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Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological
stimulus responsible for generating calcium (Ca2+) oscillations that induce egg activation
and early embryonic development during mammalian fertilization. In the mammalian
testis, PLCζ expression is detected at spermiogenesis following elongated spermatid
differentiation. Sperm-delivered PLCζ induces Ca2+ release via the inositol 1,4,5-
trisphosphate (InsP3) signaling pathway. PLCζ is the smallest known mammalian
PLC isoform identified to date, with the simplest domain organization. However, the
distinctive biochemical properties of PLCζ compared with other PLC isoforms contribute
to its unique potency in stimulating cytosolic Ca2+ oscillations within mammalian eggs.
Moreover, studies describing PLCζ “knockout” mouse phenotypes confirm the supreme
importance of PLCζ at egg activation and monospermic fertilization in mice. Importantly,
a number of clinical reports have highlighted the crucial importance of PLCζ in human
fertilization by associating PLCζ deficiencies with certain forms of male factor infertility.
Herein, we give an update on recent advances that have refined our understanding
of how sperm PLCζ triggers Ca2+ oscillations and egg activation in mammals, while
also discussing the nature of a potential “alternative” sperm factor. We summarise PLCζ

localization in mammalian sperm, and the direct links observed between defective PLCζ

protein in sperm and documented cases of male infertility. Finally, we postulate how this
sperm protein can be used as a potential diagnostic marker, and also as a powerful
therapeutic agent for treatment of certain types of male infertility due to egg activation
failure or even in more general cases of male subfertility.

Keywords: sperm, phospholipase C zeta, PLC zeta, egg activation, fertilization

SPERM PLCζ IS THE PRIMARY STIMULUS FOR EGG
ACTIVATION AND EARLY EMBRYONIC DEVELOPMENT

In mammalian fertilization, the fertilizing spermatozoon stimulates egg activation, a fundamental
event that initiates embryonic development (Nomikos et al., 2017a). It is well established that the
most crucial event of egg activation is an acute increase in cytosolic free Ca2+ concentrations,
which in mammals occurs in the form of long-lasting Ca2+ oscillations that commence at
or directly following gamete fusion, and persist for several hours beyond meiotic completion
(Stricker, 1999; Malcuit et al., 2006; Kashir et al., 2013a). This Ca2+ signaling paradigm is essential
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for the completion of the multiple events of egg activation.
However, previous archetypes of our understanding regarding
the distinct events of egg activation and the events controlling
them are continuously being unraveled and questioned, with
specifics still being investigated. It is, however, clear that Ca2+-
release is an integral component of egg activation in all species
studied to date (Cran et al., 1988; Swann and Ozil, 1994; Jones,
1998; Nomikos et al., 2012; Limatola et al., 2019b). Over the
last few decades, a number of sperm-derived molecules had
been proposed as potential soluble sperm factors responsible
for the generation of Ca2+ oscillations during mammalian
fertilization (for more information see Nomikos et al., 2012,
2013a, 2017a). The fact that sperm-induced Ca2+ oscillations are
caused by activation of the inositol 1,4,5-trisphosphate (InsP3)
signaling pathway (Miyazaki et al., 1992) suggested that the
sperm factor might itself be a phospholipase C (PLC) isoform
(Jones et al., 1998).

In 2002, a novel testis-specific PLC, termed PLC zeta
(PLCζ), was discovered (Saunders et al., 2002) and abundant
experimental evidence has accumulated over the years suggesting
that PLCζ fulfills all prerequisite criteria of the soluble sperm
factor responsible for the generation of Ca2+ oscillations at
mammalian fertilization (Cox et al., 2002; Saunders et al., 2002,
2007; Knott et al., 2005; Kouchi et al., 2005; Nomikos et al.,
2005, 2013b, 2017a; Swann et al., 2006; Yu et al., 2008; Kashir
et al., 2012a). Upon sperm-egg fusion, PLCζ is proposed to be
delivered by the fertilizing sperm into the ooplasm, triggering
the Ca2+ oscillations via the InsP3 signaling pathway, through
the hydrolysis of its membrane-bound phospholipid substrate,
PIP2 (Saunders et al., 2002; Nomikos, 2015). The importance of
this sperm specific protein in mammalian fertilization has been
further highlighted by numerous clinical studies directly linking
defects or deficiencies in human PLCζ with documented cases
of male factor infertility (Yoon et al., 2008; Heytens et al., 2009;
Nomikos et al., 2011a, 2017b; Kashir et al., 2012b,c; Escoffier et al.,
2016; Torra-Massana et al., 2019).

Intriguingly, two recent independent studies described the
phenotype of a PLCζ “knockout” mouse (Hachem et al., 2017;
Nozawa et al., 2018). By using multiple transgenic models of
PLCζ “knockout” mice generated by CRISPR/Cas methodology,
both studies reported that males can produce offspring, albeit
with significantly reduced litter numbers (∼25%). Interestingly,
both studies showed that sperm lacking functional PLCζ protein
failed to induce Ca2+ release when microinjected into mouse eggs
by ICSI. However, in vitro fertilisation (IVF) with such sperm,
produced atypical and delayed patterns of Ca2+ oscillations
(lower in number and frequency) with a high degree of
polyspermy and activation failure, compared to the robust,
physiological pattern triggered by physiological PLCζ-induced
egg activation (Nozawa et al., 2018; Satouh and Ikawa, 2018).

Perhaps the atypical and delayed pattern of Ca2+ release,
observed alongside the low number of embryos and offspring,
could be spontaneous activation, unrelated to Ca2+ release,

Abbreviations: ART, assisted reproductive technology; Ca2+, calcium; ICSI,
intracytoplasmic sperm injection; InsP3, inositol 1,4,5-trisphosphate; PI(3)P,
phosphatidylinositol 3-phosphate; PI(5P), phosphatidylinositol 5-phosphate;
PIP2, phosphatidylinositol 4,5-bisphosphate; PLCζ, phospholipase C zeta.

which is common in some strains of mice (Cheng et al., 2012),
alongside with the introduction of PLCζ knockout sperm. Indeed,
eggs that had been fertilized by knockout sperm also displayed
multiple pronuclei, consistent with the inability of a sufficient
polyspermy block (Nozawa et al., 2018). Critically, however,
eggs fertilized with PLCζ knockout sperm exhibited a total of
3–4 oscillations in total, initiating following a 1-h delay. This
was in contrast to normal fertilization where 3–4 oscillations
were observed per hour over 3–4 h (Nozawa et al., 2018;
Satouh and Ikawa, 2018). Such observations perhaps suggest
that sperm containing a second molecule with Ca2+ releasing
activity, albeit weaker than PLCζ (Jones, 2018). From such
results, one could potentially posit that perhaps PLCζ is not an
absolute requirement for natural fertilization, and that perhaps
an alternative “primitive” or “cryptic” sperm factor may also
be involved in leading to egg activation (Nozawa et al., 2018;
Satouh and Ikawa, 2018).

It is possible that such a factor could be one of the
previously proposed unsuccessful candidates for the “sperm
factor,” including tr-kit (Sette et al., 2002), citrate synthase
(Harada et al., 2007), or PAWP (Aarabi et al., 2010), which
while not contributing to the majority of Ca2+ release at oocyte
activation, may have a contributory function, especially, in the
absence of PLCζ. However, it is worth noting that none of the
aforementioned proteins is able to elicit Ca2+ release in the
specific manner required for oocyte activation at physiological
levels within sperm (Kashir et al., 2014; Nomikos et al., 2014;
Satouh et al., 2015), while none of the alternatively proposed
sperm factors (apart from PLCζ) has been shown to be directly
involved in IP3-mediated Ca2+ release (Kashir et al., 2014).
Furthermore, we cannot exclude the possibility that another
sperm-associated enzyme, which might be only able to achieve
critical levels due to absence of PLCζ in the sperm of PLCζ

knockout mice, might play the role of the “cryptic” factor
triggering embryogenesis by a distinct mechanism.

Theories regarding RNA involvement are also questionable
since the total amount of PLCζ RNA present within sperm may
not be enough to elicit any Ca2+ release. On the other hand, this
may have been altered as part of genetic compensation.

Intriguingly, starfish eggs pre-injected with heparin (which
also blocks InsP3 receptor function) to disrupt cytoskeletal
arrangement were unable to exhibit a rapid Ca2+ wave response
upon interaction with sperm, instead exhibiting a much more
delayed pattern of release, and failed to prevent polyspermy.
Furthermore, the amplitude of subsequent Ca2+ peaks were
reduced, exhibiting an effect similar to observations made with
sperm from PLCζ-null mice. In starfish, it was suggested that
heparin- or age-induced hyperpolymerization of the cortical actin
disrupted actin cytoskeleton dynamics at fertilization influenced
Ca2+ release (Puppo et al., 2008; Santella et al., 2015; Limatola
et al., 2019a), potentially also impacting upon subsequent events
in egg activation such as cortical granule exocytosis. It is thus
possible that due to the lack of a sufficient response at fertilization
due to deficient/absent PLCζ, a similar effect was observed in
the PLCζ-null mice, where similar symptoms of insufficient
Ca2+ release and increased polyspermy were also observed.
Indeed, it may be the case that the low number and frequency
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of Ca2+ observed could be due to events surrounding actin
polymerization or associated InsP3-independent events of Ca2+

release (such as influx). However, these mechanisms are poorly
understood in mammals, and require further investigation to
fully ascertain.

It is clear that both Hachem et al. (2017) and Nozawa
et al. (2018) represent keystone studies that support the notion
that PLCζ is the primary physiological stimulus that triggers
the required specific pattern of Ca2+ oscillations, ensuring
monospermy and eventually successful egg activation and
early embryonic development (Hachem et al., 2017; Nozawa
et al., 2018; Swann, 2018). Moreover, the presence of an
alternative factor in other species and especially in humans
is still questionable, particularly taking into consideration all
the documented cases of male factor infertility due to PLCζ

deficiencies. However, this is an intriguing area of investigation
that ongoing studies are now aiming to address. It would be
interesting to examine how the increasing body of invertebrate
animal work will direct the mammalian side of the coin in the
future, particularly with relation to the early influence exerted
by the egg actin cytoskeleton upon patterns of Ca2+ release
and fertilization as is being unraveled in starfish. Furthermore,
integral studies are required in particularly livestock mammalian
models to demonstrate whether PLCζ-loss resembles the mouse
and/or human scenarios. Perhaps of particular interest should
be attempts to generate transgenic knockout models of PLCζ

in porcine or bovine systems. While this would of course be
considerably harder to perform than in the mouse, such data
would undoubtedly assist in ascertaining the validity of “cryptic
factor” theories. Further experiments that would be prudent
would be to examine the specific timing of the reduced profiles
of Ca2+ release in relation to PLCζ knockout sperm-egg fusion
and fertilization. Are such reduced frequency and amplitude
oscillations due to fusion of a single sperm, or the cumulative
effect of multiple sperm-egg fusion events? It is necessary that
such experiments are performed to ascertain fully the conflicting
data generated from knockout studies thus far.

SPERM PLCζ STRUCTURE AND
DOMAIN ORGANIZATION

Phospholipase C zeta is currently the smallest known mammalian
PLC isoform (∼70–75 kDa in size) with the most elementary
domain organization (Cox et al., 2002; Saunders et al., 2002;
Nomikos et al., 2013a, 2017a). Despite this, PLCζ exhibits
uniquely supreme potency in triggering Ca2+ oscillations within
the fertilizing egg compared to other somatic PLCs. This is
attributed to its novel biochemical characteristics, arising from
the essential role of its domains that contribute to the unique
biological function and mode of regulation of this distinctive
PLC isozyme (Nomikos, 2015; Nomikos et al., 2017a). PLCζ

domain structure consists of four tandem EF hand domains at
the N-terminus, the catalytic X and Y domain in the center of
the molecule, followed by a single C2 domain at the C-terminus
(Figure 1; Nomikos et al., 2017a). All these domains are common
to other PLC isoforms. The X and Y catalytic domains are

FIGURE 1 | Homology modeling of Human PLCζ (3D ribbon representation)
predicted using 1DJI.B PDB entry as template based on a target-template
alignment by the Prime homology modeling tool of the Schrödinger Suite
(DeLano Scientific LLC, Schrödinger).

separated by a short segment, the XY-linker, which through its
net positive charge plays an important role in targeting PLCζ

to intracellular membranes by direct electrostatic interactions
with its negatively charged substrate, PIP2 (Nomikos et al., 2007,
2011b). The XY-linker region differs considerably between PLC
isozymes (Nomikos et al., 2013a). By contrast, the XY catalytic
domain between PLC isoforms is the most highly conserved
region (Nomikos, 2015).

The XY domain of PLCζ shares ∼60% sequence similarity
to that of all PLCs and is responsible for PIP2 hydrolysis
(Nomikos et al., 2005). The EF hands are Ca2+-binding motifs
and in PLCζ these domains play a vital role in its high Ca2+

sensitivity compared with the other somatic PLCs, allowing
PLCζ to be active at resting Ca2+ levels within the egg cytosol,
when PLCζ enters after sperm-egg fusion (Nomikos et al.,
2005). Additionally, we have demonstrated that the first EF-
hand domain of PLCζ, which contains a cluster of basic amino
acid residues, plays an essential role together with the XY-linker
region, in the interaction of PLCζ with the PIP2-containing
membranes (Nomikos et al., 2015b). The C-terminal C2 domain
of PLCζ, comprising ∼120 amino acid residues is essential
for PLCζ function, as targeted deletion or replacement of this
domain by the corresponding domain from PLCδ1 abolishes
the Ca2+-oscillation-inducing activity of PLCζ in eggs, without
altering its enzymatic activity or Ca2+ sensitivity (Nomikos
et al., 2005; Theodoridou et al., 2013). We have provided
biochemical evidence that this domain directly interacts with the
membrane phospholipids, PI(3)P, and PI(5)P and have suggested
that C2 association with these phospholipids may facilitate in
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the membrane targeting of PLCζ (Theodoridou et al., 2013;
Nomikos, 2015).

PLCζ IN MAMMALIAN SPERM

Phospholipase C zeta mRNA has been identified during both
early and late stages of spermatogenesis in mice and pigs
(Yoneda et al., 2006; Young et al., 2009; Bedford-Guaus et al.,
2011; Kaewmala et al., 2012). Specific localization patterns,
however, remain elusive in the literature throughout the various
spermatogenic cells within the testes (Kashir et al., 2018).
Aarabi et al. (2012) indicated that PLCζ is integrated as part
of the acrosome during the Golgi phase of human and mouse
spermiogenesis (Aarabi et al., 2012), suggesting that observable
PLCζ levels are diminished gradually throughout spermatid
elongation (Kashir et al., 2018). PLCζ was originally identified
in mouse sperm extract fractions that were able to induce Ca2+

release. Subsequent immunofluorescence analysis indicated a
post-acrosomal localization for PLCζ; a component of the post-
acrosomal sheath (Saunders et al., 2002; Fujimoto et al., 2004;
Young et al., 2009). Nevertheless, PLCζ has been identified in
the sperm of various mammalian species, and usually tends to
be found within the sperm head in distinct subcellular regions,
postulating differential functional roles for each population
(Amdani et al., 2013; Kashir et al., 2014, 2018).

While in mouse and porcine sperm, PLCζ has been observed
mainly at acrosomal and post-acrosomal regions (Fujimoto et al.,
2004; Young et al., 2009; Nakai et al., 2011; Kaewmala et al., 2012),
in equine sperm, PLCζ was recorded at the acrosome, equatorial
segment, and head mid-piece, as well as the principle piece of the
flagellum (Bedford-Guaus et al., 2011; Kashir et al., 2018). Several
PLCζ populations were observed in humans in multiple studies
including the acrosomal, equatorial and post-acrosomal regions
of the sperm head, with a potential tail localization (Grasa et al.,
2008; Yoon et al., 2008; Young et al., 2009; Kashir et al., 2013b,
2018; Escoffier et al., 2015; Yelumalai et al., 2015; Yeste et al.,
2016). While there is consensus regarding PLCζ localization in
mouse sperm, the veracity of the multiple populations identified
in other mammalian sperm (particularly in humans) remains
debated (Nomikos et al., 2017a; Kashir et al., 2018). In human
sperm, this variation in PLCζ localization is not only limited to
observations between different studies but substantial variability
in the PLCζ localization pattern was found even within the same
study (Kashir et al., 2013b).

Despite numerous efforts to examine PLCζ localization
within mammalian sperm, significant concern surrounds the
specificity of the majority of antibodies used to date. More
specifically, most antibodies used in the literature are unable
to demonstrate a consistent motif of recognizing a single band
following immunoblotting of human sperm, often detecting
multiple protein bands other than, or in addition to, that of
the expected size for native PLCζ protein. Compounded by
this non-specificity, multiple groups have identified varying
populations between mouse and human sperm, even using the
same antibodies, suggesting that varying protocols and the use of
different antibodies are the main source of inconsistent results

between studies (Grasa et al., 2008; Yoon et al., 2008; Heytens
et al., 2009; Kashir et al., 2011a,b, 2013b; Aarabi et al., 2012).

Addressing such concerns, we recently generated highly
epitope-specific PLCζ polyclonal antibodies against human,
mouse, and porcine PLCζ, that exhibit high consistency
throughout numerous studies for both recombinant and native
PLCζ (Nomikos et al., 2013b, 2014, 2015a; Theodoridou
et al., 2013). Furthermore, we have also developed specific
antigen unmasking/retrieval protocols, which we previously
demonstrated are essential to enhance the visualization efficacy
of PLCζ in mammalian sperm (Kashir et al., 2017). Using these
enhanced protocols and materials, we have identified PLCζ in
the acrosomal and post-acrosomal, acrosomal and equatorial,
and post-acrosomal and equatorial compartments of mouse,
human, and porcine sperm, respectively. Furthermore, we have
also consistently observed potential tail localization in all species
(Kashir et al., 2017). Figure 2 demonstrates the expression
and distribution of PLCζ in mouse sperm using our specific
polyclonal antibodies and our recently developed and reported
protocols (Kashir et al., 2017). It is now imperative that these
specific antibodies and protocols are applied in a systematic
manner to examine whether particular localization patterns or
profiles of PLCζ exhibit any relationships between male fertility
parameters, or indeed between fertility treatment outcomes.

Another intriguing question is how PLCζ, despite its high
Ca2+-sensitivity and its potent enzymatic activity, is kept in an
inactive state within the sperm, especially when it is likely to be
present in much higher concentrations in a single spermatozoon
than within the fertilizing egg. Indeed, our previous work where
it was shown that PLCζ is inactive in somatic cells even at levels
over 1000 times that at which it is active in eggs (Phillips et al.,
2011), suggests that either PLCζ has an essential binding-partner
within the egg, or that other factors within sperm and somatic
cells may inhibit its catalytic activity.

REDUCED EXPRESSION LEVELS AND
ABNORMAL FORMS OF SPERM PLCζ

LEAD TO MALE INFERTILITY

Infertility is estimated to affect ∼15% of couples, with male
infertility affecting ∼7% of men worldwide (Kashir et al., 2010).
While genetic causes of male infertility are estimated to underlie
∼30% of such cases (Harton and Tempest, 2012; Jungwirth
et al., 2012; Hotaling, 2014), ∼50% of cases of male infertility
remain unexplained (Kashir et al., 2018). While most forms
of infertility can now be treated via a collection of laboratory
techniques collectively termed ART, a number of conditions such
as severe male infertility (19–57% of cases) cannot yet been
treated (Botezatu et al., 2014). Despite the fact that powerful ART
methods such as IVF or ICSI can successfully treat some infertility
cases, it is concerning that this is achieved only after several
fertility treatment cycles. A significant causative factor may be
recurrent implantation failure, which even after fertility treatment
leads to infertility (Polanski et al., 2014; Kashir et al., 2018).

Considering the indispensable contribution of PLCζ to
fertilization, defects in either egg activation, or in PLCζ
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FIGURE 2 | (A) Representative immunoblot image obtained using a highly specific anti-PLCζ polyclonal antibody identifying a single protein band corresponding to
the molecular weight of native mouse PLCζ (∼74 kDa). Left image indicates immunoblot specificity, while the right image shows ponceau-stained membranes.
1 × 106 mouse sperm were loaded per lane. (B) Representative immunofluorescence image illustrating representative localization of native PLCζ in mouse sperm.
Image was captured at 100X, and brightfield (left panel) and green fluorescence (right panel; PLCζ) images were obtained. Yellow arrows indicate acrosomal
populations, while red arrows indicate post-acrosomal localization of PLCζ in mouse sperm, Scale bar indicates 10 µm.

protein itself, may underlie conditions of male infertility where
fertilization failure occurs. The first evidence came from studies
that reported sperm of infertile men, which consistently failed
to fertilize eggs following routine IVF or ICSI, and were either
unable to induce Ca2+ release upon microinjection into mouse
eggs, or produced highly abnormal Ca2+ transients which were
reduced in frequency and amplitude (Yoon et al., 2008; Heytens
et al., 2009). Furthermore, such sperm also exhibited reduced or
absent levels, as well as abnormal localization patterns, of PLCζ

within the sperm head (Heytens et al., 2009; Kashir et al., 2011a,b,
2013b), suggesting that deficiencies in PLCζ protein may underlie
currently unknown cases of male factor infertility. In a clinical
scenario, in contrast to other causes, complete fertilization failure
is attributed to egg activation failure in a species-specific manner
(Kashir et al., 2010, 2018).

Moreover, PLCζ gene abrogation in patients diagnosed with
egg activation deficiency is now increasingly being reported
within the scientific literature. The first two PLCζ mutations
were identified in the gene of an infertile male, whose sperm
was unable to trigger the normal pattern of Ca2+ oscillations,
leading to egg activation failure and potentially to his infertility
(Heytens et al., 2009; Kashir et al., 2011b, 2012b,c). Both
mutations were reported within the active catalytic site domains
of PLCζ (X and Y), disrupting local protein structural folding
to cause reduction of enzymatic activity, subsequently leading
to highly abnormal Ca2+ transients unable to initiate egg
activation (Kashir et al., 2011b). Both mutations were reported
to be heterozygous, with one mutation being inherited from
the patient’s father and the other from the patient’s mother,
indicating for the first time that such maternally inherited loss-
of-activity mutations can lead to male infertility (Kashir et al.,
2012b,c; Nomikos et al., 2017a). Subsequently, a further mutation
in homozygosis was later reported by Escoffier et al. (2016)
from two infertile brothers. This mutation is located within the

C2 domain of PLCζ (Escoffier et al., 2016). Intriguingly, this PLCζ

mutant displayed similar enzymatic activity to wild type PLCζ,
but displayed a dramatically reduced relative binding-affinity
to PI(3)P and PI(5)P-containing liposomes (Nomikos et al.,
2017a). More importantly, this genetic report by Escoffier et al.
(2016) and the identification of this novel missense homozygous
PLCζ mutation in these infertile brothers after whole exomic
sequencing, strongly indicates that absence or defects in PLCζ

protein alone is sufficient to prevent human egg activation by the
sperm, suggesting that PLCζ is essential for human egg activation
and thus human fertilization.

Furthermore, single nucleotide polymorphisms (SNPs) have
also been reported by Yoon et al. (2008) and more recently
by Ferrer-Vaquer et al. (2016), either within the PLCζ coding
sequence or its associated bi-directional promoter in human
patients (Nomikos et al., 2017a).

Interestingly, Torra-Massana et al. (2019) very recently
reported six new PLCζ mutations after screening an egg activation
deficiency group, one of which was previously described (Kashir
et al., 2012b,c), in addition to four novel single-nucleotide
missense mutations, located in the EF-hands, the X catalytic and
C2 domains; while the sixth mutation identified was a frameshift
variant, which was predicted to generate a truncated protein at
the X-Y linker region (Torra-Massana et al., 2019). While further
analysis indicated a potential deleterious effect of some of these
mutations upon PLCζ activity within eggs, further biochemical
analysis is required to ascertain whether such variants of PLCζ

are deleterious as claimed at physiological levels, needing their
accurate quantification in sperm and eggs. However, it is now
clear that deleterious mutations in PLCζ may be more widespread
than previously thought, appearing not only in the catalytic active
site, but also in other vital regulatory regions of this essential
sperm protein, afflicting its membrane and/or substrate binding,
its Ca2+ sensitivity, as well as its enzymatic activity.
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Despite the relatively high success rate of ICSI in overcoming
cases of failed fertilization after IVF, ∼30% of such cases still
repeatedly fail ICSI (Flaherty et al., 1998; van der Westerlaken
et al., 2005). Low global pregnancy success rates following
ART have been attributed to poor embryogenesis following
fertility treatment (Fauque et al., 2007; Pelinck et al., 2010).
Importantly, such poor embryonic competency can be directly
linked to PLCζ and competency of egg activation (Nomikos
et al., 2017a; Kashir et al., 2018). Injection of increasing levels
of PLCζ in human eggs results in increasing frequencies and
amplitudes of Ca2+ oscillations (Yamaguchi et al., 2017), which
in turn affects subsequent gene expression (Ducibella et al.,
2002, 2006). Furthermore, the frequency and amplitude of
Ca2+ oscillations has been shown to play an important role in
compaction, and blastocyst formation (Swann and Ozil, 1994;
Miyazaki and Ito, 2006). Finally, taking into consideration that
the rate of progression to the 2- and 4-cell stages of human
eggs following fertilization has been suggested as an indicator of
normal embryogenesis (Wong et al., 2010), PLCζ-driven Ca2+

oscillations may not only be required for egg activation, but
can also be equally important for subsequent embryogenesis.
Thus, abnormalities in sperm PLCζ levels may underlie not
only infertility through fertilization failure, but also cases of
male subfertility, whereby enough PLCζ may be delivered
into the eggs to trigger activation, but prove insufficient for
embryonic competence.

CLINICAL APPLICATIONS OF PLCζ AND
FUTURE DIRECTIONS

Currently, cases of defective egg activation are clinically resolved
using assisted egg activation (AOA), involving artificially
mediated Ca2+ release (Santella and Dale, 2015; Kashir et al.,
2018). Ca2+ ionophores like ionomycin, calcimycin are currently
used to overcome unexplained fertilization failure in couples,
who repeatedly fail ICSI cycles (Fawzy et al., 2018; Norozi-
Hafshejani et al., 2018). Recently, a meta-analysis indicated that
use of Ca2+ ionophores significantly improved fertilization and
implantation rates in ICSI (Murugesu et al., 2017). However,
Ca2+ ionophores induce a single Ca2+ transient, unlike the
endogenous specific physiological pattern of Ca2+ oscillations
observed during normal fertilization (Rinaudo et al., 1997). In
fact, microinjection of human recombinant PLCζ yielded higher
blastocyst development rates than Ca2+ ionophore treatment
(Sanusi et al., 2015). Thus, PLCζ has long represented a
physiologically endogenous alternative method to clinically treat
cases of egg activation failure/deficiency, which would involve
the in vitro production of active, purified versions of human
recombinant PLCζ protein. Indeed, following initial difficulties,
multiple studies made advancements in the production of such
a desired product (Kashir et al., 2011b; Yoon et al., 2012),
culminating in efforts by Nomikos et al. (2013b) who made a
significant breakthrough by generating purified, highly active
recombinant PLCζ, capable of inducing physiological patterns
of Ca2+ oscillations following microinjection into mouse and
human eggs (Nomikos et al., 2013b). More importantly,

recombinant PLCζ was able to effectively rescue failed egg
activation in a prototype of male infertility (Nomikos et al.,
2013b). Further attempts to develop the use of recombinant PLCζ

protein as a therapeutic agent in a clinical setting are currently
in progress, in order to eliminate any potential cytotoxic effects
during embryonic development and confirm the overall safety of
exogenous PLCζ on the subsequent offspring.

Finally, PLCζ not only represents a promising clinical
therapeutic agent, but also a potentially powerful diagnostic
biomarker, which may help in determining the criteria and
requirements of the fertility treatment of male patients,
significantly decreasing the number of cycles needed for a
successful pregnancy to occur. Taking into consideration that
PLCζ analysis might be beneficial to identify not only cases
of ICSI-failure but also cases of male subfertility, a simple
immunocytological approach to routinely examine PLCζ protein
in sperm is currently widely regarded as a cost-effective
approach, which could be easily applied by the majority of
IVF clinics worldwide. However, it is essential that studies
focus on the reliable investigation of PLCζ parameters in
relation to sperm health, using robust protocols and ultra-specific
antibodies, before such clinical promise can be achieved. Indeed,
significant issues remain regarding such analyses, particularly
in humans, where PLCζ antibodies used recognize multiple
protein bands in addition to the full-length PLCζ protein.
The same antibodies have also been used to identify different
immunoblotting profiles (for detailed review see Kashir et al.,
2018). Predictably, such shortcomings have led to conflicting
results between the association of specific PLCζ localization
patterns and quantification levels.
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