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The prevalence of childhood asthma is increasing worldwide and increased in utero
exposure to environmental toxicants may play a major role. As current asthma
treatments are not curative, understanding the mechanisms underlying the etiology
of asthma will allow better preventative strategies to be developed. This review
focuses on the current understanding of how in utero exposure to environmental
factors increases the risk of developing asthma in children. Epidemiological studies
show that maternal smoking and particulate matter exposure during pregnancy are
prominent risk factors for the development of childhood asthma. We discuss the
changes in the developing fetus due to reduced oxygen and nutrient delivery affected by
intrauterine environmental change. This leads to fetal underdevelopment and abnormal
lung structure. Concurrently an altered immune response and aberrant epithelial and
mesenchymal cellular function occur possibly due to epigenetic reprograming. The
sequelae of these early life events are airway remodeling, airway hyperresponsiveness,
and inflammation, the hallmark features of asthma. In summary, exposure to inhaled
oxidants such as cigarette smoking or particulate matter increases the risk of childhood
asthma and involves multiple mechanisms including impaired fetal lung development
(structural changes), endocrine disorders, abnormal immune responses, and epigenetic
modifications. These make it challenging to reduce the risk of asthma, but knowledge
of the mechanisms can still help to develop personalized medicines.
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INTRODUCTION

Asthma is a disease that generally affects 5–20% of children globally (Global Asthma Network,
2018; Enilari and Sinha, 2019). It is a complex condition in which symptoms are mainly caused
by bronchoconstriction (Thomson and Hasegawa, 2017). Airway constriction occurs rapidly in
response to a variety of inhaled substances, for example, allergens such as pollen and house
dust mite, and environmental sources such as dust and smoke, which usually can be fully or
partially reversed by bronchodilators. Pathologically it is defined by airway remodeling, typified by
increased smooth muscle and epithelial layer thickness, and increased numbers of inflammatory
cells. However, the type of inflammation varies. For example, sputum based phenotyping of
inflammation categorizes people into eosinophilic, neutrophilic, or paucigranulocytic asthma.
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The other factors that can add to the complexity of asthma
including the age of onset, etiological cause (if known), co-
existence of other respiratory diseases, comorbidities, the degree
of reversibility, and the ability for the symptoms being effectively
controlled by pharmaceutical interventions.

The susceptibility to asthma is complex, which involves
both genetic susceptibility, environmental insults (both pre and
post birth), and is further complicated by asthma symptoms
initiating and sometimes ceasing at different ages, as well as
differences in asthma prevalence between the male and female
sexes (Carey et al., 2007b).

It is known that boys are more susceptible than girls before
puberty, but less than girls after puberty. Many theories exists
to explain this phenomena including: dysnapsis due to different
sized lungs in boys and girls, increased allergy (more IgE
production in boys), different innate and adaptive immune
responses in boys and girls, and the influence of sex hormones
(Shames et al., 1998; Papadopoulos et al., 2004; Mohammad
et al., 2016). The incidence of asthma is also related to the
use of life saving medical interventions in premature and
newborn children such as oxygen supplementation or mechanical
ventilation due to physical permanent damage to the newborn’s
lungs (Davidson and Berkelhamer, 2017).

However, it has increasingly been recognized that certain
factors during the intrauterine period affects childhood asthma
susceptibility. In particular, maternal smoking (MSE) and
particulate matter (PM) exposure (Burnett et al., 2014; Thacher
et al., 2014), are the best described/researched in utero
challenges which affect asthma susceptibility. This review will
discuss the current understanding of multiple mechanisms
underlying these two factors, which may help to develop
personalized medicines.

EPIDEMIOLOGY OF ASTHMA

The prevalence of allergic disorders has been rising since the
early 1980s. The average global rate of allergic disorders is 22%,
ranging from 15 to 35% of the population in different countries
(Warner et al., 2006). According to the WHO, the number of
children with asthma is around 14% globally (Asthma fact sheet
World Health Organisation, 2017). Severe asthma is common
in children. A recent study reported that the prevalence of
severe asthma was 4.9% in 6–7 years old children, however,
the incidence was increased to 6.9% in 13–14 years olds. These
phenomena demonstrated that age is an important factor for the
onset of asthma (Lai et al., 2009).

Environmental toxicant exposure during pregnancy is a
significant factor that has been shown to increase the incidence
of asthma (Crinnion, 2012). In particular, MSE is the largest
modifiable risk factor for the development of asthma. Although
the harmful effect of smoking is well-known in the general public,
smoking mothers find it difficult to quit due to nicotine addiction,
even during pregnancy when nicotine metabolism is faster than
non-pregnant status (Taghavi et al., 2018). A systematic review
and meta-analysis in the Lancet showed that the top 3 countries
with the highest smoking rate during pregnancy are Ireland

(38.4%), Uruguay (29.7%), and Bulgaria (29.4%) (Lange et al.,
2018). Even in Australia where anti-smoking legislation is one of
the most aggressive in the world, the smoking rate in pregnant
women is 11.7% (Laws et al., 2010).

Epidemiological studies have demonstrated a dose-dependent
increase in asthma risk in offspring due to MSE (Table 1).
Currently, several cohort studies have confirmed the association
between MSE and asthma risk in the offspring (Strachan and
Cook, 1998; Gilliland et al., 2001; Doherty et al., 2009; Burke et al.,
2012). For example, a birth cohort study has found that women
smoking during pregnancy could increase asthma incidence in
the offspring with an adjusted hazard ratio of 1.79 (95% CI 1.20–
2.67) (Grabenhenrich et al., 2014). The same outcome has been
found in another cohort study where MSE during pregnancy
caused higher asthma risk in the child in the first year of life
with an odds ratio (OR) of 1.83 (Gold et al., 1999). Similarly,
a systematic review of 14 studies revealed a wheezing [OR 1.41
(95% CI 1.19–1.67)] and asthma risk [OR 1.85 (95% CI 1.35–
2.53)] in 2 years old and younger children, followed by a higher
asthmatic risk in 5–18 years old children [OR 1.23 (95% CI 1.12–
1.36)] caused by smoking during pregnancy (Burke et al., 2012).
One study found a strong asthma risk in 14 year old girls whose
mothers smoked during pregnancy, however this was not found
in boys (Alati et al., 2006); whereas a different study found that
boys at the age of 11 are more susceptible to the maternal and
postnatal secondhand smoke (Hu et al., 2017). These differences
might be related to the changes in asthma prevelance in boys and
girls around puberty.

Around 91% of the world’s population are living in the
areas where the levels of air pollutants exceed the WHO limits
(Balakrishnan et al., 2019). Epidemiological studies demonstrated
a strong association between pulmonary disease and particular
matter (PM) exposure (Burnett et al., 2014). Compared to
cigarette smoking which can be avoided through quitting, the
dangers of airborne pollution are hard to avoid in heavily polluted
countries, such as China and India. In China, 74,000 premature
deaths were attributed to PM2.5 exposure in the year 2013 (Ji
et al., 2019). It was estimated that 22% of these deaths could have
been avoided if indoor PM2.5 level met National Class I standards
(Ji et al., 2019).

There are many different types of airborne pollution, but
simplistically these can be divided into gasses and particulate
matter (PM). PM is considered as particularly dangerous as
respirable particles can remain airborne over large distances.

As shown in Table 2, prenatal PM exposure is also associated
with childhood asthma. A cohort study found that prenatal PM10
exposure could cause pulmonary function changes with higher
minute ventilation in newborns (Latzin et al., 2009). Another
birth cohort study including pre-school and school-age children
demonstrated that prenatal PM10 exposure increased the risk
of developing asthma in both age groups, especially for those
pregnant mothers who lived near the highways (Sbihi et al., 2016).
The correlation between maternal PM exposure and asthma risk
in different genders was also investigated. High levels of PM2.5
exposure during mid-gestation increased the development of
asthma by the age of 6 years in boys, but not in girls (Hsu
et al., 2015). The above evidence indicates that maternal PM
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TABLE 1 | Maternal smoking during pregnancy and the risk of asthma in children.

Smoking exposure Age Relative risk Odds ratio (95% CI) References

Male Female

Smoker at some stage 14 years 1.15 (1.01–1.72) 1.25 (0.85–1.22) Alati et al., 2006

>20 cigarettes (early and late) 14 years 0.57 (0.20–1.60) 1.09 (0.47–2.51) Alati et al., 2006

Total of 1–9 cigarettes/day 4–16 years 1:19 (0.98–1.43) Thacher et al., 2018

<10 Cigarettes per day 7 years 1.20 (1.04–1.38) Jaakkola and Gissler, 2004

Total of ≥10 cigarettes/day <5 years 1.68 (1.10–2.58) Martinez et al., 1992

>10 Cigarettes per day 7 years 1.31 (1.09–1.58) Jaakkola and Gissler, 2004

Total of ≥10 cigarettes/day 4–16 years 1:66 (1.29–2.15) Thacher et al., 2018

Smoking during pregnancy First 3 years 1.88 (1.14–3.12) Murray et al., 2004

Smoking during pregnancy 4–6 years 1.65 (1.18–2.31) Neuman et al., 2012

Smoking during pregnancy 2–7 years 1.7 (1.2–2.2) Harju et al., 2016

Smoking during pregnancy 5–9 years 0.97 (0.51–1.84) Sherman et al., 1990

Smoking during pregnancy 14 years 1.49 (0.91–2.45) Hollams et al., 2014

Smoking during pregnancy 7–16 years 0.99 (0.78–1.25) Strachan et al., 1996

TABLE 2 | Maternal PM exposure and the development of asthma in offspring.

Pollutant Age Concentration increase Relative risk References

PM2 .5 6 years 1.7 µg/m3 (per IQR) 1.15 (1.03–1.26) Lee A. et al., 2018

PM2 .5 3–4 years 1 µg/m3 (exposure interval) 0.95 (0.91–1.00) Clark et al., 2009

PM2 .5 0–5 years 1.45 µg/m3 (per IQR) 0.99 (0.97–1.01) Sbihi et al., 2016

PM2 .5 6–10 years 1.46 µg/m3 (per IQR) 1.01 (0.97–1.06) Sbihi et al., 2016

PM2 .5 0–6 years 3.7 µg/m3 (per IQR) 1.01 (0.99–1.04) Lavigne et al., 2018

PM10 3–6 years 12 µg/m3 (per IQR) 0.89 (0.68–1.16) Deng et al., 2016

PM10 3–4 years 1 µg/m3 (exposure interval) 1.09 (1.05–1.13) Clark et al., 2009

PM10 0–5 years 1.3 µg/m3 (per IQR) 1.12 (1.05–1.19) Sbihi et al., 2016

PM10 6–10 years 1.36 µg/m3 (per IQR) 1.09 (0.96–1.24) Sbihi et al., 2016

IQR, interquartile range.

exposure during pregnancy has similar effects to MSE in terms
of increasing the risks of developing asthma in childhood.

The difference of asthma prevalence between boys and girls
and the change in prevalence which occurs around puberty
naturally gives credence to the involvement of sex hormones.
Animal models of estrogen receptor knockouts suggests that
estrogen promotes the development of the asthma (Carey et al.,
2007a); while male mice lacking testosterone showed more severe
asthma symptom (Yu et al., 2002). These studies help to explain
why boys are more susceptible to asthma before puberty, and girls
more susceptible after puberty. However, the etiology of asthma
is complex and is multifactorial.

THE ROLE OF OXIDATIVE STRESS IN
THE DEVELOPMENT OF ASTHMA IN
CHILDREN

Various chemicals can be found in both cigarette smoke and
PM. It is unlikely that a single chemical is responsible for all
the adverse effects of in utero exposure to cigarette smoke or
PM on lung health in the offspring. Cigarette smoke and PM
are two major environmental sources of inhaled free radicals
and strong oxidants. The balance between excessive oxidant

activity and the antioxidant capacity can tip in favor of excess
oxidants causing oxidative stress. However, it is important to
note that the production of oxidants is necessary to maintain
healthy cell function, and important in regulating processes
such as inflammatory responses. Oxidative stress induces adverse
effects in tissues. The developing fetus is highly vulnerable to
oxidative stress injury, as the immune system remains immature
during the prenatal period (Lee A. G. et al., 2018). Free radicals
and chemicals inhaled during MSE and maternal PM exposure
can pass the blood-placental barrier to directly increase the
level of oxidative stress in the offspring. Therefore, we propose
the first common and prominent mechanism underlying these
two factors to induce pathological changes in the offspring is
oxidative stress.

Our previous studies in mice have repeatedly shown that
MSE can reduce the level of endogenous antioxidant Manganese
Superoxide Dismutase in the brain, kidney, and lungs of
adult offspring accompanied by increased Reactive Oxygen
Species (ROS) levels in those organs; interestingly, antioxidant
supplementation during pregnancy could completely or partially
reverse the adverse effects on those organs induced by MSE (Chan
et al., 2017; Sukjamnong et al., 2017, 2018). The endogenous
antioxidant enzyme system is established in the second and
third trimester of pregnancy and continues to develop in early
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childhood (Fanucchi, 2004). Interestingly, lung development
also matures in the early postnatal period, suggesting that the
antioxidant system may protect early life lung development
from the adverse impacts of environmental oxidant pollutants
(Pinkerton and Harding, 2014). After all, the function of the
respiratory system is vital for survival immediately after birth.
Vitamin C is an antioxidant which contributes to cellular
antioxidant defense (Preston, 1991; Tous et al., 2019). A study
in pigs found that vitamin C deficiency during pregnancy could
cause brain damage in the offspring (Schjoldager et al., 2015).
Giving smoking women vitamin C during pregnancy was shown
to improve lung function (better airflow and less wheezing) in
children during the first year of life (McEvoy et al., 2014). This
again provided evidence that oxidative stress and insufficient
capacity of antioxidants play a key role in organ dysfunction in
the offspring due to MSE. PM consists of metals and endotoxins
(polycyclic aromatic hydrocarbons) which also can generate
ROS (Billah, 2015) and produce oxidative damage (Valavanidis
et al., 2006). Therefore, the pathways associated with oxidative
stress are regarded as playing an important role in inducing
adverse respiratory outcomes after the exposure to environmental
pollutants (Breland et al., 2002; Romieu et al., 2008).

In utero, any adverse effects that occur during fetal
development can have long-lasting negative influences on organ
development and later function after birth (Aycicek et al., 2005;
Noakes et al., 2007). In fact, local tissue oxidative stress and
injury due to the imbalance between free radicals and antioxidant
capacity is a key factor in asthma pathogenesis. As such we
propose that oxidative stress is the pathological insult that drives
changes in the intrauterine environment and disturbs normal
fetal development which subsequently increases the risks of
developing asthma. It is also worth noting that maternal smoking
is a strong risk factor for miscarriage, a process also linked to
oxidative stress (Stone et al., 2014).

INTRAUTERINE GROWTH
RESTRICTION – THE BARKER
HYPOTHESIS

In 1990, the epidemiologist David Barker presented his
hypothesis which linked chronic and degenerative diseases,
such as heart disease, to the poor intrauterine environment
caused intrauterine growth retardation (IUGR), low birth weight,
and premature birth. This theory inspired scientists and has
been expanded to the other organ systems including the
respiratory system (Zacharasiewicz, 2016). Numerous studies
have confirmed that environmental toxicant exposure during
pregnancy, such as cigarette smoke, can cause IUGR and
subsequently abnormal lung development in the offspring
(Zacharasiewicz, 2016). Nicotine is the most widely studied
component in cigarette smoke due to its addictive effects.
Early studies showed that cotinine, the stable metabolite of
nicotine, can be found in fetal circulation and body fluids
(Sabra et al., 2017). This indicates that chemicals in cigarette
smoke can cross the blood-placental barrier and reach the fetus.
A more recent study by Geelhoed et al. (2011) showed that

MSE can decrease blood flow in the ascending aorta because
of higher arterial resistance in the uterus, which can reduce
the oxygen and nutrient delivery to the growing fetus resulting
in IUGR. Inadequate nutrient availability in the developing
fetus, especially during the periods of rapid lung growth, has
been shown to induce lung developmental defects (Chen et al.,
2004; McMullen et al., 2005) and respiratory morbidity in the
offspring (Harding et al., 2004; Maritz et al., 2005). Animal studies
have demonstrated a decrease in both alveolarization and vessel
density in the lung of sheep with IUGR (Rozance et al., 2011).

HOW DO MSE AND MATERNAL PM
EXPOSURE IMPACT ON FETAL LUNG
DEVELOPMENT?

In brief, MSE can induce such effects in two ways: the direct
influence on the developing fetus, and indirect effects on the
fetoplacental unit. Recently, studies have demonstrated that a
small fraction of the circulating nicotine in the mothers can
cross the trophoblastic membrane and reach the unborn child,
and as such cotinine can accumulate in the fetal circulation and
fluids in measurable concentrations (Jauniaux and Burton, 1992;
Jauniaux et al., 1999). Furthermore, a similar concentration of
cotinine in both fetal lung tissue and blood was found, suggesting
cotinine may bind to the receptors in the lung to directly affect
fetal lung development (McEvoy and Spindel, 2017). Maternal
air pollution exposure can also cause fetal growth restriction
(Bonzini et al., 2010). Polycyclic aromatic hydrocarbons on the
surface of PM can easily cross the blood-placental barrier and
circulate in the fetal blood because of its small size (Jauniaux et al.,
1999). Therefore, lung development in the fetus can be directly
affected by the PM inhaled by the mothers.

The fetoplacental unit has a significant influence on
fetal development. The damage to fetoplacental unit caused
by maternal smoking can be seen during early pregnancy.
For example, MSE significantly increases villous membrane
thicknesses and trophoblastic layer in the placenta during the
first trimester (Jauniaux and Burton, 1992). There are also signs
of reduced capillary volume in placental vasculature in pregnant
smokers (Burton et al., 1989). The consequence of reduced
capillary volume is nutrient delivery decrement. Intrauterine
nutrient deficiency has been suggested as the major factor
contributing to fetal growth restriction and low birth weight due
to MSE (Figueras et al., 2008). Low birth weight can increase the
asthma risk in later life, evidenced by a meta-analysis including
1.1 million people (Xu et al., 2014). In rat models, maternal
PM exposure was found to change placental morphology, and
decrease placental weight, size and surface area (de Fátima
Soto et al., 2017). Similar findings have also been confirmed in
humans, where PM10 exposure can decrease placental weight
with higher anti-angiogenic factors in cord blood (van den
Hooven et al., 2012). As a result, increased vascular resistance can
be predicted, which will reduce uteroplacental perfusion and lead
to various maternal and fetal complications, such as low birth
weight and miscarriage (Kaufmann et al., 2003; Ness and Sibai,
2006; Schlembach et al., 2007).
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The abovementioned evidence indicates that MSE and
maternal PM exposure during pregnancy can impair fetal lung
development through a direct effect on the fetus and indirect
influence on placental morphology and function. However, the
molecular mechanisms underlying the increased risk of asthma
due to MSE and maternal PM exposure are not well understood.
In monkeys, MSE upregulated nicotinic acetylcholine receptors
in the fetal lung, associated with lung function decline after birth
(Sekhon et al., 1999, 2001). Several in vitro and in vivo animal
models have also shown that both MSE and PM exposure during
pregnancy affects the development of the neonatal immune
system, lung structure, and lung function in the offspring, making
them more susceptible to the development of asthma (Collins
et al., 1985; Mauad et al., 2008). These will be discussed in
greater detail later.

THE DEVELOPMENT OF ASTHMA IN
CHILDREN

The Role of Altered Lung Structure
Just as discussed above, MSE and maternal PM exposure during
pregnancy can result in oxidative stress, and cause nutrition
deficiency resulting in IUGR, which eventually alters lung
development and structure. Fetal lung development starts from
embryo Weeks 3–5 when the laryngotracheal groove forms on
the floor of the foregut and matures during the early postnatal

year. Therefore, inhaled environmental toxicants by pregnant
mothers may change lung morphology and function as early
as gestational Weeks 5–17 when epithelial and smooth muscle
cell differentiation takes place. Epidemiological evidence well
supports this theory, where significant lung function impairment
was found in the newborns of mothers who smoked during
pregnancy or inhaled high levels of PM (Carlsen et al., 1997;
Latzin et al., 2009). Such lung function disorders can last
until later childhood (Jedrychowski et al., 1997, 2010). It
needs to be noted that lung function deficiency in early life
has been correlated with increased asthma incidence later on
(Borrego et al., 2009).

Lung dysfunction after birth can be attributed to lung
structural changes during fetal development. Animal studies have
shown that both MSE and maternal PM exposure could decrease
lung volume, alveoli number and mean linear intercept in the
offspring as well as reduced alveolar–bronchiolar attachment
points (Collins et al., 1985; Elliot et al., 2001; Mauad et al.,
2008). Nicotine as the “addictive substance” in tobacco smoke
has often been used in animal models to investigate the potential
mechanisms underlying the adverse effects of maternal tobacco
smoking. For example, increased airway collagen deposition and
altered vascular structure were found in a monkey model after
prenatal nicotine exposure (Sekhon et al., 1999, 2004). However,
it is uncertain if these results can be translated to humans as
nicotine replacement therapy during pregnancy has not been
found to be associated with the same adverse outcomes as

TABLE 3 | Clinical evidence of the adverse impacts of MSE and maternal PM exposure.

Pollutant Sample collecting
time (gestation)

Adverse impact References

Maternal smoking 9–14 weeks High villous membrane and
trophoblastic layer thicknesses

Jauniaux and Burton, 1992 Placenta

Maternal smoking – Smaller villous capillaries and high
basement membrane thickness

Van der Velde et al., 1983

Maternal smoking – High villous membrane thickness Burton et al., 1989

Maternal smoking 28 ± 1 weeks Decreased uterine artery volume Castro et al., 1993

Maternal smoking 1st trimester More NK cells and macrophages,
less regulatory T cells

Prins et al., 2012 Immune cells regulation

Maternal smoking 34th week Lower Treg cell numbers Herberth et al., 2014

Maternal smoking After delivery Attenuated innate immune
responses

Noakes et al., 2006

Maternal smoking During gestation DNA methylation in cord blood cells Joubert et al., 2016 Epigenetics

Maternal smoking 6–28 weeks infants Lower antioxidant level and high
oxidative stress level

Aycicek et al., 2005 Oxidative stress

Maternal smoking 3 months infants Higher markers of oxidative stress Noakes et al., 2007

PM10 1st and
2nd-trimester

Lower Pro- and anti-angiogenic
factors and PlGF

van den Hooven et al.,
2012

Placenta

PM2 .5 Early/late gestation Higher CD3 + and
CD4 + lymphocytes and lower
CD19 + and NK cell number during
early gestation, which were
opposite in the late gestation

Herr et al., 2010 Immune cells regulation

PM2 .5 After delivery Higher GSTP1 methylation Lee A. G. et al., 2018 Epigenetics

PM2 .5 During gestation Higher 3-NTp levels (oxidative
stress)

Saenen et al., 2016 Oxidative stress

GSTP1, Glutathione S-Transferase Pi 1; 3-NTp, 3-nitrotyrosine; MSE, maternal smoke exposure; NK cells, natural killing cells; PlGF, placental growth factor; PM, particulate
matter; Treg cells, T regular cells.
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FIGURE 1 | Maternal smoke exposure and maternal PM exposure can increase the rate of childhood asthma. MSE and maternal PM exposure can induce various
adverse impacts on the fetus during different intrauterine developmental stages, such as DNA methylation, oxidative stress, inflammatory responses, and placental
dysfunction. The resulting intrauterine growth retardation, low birth weight, and premature birth can increase the risk of childhood asthma with a lower alveolar
number and reduced lung function, as well as increased lung inflammation.
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maternal cigarette smoking (Dhalwani et al., 2015) or nicotine
administration in animal models (Sekhon et al., 1999, 2004). This
suggests that the whole constituent of tobacco smoke is needed to
study the mechanism in animals.

The Role of Endocrine Disorders
Endocrine disruption during pregnancy is a potential cause
of adverse pregnancy outcomes. Endocrine glands form an
important part of the fetoplacental unit that can secrete a
significant amount of hormones including the estrogen to
support pregnancy. Estrogen plays a key role in regulating
neuroendocrine homeostasis in the developing fetus and
promotes Th2 immune cell development in the fetus (Xu et al.,
2003; Wood, 2014). A human study demonstrated that abnormal
estrogen level in pregnant mothers affects fetal development
(Migliaccio et al., 1996). A reduction in estrogen and estrone
(a weak estrogen) levels in the cord blood has been found if the
mother smoked during pregnancy (Varvarigou et al., 2009). This
is because smoking can produce an anti-estrogenic effect and
induce androgenisation in pregnant mothers to disturb hormonal

homeostasis (Håkonsen et al., 2014). Such changes may influence
the risk of asthma in offspring (Rangaraj and Doull, 2003).

The evidence to prove the relationship between maternal PM
exposure and its impact on endocrine homeostasis are scarce. It
has been shown that the endocrine-disrupting chemicals (EDCs)
on the surface of PM can disrupt sex hormone synthesis (Lauretta
et al., 2019). Polycyclic aromatic hydrocarbons in both tobacco
smoke and PM, can also affect steroidogenesis through inhibiting
steroidogenic enzymes (Rocha Monteiro et al., 2000). However,
there is no direct evidence suggesting the correlation between
hormone change induced by maternal PM exposure and fetal
lung development, neither is known about the risk of asthma in
the offspring (Street et al., 2018).

However, the information collected from cord blood at birth
can’t accurately reflect the changes in fetal lung development
during particular sensitive windows of embryo development
induced by MSE and Maternal PM exposure. Amniocentesis is an
alternative method to measure hormone levels at different time
points and explore endocrine disruption, but access is limited.
Animal modeling may shed a light on the correlation between

FIGURE 2 | Maternal smoke exposure and maternal PM exposure increase oxidative stress in the womb which increases the risk of developing asthma due to the
epigenetic modification of fetal DNA. Environmental toxicants can induce histone modifications and DNA methylation, which results in Th2 cytokine overproduction,
eosinophils accumulation, goblet cell hyperplasia, and mucin hypersecretion.
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placental hormone changes and fetal lung development, as well
as postnatal lung function and susceptibility to asthma. Future
research can focus on this aspect to better understand the niche
factors contributing to lung development and the risk of asthma.

The Role of Epigenetic Programing
Programing is a term used to describe an altered phenotype due
to changes in the in utero environment. Epigenetic programing
describes stable inheritable phenotypic changes without the
alteration in the DNA sequence. Such a process controls
mRNA expression and protein production through changing
the transcriptome, including DNA methylation and histone
modifications. Mounting evidence has closely linked asthma
to epigenetic programing due to intrauterine environmental
changes. For example, asthma is also an inheritable disease (Eder
et al., 2006). The parent-of-origin effect which is usually due
to epigenetic mechanism, also shows a prominent influence on
the development of asthma, e.g., asthmatic mothers are more
likely to have offspring with asthma than the asthmatic fathers
(Moffatt and Cookson, 1998). As mitochondrial DNA is 100%
inherited from the mothers, epigenetic modification of this
genome may largely contribute to this phenomenon. In addition,
the fetal period is a vulnerable stage and thus very sensitive to
environmental toxicant exposure, when maternal protection is
vital. During embryogenesis, cells divide rapidly and therefore
the genome is in a relatively unstable status. During this period,
oxidative stress induced by environmental toxicant exposure may
easily interrupt genomic duplication process (Foley et al., 2009),
leading to abnormal epigenetic modifications or even mutation,

rendering the fetus susceptible to future chronic diseases after
birth, such as asthma.

In a cohort study on MSE, CpGs methylation has been found
on genes responding to the pollutants in tobacco smoke in the
newborns of smokers who smoked during pregnancy (Joubert
et al., 2014). In addition, CpG methylation was also found in
the genes involved in fetal development in cord blood by MSE,
suggesting a mechanism by which MSE results in intrauterine
underdevelopment (Joubert et al., 2014). Previous studies have
shown that maternal PM exposure could alter DNA methylation
in the offspring. Prenatal PM10 exposure induced superoxide
dismutase 2 (SOD2) protomer methylation in cord blood cells
(Zhou et al., 2019), which is related to phthalate and diisocyanate-
induced asthma (Yucesoy et al., 2012; Wang and Karmaus, 2017).
As the epigenetic changes are inheritable, they will change gene
expression to affect normal embryo development and persist
throughout life, resulting in the susceptibility to chronic diseases
in later life (Montgomery and Ekbom, 2002). It may also result
in the transfer of certain respiratory diseases to subsequent
generations, such as asthma, establishing a family history. For a
detailed review on epigenetic changes due to in utero oxidative
challenges, please see Zakarya et al. (2019).

The Role of the Immune Response
The mother’s immune system plays a central role in the
protection of fetal development. The fetus and newborns need
maternal antibodies (Ig) to protect them from infectious diseases
(Niewiesk, 2014). Previous studies have shown that parental
smoking and PM exposure increased Ig E levels in the cord blood

FIGURE 3 | Maternal smoke exposure and maternal PM exposure can dysregulate the immune system in the fetus. The numbers of Th2 and Th17 cells are
increased with a lower number of Th1 cells. This is caused by several epigenetic mechanisms, for example, miRNA 223 is increased in Treg cells. B cell and
macrophages differentiation are also affected, and a lower number of NK cells are found.
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(Valavanidis et al., 2006; Liu et al., 2007). MSE and maternal
PM exposure can also alter immune responses through activating
inflammatory macrophages and memory B cells in the offspring
(Prins et al., 2012; Yoshida et al., 2012). These changes in immune
responses suggest that MSE and maternal PM exposure can alter
the innate and adaptive immune response in the offspring. In
addition, MSE and maternal PM exposure have also been shown
to delay the maturation of immune system (Ege et al., 2006;
Noakes et al., 2006), which may also make such offspring more
susceptible to allergic disorders.

Toll-like receptors (TLRs) play an important role in the
neonatal immune response (Yoon, 2010). MSE can inhibit
neonatal immune system maturation through impairing TLR
mediated responses (such as TLR2 and TLR9) (Noakes et al.,
2006). We also have similar observations in the brains of mice
who are offspring which had MSE. At postnatal day 1, mRNA
expression of TLR4 was decreased in the offspring from MSE
compared to those from Sham-exposed mothers, suggesting
suppressed immune response or delayed maturation of immune
response (Chan et al., 2016). However, TLR4 mRNA expression
was increased in 13 weeks old offspring which had MSE along
with increased inflammatory cytokines expression (Chan et al.,
2016), suggesting that MSE has a sustainable influence on the
immune system leading to heightened inflammatory cytokines
production. Maternal PM exposure could induce similar adverse
effects. High levels of TLR2 and TLR4 expression were found
in the human offspring and animals from mothers exposed to
increased levels of PM during pregnancy (Ege et al., 2006).

Asthma is typified by T cell dysregulation, including Th1, Th2,
and Th17 cells (Kaiko et al., 2008). In most asthmatic patients,
accumulating evidence shows the suppression of Th1 cytokines
(for example IFNγ) with higher Th2 cytokine expression (IL-4,
IL-5, and IL-13) (Mazzarella et al., 2000). Furthermore, clinical
data showed that allergic responses are more prevalent among the
children who have developed attenuated Th1 responses during
infancy (Shirakawa et al., 1997). Similar changes were found in
animal studies. In pregnant C57BL/6 mice, intranasal exposure
to diesel exhaust particles has been shown to increase the Th2
cell percentage in the bronchoalveolar lavage fluid with higher
levels of pro-inflammatory cytokines (IL-4 and IL-5) in the
offspring with asthma (Manners et al., 2014). MSE was also
shown to increase Th2 cytokines (IL-4 and IL-5) and other
pro-inflammatory cytokines (such as IL6) with suppressed Th1
cytokines (IFN-γ) due to reduced NK cell activities (Singh et al.,
2011; Prins et al., 2012).

However, the immune response is complicated, and difficult
to investigate from a broader spectrum. A study has found
that PM2.5 exposure differentially impacts the immune system

at different stages of gestation. High level of CD3 + and
CD4+ lymphocytes and low percentage of CD19+ lymphocytes
and NK cells can be found in the cord blood during the
early gestation; however, the opposite changes with low level
of CD3 + and CD4 + lymphocytes and high percentage of
CD19 + lymphocytes and NK cells were found if PM exposure
occurs during late gestation (Herr et al., 2010). These studies
suggest that immune response has been programed by in utero
exposure to air pollution, however, future studies are needed to
fully understand the extent of the changes in this system.

CONCLUSION AND PERSPECTIVES

In conclusion, cigarette smoking and PM exposure during
pregnancy is detrimental to fetal development and increase
the risk of childhood asthma (Table 3). As summarized in
Figures 1–3, oxidants inhaled by the mother result in increased
oxidative stress in the intrauterine environment. This results in
persistent changes to both the structure of the lung and the
epigenome, altering immune and endocrine systems. Collectively
these changes increase the risk of childhood asthma. Although
smoking cessation is preferred, the success rate remains low
during pregnancy. Given the similarity between MSE and
maternal PM exposure, antioxidant supplementation during
pregnancy may be a plausible prophylactic strategy, which is yet
to be confirmed by large clinical trials.
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