2012). Phosphorylation of the inositol ring at its
3, 4, and 5 hydroxyl groups, either at single site or in
combination, results in the seven different phosphorylation
states of membrane phosphoinositides, including PI3P, PI4P,
PI5P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P3. These
phosphoinositides are distinctly distributed between intracellular
organelles and play different cellular functions (Balla, 2013).
PI(3)P and PI(3,5)P2 are considered as endolysosomal species,
PI4P is enriched in the trans-Golgi network (TGN) and
PI5P within the nuclei, whereas PI(4,5)P2, PI(3,4)P2, and
PI(3,4,5)P3 are mainly found at the plasma membrane (PM)
(De Craene et al., 2017). The production and maintenance
of these different phosphoinositides is mediated by a network
of interconverting enzymes including phosphoinositide-specific
kinases and phosphatases.

Although phosphoinositides are minor phospholipids of
the PM, PI(4,5)P2, which plays a central role in cellular
signaling, is considered to be the most abundant. It undergoes
rapid hydrolysis by phospholipase C (PLC) in response to
multiple external stimuli to generate DAG and inositol-1,4,5-
trisphosphate (IP3) second messengers. In addition, it binds

to proteins that regulate actin polymerization, cell adhesion
and cell-cell contact, and consequently affects cancer cell
motility (Bunney and Katan, 2010). Most importantly, PI(4,5)P2
is phosphorylated by PI3K (phosphatidylinositol 3-kinase)
to generate PI(3,4,5)P3, an important phosphoinositide that
regulates cell survival, proliferation and growth. PI(3,4,5)P3 can
be dephosphorylated by the 3′-phosphatase PTEN to terminate
PI3K signaling. Notably, activating mutations in the catalytic
domain of PI3K, i.e., PIK3CA, and loss-of-function mutations
in PTEN are among the most common genetic alterations
found in human cancer, demonstrating the central role of
this phosphoinositide in cancer biology (Engelman, 2009). In
addition, AKT which is activated by PI(3,4,5)P3, is amplified,
overexpressed or hyperactivated in multiple human cancers
(Altomare and Testa, 2005). Given the central role of PI(3,4,5)P3
in human cancer, it is not surprising that inhibition of PI(3,4,5)P3
production and/or its downstream effectors utilizing kinase
inhibitors to PI3K, AKT, or mTOR (mechanistic target of
rapamycin) have been utilized as promising strategies for cancer
therapy (Engelman, 2009).

Recent studies, however, suggested that several
phosphoinositide-transfer proteins also regulate PI(3,4,5)P3
levels and are implicated in cancer progression and metastasis.
We discuss a few examples including, PITPα and β, Nir2,
PITPNC1, and TIPE3.

PITPs
In humans, there are five PITPs that can be classified into
two major groups: small PITPs, which include PITPα, PITPβ,
and PITPNC1, and large multi-domains proteins including Nir2
and Nir3 (Figure 1A; Lev, 2004). The PI-transfer domain is
highly conserved in all human PITPs and can transfer PI and
phosphatidylcholine (PC), whereas few PITPs can also transfer
phosphatidic acid (PA) and sphingomyelin (SM) (Li et al., 2002;
Yadav et al., 2015).

The involvement of PITPα and β in phosphoinositides
production, turnover and signaling has been demonstrated
by many studies employing reconstituted systems, cell-free
assays and intact cells. Collectively, these studies showed that
PITPα and β can enhance PI(4,5)P2 and PI(3,4,5)P3 production
(Cockcroft and Garner, 2013). In addition, it was shown
that overexpression of PITPα in mouse fibroblasts markedly
enhanced cell proliferation (Schenning et al., 2004), and that
depletion of Nir2 by shRNA substantially reduced PI(4,5)P2
levels at the plasma membrane and consequently PI(3,4,5)P3
production in response to growth factor stimulation (Chang et al.,
2013; Kim et al., 2013; Chang and Liou, 2015). Low levels of
these phosphoinositide second messengers were accompanied
by reduced AKT and ERK1/2 phosphorylation, and as a result,
inhibition of cell migration and invasion (Keinan et al., 2014).
Nir2 depletion markedly attenuated the migration and invasion
of mammary epithelial cells and human breast carcinoma and
induced mesenchymal-to-epithelial transition (MET) of highly
metastatic breast cancer cells. Consistent with these findings,
we showed that Nir2 level was upregulated during EMT, and
its depletion in breast cancer blocked lung metastasis in animal
models (Keinan et al., 2014). We also observed high correlation
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FIGURE 1 | Phosphatidylinositols transfer proteins. (A) PI-transfer proteins. The five human PI-transfer proteins can be divided into small proteins consisting of a
single PI-transfer domain (PITD) including PITPα/β and PITPNC1, and the multi-domains containing proteins Nir2 and Nir3. Shown are the PITD, the FFAT motif,
DDHD, and the C-terminal LNS2 (Lipin/Nde1/Smp2) domain. Glycine rich region is found only in Nir3 (Lev, 2004). PITPNC1 phosphorylation sites (S274 and S299),
which bind 14-3-3, are represented as red dots on PITPNC1 protein (Halberg et al., 2016). (B) TIPE3, a PIP2, and PIP3 transfer protein. TIPE is the only protein that
is known to transfer phosphoinositides. It preferentially binds PIP2 and PIP3, and contributes to increase their levels at the PM by mediating efficient supply of PIP2

and presenting it to PI3K to produce PIP3 (Fayngerts et al., 2014). The numbers at the right side of each protein indicate the length of each protein in amino acids.

between Nir2 expression and tumor grade as well as poor disease
outcome of breast cancer patients.

PITPNC1 is also implicated in cancer metastasis, but in
contrast to PITPα and β, has a unique C-terminal extension
with two serine phosphorylation sites, which provide docking
sites for 14-3-3 protein (Garner et al., 2011). It was proposed
that 14-3-3 binding protects PITPNC1 from degradation and
inhibits its lipid transfer activity (Cockcroft and Garner, 2012).
While further studies should explore this hypothesis, currently
there is strong evidence that PITPNC1 is associated with
different human cancers. It is highly expressed in several
cancers, and its overexpression significantly correlates with
metastatic progression of breast, melanoma, and colon cancers.
PITPNC1 was identified as a target gene of miR-126, a metastasis
suppressor microRNA (Png et al., 2012). It is amplified in
a large fraction of human breast cancers, and its depletion
by shRNA markedly attenuated metastasis in animal models
(Halberg et al., 2016). Mechanistic studies suggest that PITPNC1
binds PI4P and enhances the secretion of pro-invasive and
pro-angiogenic mediators, through recruitment of RAB1B (Ras-
related protein Rab-1B) and the PI4P-binding protein GOLPH3
(Golgi phosphoprotein 3) to the TGN (Halberg et al., 2016).
Interestingly, PITPNC1 was also found to bind and transfer PA
but not PC (Garner et al., 2012), implying that it has unique lipid
binding and/or transfer capabilities.

TIPE3
TIPE3 belongs to the TNFAIP8 (tumor necrosis factor-
alpha-induced protein 8, or TIPE) family of proteins which

are implicated in tumorigenesis and inflammation (Moniz
and Vanhaesebroeck, 2014). It contains a C-terminal TIPE2
Homology (TH) domain, consisting of a large hydrophobic cavity
that accommodates phospholipid molecules (Fayngerts et al.,
2014). Similarly to the other TNFAIP8 members (TIPE1, TIPE2,
and TNFAIP8), TIPE3 can bind a number of phosphoinositides,
including PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. It
preferentially captures and transfers PI(4,5)P2 and PI(3,4,5)P3
and increases their levels at the PM, thereby promoting AKT and
ERK pathways activation (Fayngerts et al., 2014). It was proposed
that TIPE3 functions as a lipid-presenting protein and enhances
PI(3,4,5)P3 production by PI3K (Figure 1B).

TIPE3 is highly expressed in several human cancers including
lung, cervical, colon, esophageal and breast. Its overexpression
enhances cell growth, migration and invasion in vitro and tumor
growth in animal models, whereas its knockdown has opposite
effects (Fayngerts et al., 2014; García-Tuñón et al., 2017). These
observations suggest that TIPE3, and possibly its other family
members, are a new class of phosphoinositide transfer proteins,
which regulate tumor growth and progression.

START PROTEINS AND THEIR
INVOLVEMENT IN HUMAN CANCER

In mammals, there are fifteen proteins containing the START
(StAR-related lipid-transfer) domain, which can be grouped
into six subfamilies according to sequence similarities and lipid
binding specificities. The STARD1/D3 subfamily has specificity
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FIGURE 2 | The START proteins. Fifteen START proteins in human are grouped into six subfamilies. Three groups share the indicated lipid binding/transfer specificity
of START domain, while the other three groups share the indicated functional domains. All members have their START domain at the C-terminal region. Among 15
START proteins, two of them, STARD3 and CERT, contain FFAT motif. STARD3, STARD10, STARD7, and STARD5 are found to be highly expressed and connected
to poor prognosis in various cancers including breast cancer, gestational trophoblastic tumor (Clark, 2012). On the other hand, the expression of all members of
Rho-GTPase subgroup, STARD8/12/13, STARD9, and STARD15 are reported to be decreased in cancer (Clark, 2012). The number at the right side of each
C-terminal represents the length of each protein in amino acids.

for cholesterol, STARD4/D5/D6 subfamily for cholesterol or
oxysterol, and STARD2(PCTP)/D7/D10/D11 subfamily for
phospholipids or sphingolipids (Figure 2). The lipid-binding
specificity of the other three subgroups is unknown, but they
share other functional domains. STARD8/12/13 subfamily shares
a putative Rho-GTPase domain, STARD14/15 subfamily has
thioesterase activity, and STARD9 has a kinesin motor function
(Alpy and Tomasetto, 2005). Interestingly, the START domain is
always located at the C-terminal of the START proteins, possibly
to facilitate lipid binding, transfer and release. Few START
proteins contain membrane targeting motifs that mediate their
interaction with different organelles. STARD1, for example, has
a mitochondrial targeting motif and STARD3 has a MENTAL
(MLN64 NH(2)-terminal) domain for late endosome (LE)
targeting, while STARD11/CERT (ceramide transfer protein)
contains a PH (pleckstrin homology) domain for PI4P binding
at the Golgi complex. STARD3 and STARD11 both contain a
FFAT (two phenylalanines in an acidic tract) motif between
their N-terminal membrane targeting determinants and the
C-terminal START domain (Figure 2). Almost all START
proteins have been implicated in either in cancer progression or
suppression (Olayioye et al., 2004, 2005; Durkin et al., 2007a,b;
Clark, 2012; Vassilev et al., 2015). Here we focus on the FFAT

motif-containing proteins, STARD3 and STARD 11, and discuss
their role in cancer.

STARD3
STARD3 was originally named metastatic lymph node clone
64 protein (MLN64) since it was discovered in a screen
designed to identify human genes that were amplified or
overexpressed in aggressive breast tumor. The screen used
subtractive hybridization method and identified clone number 64
as a gene that is overexpressed in all HER2 positive breast tumors
(Tomasetto et al., 1995). Subsequently, it was shown to be co-
amplified and co-expressed with HER2 in various breast cancer
cell lines and in about 10–25% breast cancers (Bièche et al., 1996;
Vassilev et al., 2015). STARD3 gene is located in the minimal
amplicon of HER2-positive breast cancers. It is co-amplified with
HER2 (Alpy et al., 2003) and always overexpressed with HER2
in breast cancer cells (Pollack et al., 1999; Perou et al., 2000;
Vincent-Salomon et al., 2008).

Currently, it is unclear how STARD3 enhances tumorigenesis
of HER2-positive breast cancer and how the two proteins
cooperate. However, several possibilities could be postulated;
STARD3, via its cholesterol transfer activity, plays a central
role in redistribution of cholesterol between the ER and
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FIGURE 3 | Endoplasmic reticulum-endosome MCSs in normal and cancer cells overexpressing STARD3. The sterol-transfer protein STARD3 promotes the
formation of MCSs between late endosomes (LE) and the endoplasmic reticulum (ER), where it mediates cholesterol transport. Tethering of ER and LE occurs
through the interaction of the LE-membrane anchored STARD3 (via its FFAT-like motif) with the integral ER proteins VAPs. In cancer cells, overexpression of STARD3
possibly induces the formation of aberrant LE-ER MCSs thereby inhibiting further endosomal maturation. Endosomal maturation is commonly associated with Rab5
to Rab7 switch and with PI3P to PI(3,5)P2. MSP, major sperm protein domain.

endosomes. It interacts with the ER via its FFAT motif and with
endosome via its MENTAL domain (Figure 3). The MENTAL
domain shares structural homology with tetraspanin superfamily
consisting of four transmembrane helices. This domain does not
have any typical late endosome (LE)-targeting motifs, however,
mutagenesis analysis strongly suggests that the MENTAL domain
is crucial for STARD3 targeting to LE (Alpy et al., 2013).
When STARD3 is amplified or overexpressed in HER2-positive
breast cancer, the endosomal membranes are wrapped by the
ER, leading to rigid and static ER-LE MCSs, thus losing their
transient and dynamic features. Interestingly, stacking of ER
membranes is also observed by ectopic overexpression of LTP
proteins containing FFAT motif together with vesicle-associated
membrane protein-associated proteins (VAPs) which produces
abnormal ER structures called karmellae (Amarilio et al., 2004).
The ER-LE static structures might lock the LE and inhibit their
maturation to lysosomes (Figure 3). Under these conditions,
lysosomal degradation of cell surface receptors, including HER2
and other growth factors receptors would be impaired, receptors
will be sorted back to the PM and signal termination will be
prevented, leading to uncontrolled cell growth. In this way,
STARD3 may enhance the progression of HER2-positive cancer.
Indeed, it was shown that STARD3 overexpression increases the
proliferation rates of HER2-positive breast cancer cells, while its
knockdown has an opposite effect (Wilhelm et al., 2017).

CERT (STARD11)
CERT, a 68-kDa cytosolic protein, also known as collagen
type IV alpha-3-binding protein (Col4A3BP) or STARD11,
transfers ceramide from the ER to the Golgi, where various
modifications take place to produce complex sphingolipids

(Hanada et al., 2003). CERT via its N-terminal PH domain binds
PI4P at the Golgi and via its FFAT motif interacts with the
ER-resident VAP proteins to transfer ceramide through the ER-
Golgi MCSs (Kawano et al., 2006; Peretti et al., 2008). The
START domain of CERT is exclusively specific for ceramide. The
significance of CERT in cell physiology and cancer progression is
mainly associated with its ceramide transfer activity, as ceramide
is a precursor of sphingolipids (Figure 4).

Sphingolipids are made up of a large class of lipid species
having sphingosine as their backbone. They are involved
in maintaining the structural integrity and fluidity of cell
membranes and in regulating various cellular processes such as
proliferation, migration, angiogenesis and inflammation (Kunkel
et al., 2013; Morad and Cabot, 2013; Kreitzburg et al., 2018).
Ceramide, an N-acylated form of sphingosine, is the simplest
type of sphingolipid; it serves as a precursor of more complex
sphingolipids, including sphingomyelin (SM), glycosylceramide
and ceramide 1-phosphate (C1P), which are produced at the
Golgi by SMS (sphingomyelin synthase), UGCG (UDP-glucose
ceramide glucosyltransferase) and CERK (ceramide kinase),
respectively (Yamaji and Hanada, 2015).

Sphingomyelin, which is synthesized by SMS from PC
and ceramide, is a key component of lipid rafts, affects
membrane fluidity and is involved in signal transduction.
Of note, CERT was first isolated as a factor that recovers
SM levels in a SM-deficient cell line (Hanada et al., 2003).
Glycosylceramide is synthesized by UGCG via transferring a
glucose residue from UDP-glucose to ceramide. It serves as
a precursor for lactosylceramide, which is the precursor of
most of glycosphingolipids except galactosylceramide and its
derivates. C1P is a phosphorylated form of ceramide and it
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FIGURE 4 | Phosphoinositides, sphingolipids, and cholesterol regulate cell growth, motility, and invasion. The depicted cellular pathways are regulated by
phosphoinositeds (PIns), sphingolipids, and cholesterol and can influence cell growth, motility, invasion, or apoptotic cell death. LTPs are labeled in blue and include
PIns-transfer proteins, ceramide transfer protein (CERT), and various cholesterol transfer proteins of the START and OSBP/ORP family. PLC, phospholipase C; PKC,
protein kinase C; DAG, diacylglycerol; S6K, S6 kinase; SM, sphingomyelin; SMS, SM synthase; S1P, sphingosine 1-phosphate; C1P, ceramide 1-phosphate; LPP,
lipid phosphate phosphatase; SPP-1, S1P phosphatase-1; CERK, ceramide kinase; SphK, sphingosine kinase.

functions as an adaptor for type IVA cytosolic phospholipase
A2 (cPLA2) to produce pro-inflammatory eicosanoids. Among
the three sphingolipids, SM is mostly affected by CERT defects,
although the other two are also influenced (Prestwich et al., 2008;
Yamaji and Hanada, 2014, 2015).

The central role of ceramide in sphingolipid metabolism
is also demonstrated in sphingosine-1-phosphate (S1P)
pathway, which regulates multiple cellular processes such
as proliferation, neovascularization, migration, and invasion.
Ceramide, sphingosine and S1P comprise the three core lipids
of S1P pathway, which are rapidly interconverted in response to
various external stimuli such as growth factors, inflammation and
stress. Ceramidase converts ceramide to sphingosine, which is
further modified by SphK (sphingosine kinase) to S1P or reversed
to ceramide by ceramide synthase (Figure 4). ABC transporters
and Spns2 (spinster homolog 2) can export S1P outside the
cell, where it binds to S1PR1 to 5 (sphingosine-1-phosphate
receptor), and induces their signal transduction in both autocrine
and paracrine manner (Spiegel and Milstien, 2003).

While ceramide induces apoptosis, its metabolites induce
signaling cascades that promote cell proliferation or migration
(Figure 4). Therefore, CERT can either promote or inhibit cancer
progression depending on cellular context. In triple-negative
breast cancer (TNBC), for example, CERT depletion promotes
cancer progression (Heering et al., 2012). It was proposed that
low levels of CERT in TNBC concomitant with reduced levels of
SM and cholesterol at the PM, increased PM fluidity and caused

high activation of EGFR (epidermal growth factor receptor) to
enhance tumorigenesis (Heering et al., 2012). On the other hand,
CERT depletion was beneficial for cancer therapy in colorectal
and HER2-positive breast cancer cell line (Lee et al., 2012).
CERT is highly expressed in HER2-positive breast cancer, and
its depletion induced ceramide accumulation in the ER and
concomitant changes in genes expression. One of the genes
induced by CERT depletion was LAMP2 (lysosomal associated
membrane protein-2) which mediated paclitaxel sensitization via
induction of autophagic cell death (Lee et al., 2012). It appears
that inhibition of CERT could lead to tumor suppression in
some cancers and tumor progression in others, and thus could
represent a potential target for precision medicine. Similar to
CERT, other LTPs that regulate phosphoinositides, shingolipids
and cholesterol can affect different signaling and metabolic
pathways to enhance cell survival, growth and motility or
to inhibit cell death, and consequently could affect cancer
progression, metastasis and/or response to treatment (Figure 4).

MEMBRANE CONTACT SITES

MCSs are defined as small cytosolic gaps of ∼10–25 nm between
the ER membranes and PM [plasma membrane-associated
membranes (PAM)], the mitochondria [mitochondria-associated
ER membranes (MAM)], or other intracellular organelles
including endosomes, Golgi complex, peroxisomes, lysosomes
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and lipid droplets (Levine, 2004; Wong et al., 2018). These contact
sites enable the transport of lipids, calcium ions and different
metabolites by non-vesicular transport mechanisms, and thus,
provide a platform for inter-organellar communication (Holthuis
and Levine, 2005). MCSs are highly dynamic and heterogenous
structures formed by specialized tethering proteins that bridge
two membrane compartments (Lev, 2010). Multiple organelle-
specific tethering complexes have been isolated (Scorrano et al.,
2019) and many of them contain the integral ER-membrane
proteins, VAP-A and -B (Lev et al., 2008).

VAP proteins interact via their major sperm protein (MSP)
domain with FFAT motif-containing proteins, including the LTPs
CERT, OSBP (oxysterol-binding protein 1) and Nir2 (Hanada,
2006; Peretti et al., 2008), and play major roles in MCSs formation
between the ER and other cellular membranes (Murphy and
Levine, 2016). Nevertheless, VAPs depletion has no profound
effects on cell viability and contacts between ER and other
organelles (Stoica et al., 2014; Dong et al., 2016), implying
that other proteins are involved. Indeed, many tether proteins
have been identified in the last few years, including the ER-
anchored protein MOSPD2 (motile sperm domain-containing
protein 2), which also interacts with FFAT-containing proteins
and is implicated in MCSs formation (Di Mattia et al., 2018).
Notably, MOSPD2 and VAP proteins have been shown to interact
and possibly form hetero-oligomers (Huttlin et al., 2017).

The molecular components of the different MCSs, their
function in communication and metabolic exchanges, make
MCSs a subject of great interest in cellular signaling and
metabolism in both physiological conditions and pathological
contexts, such as cancer and neurodegeneration. Here, we
address the features of specific types of MCSs (involving
mitochondria, endosomes, and lysosomes) with a focus on their
role as key platforms for calcium signaling and lipid transfer,
especially in cancer.

MITOCHONDRIA-ASSOCIATED ER
MEMBRANES (MAM) AND ITS ROLE IN
CANCER

Mitochondria-associated ER membranes (MAM) specific MCSs
that create an intimate communication between ER and
mitochondria and generate micro-domains in which the
concentration of Ca2+ is much higher than the cytosol (Csordás
et al., 2010), allowing for rapid mitochondrial Ca2+ uptake
through the low affinity (KD of 20–30 µM) channel of the
mitochondrial calcium uniporter (MCU) (Baughman et al.,
2011; De Stefani et al., 2011). Calcium uptake through the
MCU complex covers essential roles in regulating energy
status, signaling events and survival (Mammucari et al., 2016;
Penna et al., 2018).

In the mitochondrial matrix, Ca2+ controls the activity of
the three dehydrogenases of the Krebs cycle and, thus, the
overall synthesis of ATP. Cancer cells, which require high
energy for growth, commonly turn their energy production
from oxidative phosphorylation to glycolysis (Warburg
effect) (Schwartz et al., 2017). Although the amount of ATP

produced via glycolysis is lower than through oxidative
phosphorylation, it provides a selective advantage to cancer
cells due to significantly higher glycolytic rate, supporting
tumor growth and progression. Such a metabolic switch
from aerobic metabolism to glycolysis has been linked to
alterations of Ca2+ signaling at the MAM (Bittremieux
et al., 2016). Dysregulation of calcium import at MAM
can therefore severely affect tumorigenesis through two
critical mechanisms: cellular metabolism and cell death
pathways (Figure 3).

The current concept is that Ca2+ overload in the mitochondria
leads to apoptosis, whereas basal level of Ca2+ enhances
tumorigenesis. Indeed, several compounds with anti-tumor
activity act by promoting mitochondrial calcium overload and
consequently cell death, which can be inhibited by MCU
blockers (Garcia-Prieto et al., 2013; Madreiter-Sokolowski et al.,
2016). Likewise, inhibition of mitochondrial Ca2+ uptake
enhances resistance to apoptotic stimuli in colon, cervical and
prostate cancers, and increases cancer cell survival (Cui et al.,
2019). However, in MDA-MB-231 breast carcinoma, MCU
downregulation reduced tumor growth and metastasis, implying
that mitochondrial Ca2+ uptake enhanced tumorigenesis of some
cancers (Tosatto et al., 2016).

Calcium is released from the ER through the IP3R, which
is tethered to the mitochondrial VDAC1 via the GRP75
linker (Szabadkai et al., 2006; Figure 5). Several oncogenes
modulate IP3R activity by post-translational modification or
direct interaction. Phosphorylation of IP3R by AKT inhibits
Ca2+ release and protects cancer cells from apoptosis (Szado
et al., 2007). Similarly, interaction with the anti-apoptotic
proteins Bcl-2 and Bcl-XL, which are frequently overexpressed
in cancers (Delbridge et al., 2016), suppresses ER Ca2+ release
to prevent apoptosis (Huang et al., 2013; Monaco et al., 2015;
Morciano et al., 2018).

Different tether proteins have been postulated for MAMs
formation and maintenance (Figure 5). Homo- and heterotypic
interaction of Mitofusin 1 (MFN1) and 2 (MFN2) was
initially proposed as a tether for MAM (Figure 5; De
Brito and Scorrano, 2008). Despite both Mitofusins are
transmembrane GTPases involved in mitochondrial fusion,
MFN1 is localized to the outer mitochondrial membrane,
while MFN2 is found both in the ER and mitochondria,
largely present at MAM (De Brito and Scorrano, 2008; Naon
et al., 2016). High MFN2 level in cancer cells was proposed
to increase MAM and enhance ER-mitochondria Ca2+ flux
and hence, susceptibility to apoptosis (Gautier et al., 2016;
Cui et al., 2019). Interestingly, MFN2 also physically interacts
with PERK (protein kinase RNA-Like ER kinase) (Muñoz
et al., 2013), which also functions as a tether at MAM
extensions (Verfaillie et al., 2012). In cancer cells, PERK may
promote or suppress tumor progression. In the mesenchymal
subtype of TNBC, PERK signaling enhanced invasion and
metastasis through interaction with the transcription factor
CREB3L1 (cAMP responsive element binding protein 3 like
1) (Feng et al., 2017), and its knockdown inhibited growth of
breast carcinoma in animal models by limiting redox homeostasis
(Bobrovnikova-Marjon et al., 2010).
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FIGURE 5 | Mitochondria-associated ER membranes in normal versus cancer
cells. Schematic cartoon illustrating ER-mitochondria (MAMs) tethering
proteins. MAMs regulate lipid transfer and play an important role in Ca2+

homeostasis by orchestrating Ca2+ shuttling from ER to mitochondria. Normal
cells rely on oxidative phosphorylation for energy production, and possess
normal MAM configuration, which promotes apoptotic cell death in response
to calcium overloading. Conversely in cancer cells, which use the glycolytic
pathway to produce ATP, expression level of tethering proteins is altered and
“aberrant” MAMs are formed. In most cases, the ER-mitochondria contact is
reduced and, hence, also the mitochondrial calcium uptake, favoring cell
survival and resistance to chemotherapeutic drugs. Multiple proteins are
involved in ER-mitochondria tethering (Sassano et al., 2017), those that are
described in the text and the figures are: TMX1, thioredoxin related
transmembrane protein 1; PTPIP51, protein tyrosine phosphatase-interacting
protein 51; VAPB, VAMP-associated protein B; Mfn1/2, Mitofusin 1/2; PERK,
protein kinase RNA-like ER kinase; GRP75, glucose-regulated protein 75;
IP3R, IP3 (inositol 1,4,5-trisphosphate) receptor; VDAC, voltage-dependent
anion channel; PACS2, phosphofurin acidic cluster sorting protein 2.

Phosphofurin acidic cluster sorting protein 2 (PACS-2)
is a sorting protein that also functions as a MAM tether,
and is involved in ER-mitochondria coupling (Simmen et al.,
2005), as well as in apoptosis and survival. Apoptotic signals
trigger its dephosphorylation and redistribution from the ER
to mitochondria, recruiting Bid, followed by Bid cleavage and
cell death (Simmen et al., 2005), while its phosphorylation
by AKT promotes NF-kB (nuclear factor kappa-light-chain-
enhancer of activated B cells)-mediated pro-survival signaling
(Betz et al., 2013).

Among the MAM proteins that regulate ER-mitochondria
Ca2+ flux and affect cancer cells, are the redox-sensitive
oxidoreductase thioredoxin related transmembrane protein 1
(TMX1) and protein tyrosine phosphatase-interacting protein
51 (PTPIP51). Reduced levels of TMX1 in cancer cells lead
to increased ER Ca2+ levels, and a concomitant decrease in
cytosolic and mitochondrial Ca2+ levels resulting in reduced
mitochondrial respiration. This, in turn, makes the cancer

cells more dependent on glycolysis, a hallmark of cancer cells
(Ganapathy-kanniappan and Geschwind, 2013).

PTPIP51, an integral outer mitochondrial membrane (OMM)
protein, interacts with VAP-B and is essential for VAP
recruitment to MAM (Figure 5). It also interacts with
the oxysterol-binding protein (OSBP)-related proteins ORP5
and ORP8, which transfer phosphatidylserine (PS) to the
mitochondria for PE synthesis (Galmes et al., 2016). Depletion
of PTPIP51 or VAP-B delays Ca2+ uptake by the mitochondria
(De vos et al., 2012). Notably, both PTPIP51 and VAP have
growth stimulatory activities, and high expression level of VAP-B
in breast cancer enhanced cell growth in vitro and tumor growth
in animal models (Rao et al., 2012).

Collectively, these examples demonstrate that many MAM
proteins can influence tumor metabolism and/or apoptotic cell
death and consequently may affect tumorigenesis or response to
anti-cancer therapy.

Lipids Modifications at the MAMs and
Their Role in Cancer
The role of MAM in the synthesis of specific lipids and their
transfer to mitochondria was initially shown via cell fractionation
(Vance, 1990; Vance and Canada, 1991). MAM is essential for
the conversion of ER-derived PS to PE and for trafficking of
cholesterol as a precursor for steroid species (Tatsuta et al., 2014).

Although mitochondria have low content of cholesterol
compared to other organelles, cholesterol is enriched in MAMs
compared to the rest of the ER and affects ER-mitochondria
apposition (Sassano et al., 2017). In cancer cells, the inner
mitochondrial membrane (IMM) has higher cholesterol content
and phospholipids with shorter and more saturated acyl chains
compared to normal cells. These lipid modifications decrease
the IMM permeability, and consequently the vulnerability to
apoptotic signals (Ribas et al., 2016).

Cardiolipin is a unique and abundant lipid of the
IMM, accounts for ∼20% of the total lipid composition,
which retains cytochrome c in the IMM (Shidoji et al.,
1999). Its accumulation in the IMM requires PA supply
mediated by the PA-transfer activity of the TRIAP1/PRELI
protein complexes. Depletion or inhibition of these
protein complexes impairs cardiolipin accumulation and
increases cell susceptibility to apoptosis (Potting et al.,
2013). Hence, it could be that “aberrant” MAMs in cancer
cells or abnormal expression of TRIAP1/PRELI would
modulate cardiolipin levels and cytochrome c release, and
thus cell susceptibility to apoptosis that can be exploited
for cancer therapy.

ROLE OF ER-ENDOSOME AND
ER-LYSOSOME CONTACT SITES IN
HUMAN CANCER

The endosomes undergo dynamic changes from biogenesis
toward maturation. Endosome maturation is mediated by
spatiotemporal phases, which regulate their size, location, uptake
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of macromolecules and sorting of cargos. The number of ER-
endosomes MCSs is markedly increased during maturation,
reaching a maximum in the LE (Friedman et al., 2013; Hariri
et al., 2016). We describe the functions of key proteins
that are involved in ER-endosomes MCSs and their putative
implications in cancer.

In addition to STARD3, the retromer subunit SNX2 (sorting
nexin-2) also interacts with VAPs and tethers the ER membrane
to endosomes (Dong et al., 2016). SNX2 binds PI(3)P on the
endosomal surface, and affects the level of several cell surface
proteins in cancer cells, including the c-Met receptor in lung and
gastric cancer cells (Ogi et al., 2013). Depletion of VAPs leads to
accumulation of PI4P in endosomes and disrupts endosome-to-
Golgi traffic. VAPs also interact with the ER proteins Protrudin
and RTN3 (Reticulon protein 3), while Protrudin interacts
with RAB11 (recycling endosomes), Rab7 (late endosomes)
and PI(3)P at the endosomes via its FYVE domain (Shirane
and Nakayama, 2006; Matsuzaki et al., 2011). Overexpression
of Protrudin increases ER-endosomes contacts (Raiborg et al.,
2015), while resistance to endocrine therapies of breast cancer
cells is associated with reduced levels of Protrudin (Magnani
et al., 2013). Rab7 was also shown to be a marker of poor
prognosis in melanoma cancer (Alonso-Curbelo et al., 2014).
Whether Protrudin overexpression in cancer induces aberrant
MCSs is currently unknown, but could be interesting to explore.

Another protein that functions at the ER-endosome MCSs
is the ER-localized protein tyrosine phosphatase PTP1B which
interacts with EGFR on early and late endosomes at the ER-
endosome MCSs (Eden et al., 2010). EGFR is implicated in
various human cancers, while PTP1B can function either as an
oncogene or tumor suppressor in various cancer types (Liu et al.,
2015). At the ER-endosomes MCSs, PTP1B-EGFR interaction
stabilizes MCSs, but it is not required for contact formation
(Eden et al., 2010). As EGFR is highly expressed in many
human cancers, it might stabilize aberrant ER-endosome MCSs
to sustain endosomal signaling and prevent signaling termination
by lysosomal degradation.

The lysosomes participate in many fundamental cellular
processes, including recycling of cellular components, nutrient-
dependent signal transduction, membrane repair and pathogen
defense signaling (Perera and Zoncu, 2016). Increased lysosomal
activity, especially under nutrient deprivation, favors cancer
growth and resistance to therapy in certain cancer types (Thelen
and Zoncu, 2017). Lysosomes are considered as a central hub
for sorting of lipids from endogenous and exogenous origin, and
for maintenance of cholesterol homeostasis (Thelen and Zoncu,
2017). Another important property of the lysosomes is the close
proximity of 5–20 nm with other organelles including the ER
and mitochondria (Csordás et al., 2006; Phillips and Voeltz, 2016;
Wong et al., 2018).

Lysosomes can process and distribute exogenous (LDL-
cholesterol) and endogenous (de novo synthesized in the
ER) cholesterol through MCSs. The ER-anchored protein
ORP5 and the membrane cholesterol transporter NPC1
(Niemann-Pick disease, type C1) interact and facilitate
cholesterol export from lysosomes, whereas STARD3 in the
LEs/Lys, through interactions with VAPs, mediates cholesterol

transport from the ER to lysosomes (Thelen and Zoncu,
2017). ORP5 promotes cell proliferation and invasion via
mTOR complex 1 (mTORC1) signaling (Du et al., 2018),
and its overexpression is associated with poor prognosis of
pancreatic cancer (Koga et al., 2008). Interestingly, ORP5 and
ORP8 were also localized to MAM (Gao and Yang, 2018),
similar to the ER protein PDZD8 (PDZ domain-containing
protein 8) (Hirabayashi et al., 2017), which was recently
found at the ER-LEs/Lys contacts through interaction with
Rab7 (Guillén-Samander et al., 2019). It was proposed to
regulate Ca2+ dynamics in neurons and lipid transport
between the ER and ER-LEs/Lys (Hirabayashi et al., 2017;
Guillén-Samander et al., 2019).

In addition to cholesterol distribution, the ER-lysosome
MCSs promote efficient Ca2+ transport between the two
organelles. It is now clear that many functions of lysosomes
depend on their ability to acquire calcium from the ER
through IP3Rs and to release calcium (Atakpa et al., 2018).
Lysosomal calcium release was proposed to be mediated by
three types of channels: the mucolipin family of TRPML
(transient receptor potential) channels, the two-pore (TPC)
channels, and the transient receptor potential cation channels
TRPVs (Raffaello et al., 2016; Li et al., 2019). Interestingly,
TRPV4 is associated with poor prognosis in colon cancer (Liu
et al., 2019) and is implicated in breast cancer metastasis
(Lee et al., 2016). Similarly, TPCs have been found to be
highly expressed in several cancers (Brailoiu et al., 2009;
Jahidin et al., 2016) to facilitate cell migration and invasion
(Nam et al., 2017).

ER-lysosome MCSs also play role in mTOR activation.
mTOR is a central regulator of cell metabolism and growth,
and is considered as a promising target for cancer therapy
(Faes et al., 2017; Saxton and Sabatini, 2017). mTOR is
activated at the LE/LY in response to multiple growth factors
and amino-acid stimulation. Its activation is regulated by
lysosomal positioning and is mediated by translocation of
mTORC1-positive lysosomes to the cell periphery, where
it remains in proximity of signaling receptors. It turns out
that this translocation is regulated by ER-lysosome MCSs,
and is mediated by two PI3-binding proteins: FYCO1
(FYVE and coiled-coil domain-containing protein 1) which
is recruited to lysosomes, and the ER-resident protein
Protrudin. PI3P-binding of FYCO1 and Protrudin promotes
mTORC1 activation and concomitantly inhibits autophagy
(Hong et al., 2017).

Overall, these findings suggest that ER-lysosome
MCSs can affect fundamental properties of cancer cells
including growth and metabolism, which may have aberrant
configurations in cancer.

CONCLUDING REMARKS

In contrast to normal cells, cancer cells are characterized
by distinct cellular metabolism and uncontrolled cell growth,
migration and invasion. Many of these processes are influenced
by lipids and calcium, two critical second messengers, which are
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regulated by LTPs and MCSs. LTPs can modulate the levels of
lipid second messengers and thus can modify signaling pathways,
signaling duration and termination. LTPs can also modulate the
distributions of lipids, and consequently the stiffness, fluidity,
and permeability of membranes, therefore affecting cell adhesion,
receptor endocytosis and recycling, cell growth and migration as
well as susceptibility to cancer therapy. Identification of specific
LTPs that regulate these cellular processes which are aberrantly
expressed in human cancer could be used for therapeutic
intervention. Similarly, MCSs which affect lipid and calcium
homeostasis, have an impact on cell proliferation and growth.
On the other hand, calcium and certain lipids are involved in
stress response and cell death pathways. The challenge is to
switch off abnormal function or expression of LTPs in cancer
cells and/or to direct “aberrant” MCSs toward cell death rather
than cell proliferation, by manipulating the different tethering
mechanisms that regulate MCSs formation and stability. Further
studies on MCSs configuration and LTPs functions in cancer
cells will be able to shed more light on how they may affect cell
transformation and promote cancer development and metastasis.
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