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The endoplasmic reticulum (ER) is a dynamic membrane system comprising different
and interconnected subdomains. The ER structure changes in response to different
stress conditions through the activation of a selective autophagic pathway called ER-
phagy. This represents a quality control mechanism for ER turnover and component
recycling. Several ER-resident proteins have been indicated as receptors for ER-
phagy; among these, there are proteins characterized by the presence of a reticulon
homology domain (RHD). RHD-containing proteins promote ER fragmentation by a
mechanism that involves LC3 binding and lysosome delivery. Moreover, the presence
of a correct RHD structure is closely related to their capability to regulate ER shape
and morphology by curvature induction and membrane remodeling. Deregulation of
the ER-selective autophagic pathway due to defects in proteins with RHD has been
implicated in several human diseases, infectious and neurodegenerative diseases in
particular, as well as in cancer development. While the molecular mechanisms and the
physiological role of ER-phagy are not yet fully understood, it is quite clear that this
process is involved in different cellular signaling pathways and has an impact in several
human pathologies.
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INTRODUCTION

The endoplasmic reticulum (ER) is a wide and interconnected system of cell membranes forming a
network with a common luminal space. It plays a central role in protein synthesis and modification,
Ca2+ homeostasis, and lipid synthesis in eukaryotic cells (Chen et al., 2013). ER is a complex
organelle composed of different dynamic subdomains, sheets, tubules, and a nuclear envelope,
continuously remodeled to maintain cellular homeostasis (Schwarz and Blower, 2016). It is
classified into smooth ER (SER) and rough ER (RER); the first is devoid of ribosomes and is
characterized by a tubular structure, while the RER shows a sheet-like morphology and the presence
of ribosomes (Chen et al., 2013).

The structure and function of ER are regulated by a variety of different proteins as well
as by interactions with other organelles including mitochondria, Golgi, endosomes, lysosomes,
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peroxisomes, and the plasma membrane (Schwarz and
Blower, 2016). Moreover, there is a close interaction with
the cytoskeleton, which allows the ER tubules to elongate and to
fuse (Gurel et al., 2014). The shape of ER changes in response
to different cellular conditions and to specific signals. Moreover,
the regulation of ER formation and morphology depends on
different factors many of which have already been identified.

The structure of ER is also deeply affected by cellular
stress, which induces ER remodeling; this is critical for cellular
homeostasis and the prevention of various diseases (Hübner and
Dikic, 2019). The dynamic changes of the ER depend on the
activation of different pathways: ER-stress activated autophagy,
which can induce ER expansion through the generation of
membrane sheets (Schuck et al., 2009), or selective ER-phagy,
which regulates ER turnover by a more specific mechanism
(Grumati et al., 2018).

SELECTIVE AUTOPHAGY

Autophagy is the major intracellular degradation pathway by
which cytoplasmic materials are delivered to the lysosome and
degraded. It represents a dynamic recycling mechanism essential
for cellular homeostasis under basal and stress conditions. There
are three different pathways of autophagy: macroautophagy,
microautophagy, and chaperone-mediated autophagy
(Ravikumar et al., 2010; Li et al., 2012; Cuervo and Wong, 2014).

Macroautophagy is characterized by the formation of an
intermediate organelle called an “autophagosome,” a double-
membraned vesicle containing the cargo material that sequesters
a small portion of the cytoplasm and fuses with the lysosome
allowing the degradation of cargos.

Although several proteins and the molecular mechanisms
regulating autophagy have been characterized, the origin of the
autophagosomal membrane is still poorly understood.

It has been proved that ER plays an important role in
this process, providing not only the site for omegasome
formation but also the membrane for the phagophore elongation
(Nishimura et al., 2017; D’Eletto et al., 2019). On the basis
of the cargo specificity and delivery mechanism, two different
types of autophagy have been described: non-selective autophagy
(microautophagy and macroautophagy), which implicates the
digestion of cytoplasmic components in a relatively non-selective
manner, and selective autophagy, which requires the recognition
of autophagic substrates by specific receptors. The latter plays an
important role in the targeting of specific organelles and cellular
structures that are damaged or need to be turned over (Rogov
et al., 2014). In the last few years, several mechanisms of selective
autophagy have been characterized; these facilitate the targeted
elimination of specific organelles via a receptor-mediated process
and the cargo delivery into autophagosomes (Stolz et al., 2014).

In this context, recent studies have demonstrated that, under
stress conditions caused by different stimuli (Moretti et al., 2017;
Fregno and Molinari, 2018; Smith et al., 2018), ER fragments
are eliminated by a distinct form of autophagy called ER-phagy,
which regulates ER remodeling and represents an ER quality
control mechanism (Grumati et al., 2018).

The word ER-phagy was first used by Walter et al. (Bernales
et al., 2007) to describe ER-clearance in yeast, although the
pathway had been previously defined in insects and mammalian
cells (Fregno and Molinari, 2018). ER-phagy is a selective form
of autophagy in which portions of the ER are sequestered within
autophagosomal vesicles (AVs) and transported to the lysosomes
for degradation. This process is mediated by specific ER-phagy
receptors, ER-resident proteins containing an LC3/GABARAP-
binding motif that allows their association with phagophore
membrane and the recruitment of autophagy machinery to
different ER regions (Grumati et al., 2018).

In mammals, six different receptors have been identified:
FAM134B/RETREG1, SEC62, RTN3L, CCPG1, ATL3, and
TEX264 (Khaminets et al., 2015; Fumagalli et al., 2016; Grumati
et al., 2017; Smith et al., 2018; Chen et al., 2019; Chino et al.,
2019). Some of them (FAM134B and RTN3L) are intramembrane
proteins characterized by the presence of a specific domain called
the reticulon homology domain (RHD), which is essential for
their insertion in the ER membrane and ER-phagy regulation
(Stolz and Grumati, 2019; Figure 1A).

RHD-CONTAINING PROTEINS

The RHD was originally identified as a distinguishing feature
of two highly conserved protein families, reticulons (RTNs) and
the functionally related REEPs/DP1/Yop1, both of which are
classified as ER tubule-shaping proteins (Chen et al., 2013).
Members of both families are expressed in all eukaryotes and
localize predominantly to the tubular ER (Voeltz et al., 2006).
These proteins do not hold any primary sequence homology but
possess a conserved RHD region of ˜200 amino acids consisting
of two large hydrophobic transmembrane segments separated by
a hydrophilic loop (Figure 1B). The hydrophobic segments form
a hairpin within the lipid bilayer and act as a wedge structure,
which is responsible for the retention and high membrane
curvature stabilization of ER (Figure 1C; Voeltz et al., 2006).
Overexpression of RTNs and DP1/Yop1 proteins generates long
and unbranched tubules, while their depletion or elimination
results in a significant reduction in ER tubules and abnormal ER
morphology (Voeltz et al., 2006; Shibata et al., 2010).

In the mammalian genome, there are four independent
RTN genes (RTN1-4) coding for different proteins ubiquitously
expressed in vertebrates. Although each RTN possesses a variable
N-terminal region, they all share a C-terminal RHD domain,
which is also responsible for their ability to form homo and
heteromers and allows organization in a scaffold on the tubular
ER (Di Sano et al., 2012). It has been demonstrated that
RTNs bind to atlastins, evolutionarily conserved dynamin-like
GTPases, and co-operate to form the network of interconnected
ER tubules (Hu et al., 2009).

The REEP family includes six members, REEP1–6, which are
orthologs of yeast Yop1 in mammals. REEPs also regulate
the tubular ER network in co-operation with atlastins
(Park et al., 2010).

More recently, a RHD has been identified in other
proteins that do not belong to RTNs or REEPs/DP1/Yop1
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FIGURE 1 | (A) ER-phagy receptors in mammals (FAM134B, SEC62, RTN3, CCPG1, ATL3, and TEX264) and in Saccharomyces cerevisiae (ATG40) harboring or
not a Reticulon Homology Domain (RHD). (B,C) Schematic representation of the RHD structure (B) and topology (C). An RHD consists of two large hydrophobic
transmembrane segments (red, HTR1, HTR2), separated by a hydrophilic loop (blue, HL).

families. Interestingly, among these, there are different ER-phagy
intramembrane receptors: ATG40 in Saccharomyces cerevisiae
and FAM134B in mammals (Figure 1A; Khaminets et al., 2015;
Mochida et al., 2015). The role of these proteins in ER-phagy
regulation is strictly related to the presence of LC3-interacting
regions (LIR), by which they are able to bind to LC3/GABARAP
and to recruit the autophagy machinery to different ER regions
(Grumati et al., 2018). Nevertheless, it has been demonstrated
that a correct ER-phagy flux strongly depends on the presence
and structural integrity of their RHD (Grumati et al., 2018).

RHD STRUCTURE AND AUTOPHAGY

FAM134B was the first ER-phagy receptor to be identified and
characterized (Khaminets et al., 2015). It is an intra-membrane
ER-resident protein that is mainly localized to the edges of the ER
sheets and is a member of the FAM134 family.

FAM134B is able to bind LC3 on forming autophagosomal
membranes via an LIR and subsequently to address fragmented
ER sheets to lysosomes. This is essential for the control of ER
morphology and turnover, as confirmed by modulation studies
of FAM134B expression. In fact, it has been reported that there
is an expansion of the ER when the protein is downregulated,
while FAM134B overexpression results in ER fragmentation and
lysosomal degradation (Khaminets et al., 2015).

Interestingly, the capability of FAM134B to sense and induce
membrane curvature during ER-phagy is strictly dependent on
its RHD structure and topology, which are fundamental for the
capability of the protein to regulate membrane remodeling and

ER degradation. This notion is supported by the fact that RHD
disruption affects selective ER-phagy flux and is associated with
pathological states (Bhaskara et al., 2019).

The relevance of the RHD in the regulation of ER-phagy
processes is also supported by the fact that other selective
ER-phagy receptors harbor the same conserved region. For
example, in S. cerevisiae, an RHD domain has been identified
in the autophagic receptor Atg40, an essential protein for ER-
phagy induction, as demonstrated by knockout studies that
completely blocked this pathway (Mochida et al., 2015). Atg40
largely colocalizes with Rtn1 to ER tubules and the edges of ER
sheets and, consistent with its localization, degrades cortical ER
(Chen et al., 2018).

RTN3, a member of the RTN family, is an RHD-containing
protein found at ER tubules and implicated in their specific
turnover after autophagic induction (Grumati et al., 2017). As a
member of the RTN family, RTN3 has previously been shown to
be involved in the formation of ER tubules. The longest isoform
of RTN3 contains six active LIR domains in its N-terminal region,
which are crucial for LC3/GABARAP binding, fragmentation of
ER tubules, and its function as an ER-phagy receptor (Grumati
et al., 2017). The ablation of Atg40, FAM134B, and RTN3 does
not affect the general macro-autophagy flux, but similarly, the
specific role of the above-mentioned receptors, which are active
under specific conditions to regulate ER-phagy, is functionally
related to their RHD.

Recently, a role in the regulation of autophagic processes
has been demonstrated for another member of the RTN family,
RTN-1C (D’Eletto et al., 2019), supporting the notion that RHD-
containing proteins represent important molecules in the control

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 February 2020 | Volume 8 | Article 90

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00090 February 20, 2020 Time: 15:37 # 4

D’Eletto et al. RHD and Selective Autophagy

TABLE 1 | Diseases correlated to mutation in different ER-phagy receptors.

FAM134B RTN3L ATL3 SEC62 CCPG1

Monogenic disorders HSAN2B HSN1F

Esophageal squamous carcinoma Alzheimer’s disease Non-small cell lung cancer Pancreatic cancers

Related diseases Colon and Breast cancer Infectious diseases Prostate and thyroid cancer

Infectious diseases Squamous cell carcinoma

Monogenic disorders are caused by mutation of the indicated genes, while related diseases are associated with up- or down-regulation of the respective gene.

of autophagic mechanisms. However, since various studies have
reported a crucial role in the induction of ER phagy for proteins
that do not possess an RHD domain (Fumagalli et al., 2016; Smith
et al., 2018; An et al., 2019; Chino et al., 2019), further insights are
needed in order to clarify the importance of this specific domain
and the different molecular mechanisms regulating the process.

SELECTIVE AUTOPHAGY AND DISEASE

Several studies have underlined the importance of selective
autophagy in human diseases. On the basis of the selectivity of
clearance, autophagy has been linked to a wide range of human
diseases, including cancer, chronic liver disorders, pulmonary
diseases, and neurodegenerative diseases. In particular, dynamic
remodeling of the ER is fundamental for cellular homeostasis and
the prevention of disease pathogenesis. In fact, a defect in correct
ER shaping or remodeling and ER homeostasis is dangerous
to cells and seems to be common to several human diseases,
including infectious, neurodegenerative diseases, and cancer.

Accordingly, several studies have demonstrated that different
ER-phagy receptors are linked with various human disorders
(Table 1). For example, mutations in FAM134B and ATL-3 have
been shown to affect the survival of sensory and autonomic
neurons, leading to hereditary sensory neuropathies (HSAN)
(Kurth et al., 2009; Kornak et al., 2014). In some patients, leg
spasticity and weakness have also been reported (Eggermann
et al., 2018), suggesting that axons of upper motoneurons can be
affected as well. Nevertheless, the molecular mechanism linking
these proteins to HSAN pathology is only partially understood.

The relevance of ER-phagy on neuronal homeostasis is
further suggested by RTN3 involvement in the etiology of
neurodegenerative Alzheimer’s disease. It has been observed
that RTN3 deficiency is correlated with an increase of amyloid
deposition in mouse models of the disease (Shi et al., 2014; Zou
et al., 2018). Moreover, RTN3 variants have been identified in
patients with sporadic early- and late-onset Alzheimer’s disease
(Zou et al., 2018), even if a direct correlation with the role of
RTN3 in ER-phagy remains to be determined.

Endoplasmic reticulum-phagy is considered an important
defense mechanism to eliminate viruses or bacteria that use ER
compartments during the infection cycle. Both FAM134B and
RTN3 have been associated with the control of virus replication
(Wu et al., 2014; Chiramel et al., 2016).

Interestingly, in some cases, the loss of function of the ER-
phagy receptor is a consequence of RHD destruction by a specific
virus protease (Lennemann and Coyne, 2017).

Finally, recent findings have suggested that ER-phagy-related
receptors are associated with several types of cancer, although
a different role for these proteins has been observed in
the pathogenesis of different tumors. FAM134B is implicated
in esophageal squamous carcinoma as a cancer development
oncogene and, by contrast, as a tumor suppressor in colon
and breast cancer (Tang et al., 2007; Islam et al., 2017). SEC62
upregulation was reported in non-small cell lung cancer and
prostate and thyroid cancers as well as different carcinomas
(Linxweiler et al., 2012; Bergmann et al., 2017).

It has been suggested that enhanced ER-phagy via SEC62
may render the tumor cells more resistant to ER stress
(Bergmann et al., 2017).

Altogether this evidence highlights the emerging relevance
of ER-phagy pathways and receptor proteins in several human
diseases. Moreover, an important role of proteins containing an
RHD domain is also supported by the fact that mutations of these
membrane-shaping proteins are implicated in different human
disorders (Hübner and Kurth, 2014), suggesting their putative
involvement in the ER-phagy mechanism.

CONCLUSION

The importance of selective autophagy in the pathogenesis of
different human disorders, together with the characterization
of its physiological and pathophysiological role, are certainly
very interesting and promising fields of investigation. In
particular, there is increasing interest in and research on
the major challenging topic of ER-phagy, which will provide
a better understanding of this process in order to assess
whether targeting ER-phagy may be considered an effective
therapeutic strategy.

Of course, further insights and more focused studies are
needed to define the molecular pathways responsible for
activation of ER-phagy; for example, it will be interesting to
evaluate the importance of the different ER-phagy receptors and
the regulation of their expression levels. Moreover, it will be
relevant to achieve a better characterization of the role of the
conserved receptor structure (i.e., the presence of RHD) and
how this may affect membrane remodeling and fragmentation
during ER-phagy.

Hopefully, deeper analysis of the different proteins
participating in ER-phagy regulation may further improve
our current knowledge on the full potential of these molecules,
not only as functional participants in pathophysiological events
but as pharmacological targets for different human diseases.
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