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Inflammasome complex is a multimeric protein comprising of upstream sensor protein
of nucleotide-binding oligomerization domain (NOD)-like receptor family. It has an
adaptor protein apoptosis-associated speck-like protein and downstream effector
cysteine protease procaspase-1. Activation of inflammasome complex is body’s innate
response to pathogen attack but its abnormal activation results in many inflammatory
and cardiovascular disorders including thrombosis. It has displayed a prominent role
in the clot formation advocating an interplay between inflammation and coagulation
cascades. Therefore, elucidation of inflammasome and its molecular mechanisms in
the manifestation of prothrombotic phenotypes becomes pertinent. Thrombosis is the
formation and propagation of blood clot in the arterial or venous system due to several
interactions of vascular and immune factors. It is a prevalent pathology underlying
disorders like venous thromboembolism, stroke and acute coronary syndrome; thus,
making thrombosis, a major contributor to the global disease burden. Recently
studies have established a strong connection of inflammatory processes with this
blood coagulation disorder. The hemostatic balance in thrombosis gets altered by
the inflammatory mechanisms resulting in endothelial and platelet activation that
subsequently increases secretion of several prothrombotic and antifibrinolytic factors.
The upregulation of these factors is the critical event in the pathogenesis of
thrombosis. Among various inflammasome, nucleotide-binding domain, leucine-rich-
containing family, pyrin domain containing 3 (NLRP3) is one of the best-studied
sterile inflammasome strengthening a link between inflammation and coagulation in
thrombosis. NLRP3 activation results in the catalytic conversion of procaspase-1 to
active caspase-1, which facilitate the maturation of interleukin-1β (IL-1β) and interleukin-
18. These cytokines are responsible for immune cells activation critical for immune
responses. These responses further results in endothelial and platelet activation and
aggregation. However, the exact molecular mechanism related to the pathogenesis
of thrombosis is still elusive. There have been several reports that demonstrate
Tissue factor (TF)-mediated signaling in the production of pro-inflammatory cytokines
enhancing inflammation by activating protease-activated receptors on various cells,
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which lead to additional cytokine expression. Therefore, it would be illuminating to
interpret the inflammasomes regulation in coagulation and inflammation. This review,
thus, tries to comprehensively compile emerging regulatory roles of the inflammasomes
in thrombosis and discusses their molecular pathways in the manifestation of
thrombotic phenotypes.

Keywords: sterile inflammation, inflammasome, thrombosis, endothelial and platelet activation, immune cell
activation

INTRODUCTION

Inflammasome complex is a multimeric protein comprising
of upstream sensor protein, adaptor protein and the cysteine
protease procaspase-1 (Schroder and Tschopp, 2010). The sensor
includes NLRs [Nucleotide-binding oligomerization domain
(NOD) and leucine-rich repeat (LRR)-containing receptors],
AIM2 (Absent in melanoma-2) or pyrin and the adaptor molecule
ASC [an apoptosis-associated speck-like protein containing a
caspase activation and recruitment domain (CARD)]. Most
members of the NLRs family have a tripartite structure
such as carboxyl-terminal LRR domain, which is involved in
stimuli recognition. It recognizes infectious pathogen-associated
molecular patterns (PAMPs) and endogenous damage-associated
molecular patterns (DAMPs) (Chen and Nuñez, 2010). With the
exposure to stimuli, inflammasome forms a complex. Procaspase-
1 is recruited by ASC into the complex that converts it
into its active form, caspase-1 autocatalytically. Thus, caspase-
1 converts pro interleukin-1β (IL-1β) and IL-18 into their
active forms leading to inflammation (Malik and Kanneganti,
2017). The DAMP associated activation of inflammation leads
to the responses termed as sterile inflammation. These responses
induce various immune cells such as dendritic cells (DCs) and
macrophages that lead to inflammation (Shen et al., 2013).
Among several inflammasomes, the most characterized are
NLR members NLRP1 (Boyden and Dietrich, 2006), NLRP3
(Martinon et al., 2006), NLRC4 (Zhao et al., 2011) as well as non-
NLR inflammasome, AIM-2 like receptor member (Fernandes-
Alnemri et al., 2009). Slight differences among the NLR members
are based on their structure. For example, NLRP1 contains both
pyrin and CARD domains, resulting in the ability to recruit
procaspase 1 with or without ASC (Proell et al., 2008). Out of
these four, nucleotide-binding domain, leucine-rich-containing
family, pyrin domain containing 3 (NLRP3) inflammasome,
also known as cryopyrin is the best investigated inflammasome
encoded by NLRP3 gene located on chromosome 1. It takes part
in both sterile as well as non-sterile inflammation and is expressed
in innate immune cells like macrophages, monocytes, DCs,
neutrophils, lymphocytes, epithelial cells, endothelial cells (ECs),
and osteoclasts (Kummer et al., 2007; He et al., 2016). Though
NLRP3 is activated in response to the widest range of stimuli
but its precise mechanism of activation continues to be arguable
(Guo et al., 2015). Furthermore, few upstream mechanisms
have been suggested for NLRP3 inflammasome activation.
These includes interaction of pannexin1 and P2X purinergic
receptor 7 (P2 × 7) ATP gated ion channel (Silverman et al.,
2009), phagolysosomal destabilization and mitochondrial ROS

production (Lamkanfi and Dixit, 2014 and Vanaja et al., 2015).
However, in some cells such as monocytes, macrophages and
DCs, stimuli do not activate NLRP3 directly. Activation rather
requires a pre-treatment, also known as priming, with microbial
stimuli, cytokines or endogenous molecules (He et al., 2016). On
the other hand, NLRP3 found in platelets does not require any
pre-treatment as NLRP3 and its components are constitutively
expressed in them (Murthy et al., 2017).

Recently inflammasome have been implicated in the
development of thromboembolic disorders (Gupta et al., 2017;
Yadav et al., 2019). This could be arisen from the fact that
inflammation and hemostasis are the two highly interrelated
processes that acts in concert with each other functioning
in a positive feedback loop (Foley and Conway, 2016). Any
disturbance or loss in the control of these systems results in
a diseased state or mutual amplification contributing to the
onset of disease. Thrombus formation is one such example
of the contribution of the interdependent interaction of these
pathological processes. Inflammation plays a major role in the
thrombus formation via activation of the coagulation system
(Foley and Conway, 2016). Inflammation induces coagulation
while coagulation amplifies inflammation (Margetic, 2012).

Thrombosis is the formation and propagation of blood
clot inside blood vessels due to interactions of several blood,
vascular and immune factors. It generally occurs when there
is a disturbance in the balance between clot formation and
its dissolution. Arterial and venous thrombosis though have
separate manifestations but their pathophysiology is quite
similar (Koupenova et al., 2016). Arterial (white) thrombus
is rich in platelet and forms at places of high shear flow
while venous (red) thrombosis is rich in fibrin and red blood
cells and forms at places of slow shear flow (Koupenova
et al., 2016); both remain multifactorial. Though Virchow’s
triad describing hypercoagulability, hemodynamic changes and
endothelial dysfunction contributes to the thrombus formation
along with plethora of other independent risk factors such
as infection (Esmon, 2009). Lately, exposure to high-altitude
(HA) has also been associated with the increased frequency of
occurrence and probability of thromboembolic complications
(Prabhakar et al., 2019). Perhaps the extreme condition at
HA such as severe dehydration, hemoconcentration, hypobaric
hypoxia and low temperature would affirm the happening
of these events (Gupta and Ashraf, 2012). One of our
study demonstrated a direct association between NLRP3 and
hypoxia-inducible factor 1-alpha (HIF-1α) in potentiating
thrombosis under hypoxic conditions (Gupta et al., 2017). We
demonstrated inflammation precedes coagulation in thrombosis
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and a concomitant increase in the relative expression of
NLRP3, caspase-1, IL-1β, and IL-18 transcripts in thrombotic
patients. Additionally, Yadav et al. (2019) showed activation
of NLRP3 inflammasome and IL-1β release in their CD39-
deficient mice resulting in thrombus formation under normal
oxygen concentration. CD39 haploinsufficiency in mice shows
increased expression of tissue factor (TF), fibrin and H3 histone
along with neutrophil extracellular traps (NET) formation
and leukocytes recruitment. All of these processes pertaining
to NLRP3 described in the two studies subsequently result
in the creation of prothrombotic milieu irrespective of the
oxygen concentrations. Therefore, in view of the emerging
regulatory roles of the inflammasome in thrombosis, this
review article discusses the molecular mechanisms and signaling
pathways related to inflammasome in the manifestation of
thrombotic phenotypes.

INFLAMMASOMES IN IMMUNE CELLS
ACTIVATION

Stimulation of inflammasome by PAMPs and DAMPs triggers
proinflammatory and antimicrobial events activating both innate
and adaptive immune responses (Acosta-Rodriguez et al., 2007;
Martinon et al., 2009; Blom and Poulsen, 2012). Inflammasome is
a critical component of the innate immune system that mediates
autocatalytic activation of caspase-1 leading to maturation and
secretion of proinflammatory cytokines such as IL-1β and IL-18.
These are critical for functions of DCs and macrophages in
response to various microbial infection and cellular damages
(Franchi et al., 2012). In addition, caspases enzymatically cleave
gasdermin D to induce pyroptosis (Shi et al., 2015). On the
other hand, the exact mechanism through which inflammasome
influences adaptive immunity is still revealing. The adaptive
immune responses through activation of toll like receptors
(TLRs) via activation of AP-1/NFKB family is mainly explored.
However, the influence of inflammasome-mediated IL-1 family
cytokines on differentiated lymphocytes of both innate and
adaptive classes recommends a significant role of inflammasomes
family in adaptive immunity (Iwasaki and Medzhitov, 2015). As
a response to cytokines, the maturation of antigen presenting
cells such as DCs is a crucial event for T-cell mediated adaptive
immune responses. This could be achieved through increased
lysosomal activity that facilitates loading of microbes derived
peptides onto major histocompatability complex for antigen
presentation to T cells. Increased expression of co-stimulatory
molecules such as CD80, CD86 and upregulation of cytokines
are other pathways required for immune responses (Evavold and
Kagan, 2018). Interestingly, the role of immune cells such as mast
cells (MCs) and leukocytes in endothelial and platelets activation
is already known (Budnik and Brill, 2018). Histamine, one of the
major secretion from MCs has a strong prothrombotic effect by
inducing release of von Willebrand factor (VWF) and P-selectin
from Weibel palade bodies (WPBs) (Erent et al., 2007).

Furthermore, the involvement of inflammasomes in the
pathophysiology of several inflammatory disorders such as
systemic lupus erythematous (SLE) and rheumatoid arthritis

TABLE 1 | Thrombosis associated inflammatory disorders with the involvement of
inflammasomes in their pathophysiology.

Inflammatory
disorders

Thrombosis
pathophysiology

Inflammasomes
involvement

Behcet disease Mostly venous thrombosis.
Its manifestation is due to
endothelial injury (Koc et al.,
1992; Seyahi and Yurdakul,
2011).

Increased expression of
NLRP3 and IL-1β (Kim
et al., 2015).

Anti-neutrophil
cytoplasmic antibody
associated vasculitis

Mostly venous thrombosis.
Cytokines such as IL-1β and
TNF-α increased the
expression of endothelial TF
causing thrombosis
(Stassen et al., 2008).

Increased expression of
NOD2, NLRP3, NLRC5
inflammasome, and IL-1β,
IL-18 (Wang et al., 2019).

Inflammatory bowel
disease

Both (arterial and venous
types). Alteration in
coagulation enzymes/factor
such as prothrombin, FV,
FVII, FVIII, X leading to
hyper-coagulatibility.
Hyperhomocysteinemia
(Jackson et al., 1997;
Giannotta et al., 2015).

Increased expression of
NLRP3 and secretion of
IL-1β.
Downregulation of NLRP6,
NLRP12 (Mao et al., 2018)

Rheumatoid arthritis Both (arterial and venous
types).
Due to endothelial injury and
hypercoagubility.
Hyperhomocysteinemia
(Mameli et al., 2009).

Increased expression of
NLRP3 and its downstream
molecules (Ruscitti et al.,
2015).
Mutation in NLRP1 is
associated with RA
(Grandemange et al., 2017).

Systemic lupus
erythematosus

Both (arterial and venous
types). Due to endothelial
injury. Increased expression
of ICAM, VEGF, vWF, and
VCAM (Burgos and Alarcón,
2009).

Increased expression of
NLRP3, caspase 1 and
IL-18 via TLR dependent
NF-κB activation.
AIM2 is activated with high
disease activity (Ji et al.,
2016; Shen et al., 2018).
Polymorphism in NLRP1 is
associated with the disease
(Pontillo et al., 2012).

Antiphosphospholipid
antibody syndrome

Both (arterial and venous
types).
APL antibodies induce
thrombosis mediated
through TF and TXA2 after
endothelial and monocytes
activation (Pierangeli et al.,
2007; Irastorza et al., 2010).

Activation of NLRP3
inflammasome and
increased caspase-1 and
IL-1β production
(Muller-calleja et al., 2015)

Familial
mediterranean fever

Both (Arterial and venous
types).
Due to endothelial injury and
endothelial cell dysfunction
(Aksu et al., 2007; Demirel
et al., 2008).

Activation of NLRP3
inflammasome and
uncontrolled production of
IL-1β (Migita et al., 2018)

(RA) with prominent pro-thrombotic phenotypic features is a
strong link of interaction of inflammation and coagulation
pathways. Table 1 outlines several such inflammatory
disorders with thrombotic features that have demonstrated
the involvement of inflammasomes in their pathophysiology.
Inflammasome activation has been demonstrated in the Patients
with SLE, which qualifies to be an independent risk factor
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for thrombosis. The type I interferons (IFNs), an established
mediators of SLE pathogenesis has shown to be regulators of
the inflammasome through identified interferon regulatory
factor 1 (Liu J. et al., 2017). Similarly, Behcet disease (BD), an
amalgamation between autoimmune and autoinflammatory
syndromes that has a strong thrombotic component have shown
the involvement of NLRP3 in increased IL-1β secretions in BD
patients when compared to healthy volunteers (Kim et al., 2015).
Likewise, a recent work demonstrated the enhanced expression
of NOD2, NLRP3, and NLRC5 in anti-neutrophil cytoplasmic
antibody (ANCA) associated Vasculitis (AAV) when compared
to normal controls (Wang et al., 2019). Atherothrombotic
development in AAV is a consequence of interactions between
endothelial cell (ECs) and neutrophils activated by tumor
necrosis factor-α (Springer and Forte, 2013). Next, the pathogenic
role of NLRP3 in inflammatory bowel disease (IBD) has also
been demonstrated (Liu L. et al., 2017). Patients with IBD
have as much as three-fold increased risk of thromboembolic
complications associated with a higher morbidity and mortality
(Giannotta et al., 2015; Andrade et al., 2018).

INFLAMMASOME IN ENDOTHELIAL
ACTIVATION

Vascular endothelium plays a critical role in regulating
homeostasis. Under normal condition, endothelium maintains
vasodilatory and local fibrinolytic state. It aids in the suppression
of inflammation, leukocytes activation, platelet activation and
aggregation. ECs produce thrombomodulin that activates protein
C, which subsequently inactivates thrombin and hence promotes
anticoagulant mechanisms. It activates tissue plasminogen
activator to maintain the fibrinolytic activity through TF
pathway inhibitor (TFPI). It also expresses heparin sulfate
and dermatan sulfate, which stimulate antithrombin III and
heparin cofactor activity that inhibits coagulation. Apart from
these, endothelium produces nitric oxide (NO) and prostacyclin
that maintains vasodilation. This integrity of the endothelium
makes it antithrombotic in nature (Petäjä, 2011; van Hinsbergh,
2012). However, under certain stress conditions such as hypoxia
upregulated ROS production, which activates endothelium
changing its phenotype from antithrombotic to prothrombotic
and antifibrinolytic. The activation/dysfunction of endothelium
induces the expression of adhesion molecules and receptor
resulting in the recruitment of leukocytes and extravasation
(van Hinsbergh, 2012; Incalza et al., 2018). Endothelial activation
leads the production of WPBs, which fuse with the plasma
membrane and release its constituents like vWF and P-selectin
inducing aggregation of platelets, monocytes and macrophages
on the walls of the vasculature (Erent et al., 2007). Apart
from these, ECs release endothelin and platelet-activating
factor, which contributes toward vasoconstriction and platelet
activation. The interaction of ECs with platelets, leukocytes
and pro-inflammatory mediators enhance blood coagulation
by the increased expression of TF (May et al., 2007; Yau
et al., 2015). Endothelial P2Y receptors mediates TF expression
through mechanisms involving Src/Fra-1 and Rho/JNK pathways

(Ding et al., 2011; Liu et al., 2016). A major procoagulant
molecule, TF, plays a critical role by generating coagulation
proteases like thrombin and stimulating protease-activated
receptors. Additionally, TF contributes to a variety of biological
processes like inflammation, thrombosis, angiogenesis, cell
migration and metastasis (Mackman, 2004).

The activated ECs under different circumstances like
pathological inflammatory and thrombotic stimuli induces
the release of microparticles (MPs). These endothelial-derived
MPs are extracellular submicrometer vesicular structure with
some RNAs and cytosolic content retained in them (Zwicker
et al., 2011). They are shown to be involved in endothelial
dysfunction by suppressing the synthesis of NO, prostacyclin
and release of TFs (Brodsky et al., 2004; Foley and Conway,
2016). MPs also regulates inflammation, coagulation, adhesion
and recruitment of leukocyte. MPs can also be derived from
platelets and monocytes with blood borne MPs bearing TF
readily detectable in a variety of clinical presentations and might
serve as a useful biomarker in identifying patients at the risk of
thrombosis (Owens and Mackman, 2011). A study demonstrated
that monocytic MPs activated ECs via NLRP3 inflammasome-
mediated activation that induced phosphorylation of ERK1/2,
activation of the nuclear factor-κB pathway and expression
of cell adhesion molecules intercellular adhesion molecule-1,
vascular cell adhesion molecule-1, and E-selectin (Wang et al.,
2011). Further, NLRP3 activation in ECs has been observed
in the endothelial inflammatory responses leading to arterial
inflammation and endothelial dysfunction (Xia et al., 2014).
In ECs, heme act as pro-inflammatory stimuli which activate
NLRP3 inflammasome and subsequent production of IL-1β

(Erdei et al., 2018). Besides, thioredoxin (TRX) interacting
protein (TXNIP) in ECs, pancreatic islets β cells and monocytes
is shown to specifically bind to NLRP3 leading to its activation
and release of caspase-1 and IL-1β (Liu et al., 2018). TXNIP is
an inhibitor of ROS scavenging protein TRX, which is linked
to insulin resistance. The release of IL-1β plays an important
role in sterile inflammation by the production of additional pro-
inflammatory mediators and upregulation of various adhesion
molecules on ECs. Figure 1 schematically depicts inflammasome
activation leading to inflammation that subsequently results
in endothelial damage, platelet activation and aggregation. All
of these pro-thrombotic responses cumulatively lead to the
thrombus formation.

Furthermore, employing NLRP3 targeting miRNA might
serve as a successful therapeutic approach for the treatment
of thrombotic features (Huang et al., 2017; Neudecker et al.,
2017). Huang et al. (2017), demonstrated the effect of miR-22
in lowering the levels of pro-inflammatory cytokines by
inhibiting the NLRP3 inflammasome pathway, which suppresses
coronary arterial ECs apoptosis in rats with coronary heart
disease. miRNA regulation of NLRP3 inflammasome is very
well documented. NLRP3 regulation by miR-223 (Bauernfeind
et al., 2012), miR-223-3p (Boxberger et al., 2019), miR-9
(Wang et al., 2017) has been demonstrated extensively. These
miRNAs directly target NLRP3 components, caspase-1 and
caspase-8 and downregulate pro-inflammatory cytokines IL-1β

and IL-18 (Bauernfeind et al., 2012; Boxberger et al., 2019).
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FIGURE 1 | Schematic depiction of inflammasome activation leading to the manifestation of thrombotic phenotypes. Inflammasome complex is a multimeric protein
comprising of upstream sensor protein, an adaptor protein, and the cysteine protease procaspase-1. The sensor includes NLRs [Nucleotide-binding oligomerization
domain (NOD) and leucine-rich repeat (LRR)-containing receptors] and the adaptor molecule ASC [an apoptosis-associated speck-like protein containing a caspase
activation and recruitment domain (CARD)]. Upon exposure to DAMPs and PAMPs, inflammasome forms a complex. Procaspase-1 is recruited by ASC into the
complex that converts it into its active form. Thus, caspase converts pro IL-1β and IL-18 into their active forms leading to inflammation. This, subsequently, results in
immune cells activation, endothelial damage and platelet activation and aggregation. All of these pro-thrombotic responses cumulatively lead to the thrombus
formation.

One study demonstrated the downregulation of NLRP3
expression, caspase-1 activation and secretion of
proinflammatory cytokines IL-1β by increased expression
of miR-9 on oxLDL stimulated human primary peripheral
blood monocytes and human THP-1 derived macrophages via
JAK1/STAT pathway affecting atherosclerosis inflammation
(Wang et al., 2017). Such studies suggest that the increased
expression of several miRNAs can regulate NLRP3 expression
and subsequently potentially abrogate the inflammation and
its related diseases such as various inflammatory disorder
and thrombosis. Besides NLRP3, NLRP1 is also suggestive of
responsible for endothelial dysfunction by regulation of immune-
inflammatory processes in arterial ECs (Bleda et al., 2014). Their
case-control study having patients with symptomatic peripheral
arterial diseases showed that the plasma factors from patients
induced NLRP1 expression in ECs suggestive of a new potential
target for the therapy.

INFLAMMASOME IN PLATELETS
ACTIVATION

Endothelial activation, as discussed above, not only creates
a platform for the recruitment and interaction of various

immune cells but also aids in the activation of platelets (Yau
et al., 2015). Platelets vWF receptor GPIbα is essential for
its interaction and recruitment to the endothelial as well as
leukocytes and progression of thrombosis (von Brühl et al.,
2012). Platelet recruitment also depends on platelet C-type
lectin-like receptor 2 (CLEC-2), a platelet membrane molecule
capable of binding podoplanin (Inoue, 2017). In its absence,
venous thrombosis is suppressed. Under normal condition,
the interaction of podoplanin with CLEC-2 is prevented.
However, upon activation, platelets secrete many immune
mediators, growth factors, chemokines and cytokines that
assist its interaction with ECs, leukocytes like monocytes and
lymphocytes (Rainger et al., 2015). In addition, three types
of granules namely alpha, dense and lysosomes secreted by
platelets contribute to its pathogenetic role. Alpha granules
store many proteins like platelet factor 4, RANTES (Regulated
upon activation, normal T cell expressed and secreted) and
β-thromboglobulin, which are important mediators that regulate
both inflammation and thrombosis. Dense granules store
ATP, ADP, glutamate, polyphosphates, and serotonin. Out
of these, serotonin mediates vasoconstriction and vascular
permeability. Lysosomes contain enzymes important for
protein and matrix degradation like cathepsin, elastase,
phosphatase, and glycosidases (Nurden, 2011). Furthermore,
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platelets are the main source of cyclooxygenase (COX) and
its products. COX products thromboxane A2 (TXA2) activates
platelets causing vasoconstriction (Schrör, 1993; Belton et al.,
2003). Platelets recruitment to the venous wall exposes high-
mobility group box 1 (HMGB1), a DNA binding protein, which
is released into the extracellular space and acts as a DAMP. It
induces the recruitment of leukocytes and new platelets and their
activation at the site of thrombus formation as well as secretion
of proinflammatory cytokines (Stark et al., 2016).

Pyrin domain containing 3, TLR4, and Bruton tyrosine kinase
(BTK) has recently been identified as critical regulators of platelet
aggregation and thrombus formation (Vogel and Thein, 2018).
BTK, a cytoplasmic tyrosine kinase, acts as a critical regulator
of platelet NLRP3 activation. Murthy et al. (2017) observed
platelet activation, aggregation and in vitro thrombus formation
initiated by BTK-dependent platelet NLRP3 inflammasome.
All these phenotypes were shown to be decreased by the
pharmacological inhibition or genetic ablation of BTK in platelets
(Murthy et al., 2017). Vogel et al. (2018) demonstrated NLRP3-
dependent increase in platelet caspase-1 activity in sickle cell
disease patients (Vogel and Thein, 2018). They also observed the
upregulation of HMGB1 and BTK along with NLRP3 that suggest
their interplay in caspase-1 activation and platelet aggregation.
Further, an elaborative study demonstrated the role of NLRP3
in platelet integrin αIIbβ3 signaling transduction in hemostasis
and arterial thrombosis (Qiao et al., 2018). They showed that
NLRP3 deficiency significantly decreased platelet spreading on
immobilized fibrinogen and impaired clot retraction. The study
suggested that the effect of NLRP3 on αIIbβ3 signaling might be
through IL-1β as they found significantly reduced IL-1β release
from NLRP3-deficient platelets.

FUTURE PERSPECTIVES AND
CONCLUSION

A better understanding of inflammation-induced thrombosis
could help us in the identification of newer effective therapeutic
interventions. For example, some potent and specific NLRP3
inhibitors such as MCC950 might find utilization in the

management of this disease. Thus, the investigation of the
drugs targeting inflammasome can open an entirely new
line of treatment for thrombosis. It has now been proven
that activation of NLRP3 under hypoxia potentiates the
prothrombotic tendencies (Gupta et al., 2017), but the exact
molecular mechanism by which inflammasome exerts its
influence in the pathophysiology of thrombosis needs to
be explored. The precise signaling pathways through which
NLRP3 contributes to endothelial and platelet activation is
still ambiguous. Therefore, elucidation of these pathways that
are targeted by inflammasome under hypoxia could provide
the clue toward the integrated involvement of hypoxia-NLRP3
inflammasome to the underlying mechanisms of vascular
dysfunction/hypercoagulation. It will also help in estimating
the individual contribution as well as the interaction of the
inflammation and coagulation components in the thrombus
formation. For example, one can hypothesize regulation of
several pathways relevant to vascular homeostasis under low
oxygen condition such as TF expression, oxidative stress through
activation and signaling of NLRP3. Proper elucidation of the
influence of inflammasomes in the activation of these pathways
and their implications in the context of thrombosis will help
us in the development of their translational applications. Such
explanations could be beneficial in prevention of several other
cardiovascular and inflammatory disorders that are accompanied
by strong thrombotic features.
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