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The incidence of certain forms of tumors has increased progressively in recent

years and is expected to continue growing as life expectancy continues to increase.

Tumor-infiltrating NK cells may contribute to develop an anti-tumor response. Optimized

combinations of different cancer therapies, including NK cell-based approaches for

targeting tumor cells, have the potential to open new avenues in cancer immunotherapy.

Functional inhibitory receptors on NK cells are needed to prevent their attack on healthy

cells. Nevertheless, disruption of inhibitory receptors function on NK cells increases

the cytotoxic capacity of NK cells against cancer cells. MicroRNAs (miRNAs) are small

non-coding RNA molecules that target mRNA and thus regulate the expression of

genes involved in the development, maturation, and effector functions of NK cells.

Therapeutic strategies that target the regulatory effects of miRNAs have the potential to

improve the efficiency of cancer immunotherapy. Interestingly, emerging evidence points

out that some miRNAs can, directly and indirectly, control the surface expression of

immune checkpoints on NK cells or that of their ligands on tumor cells. This suggests

a possible use of miRNAs in the context of anti-tumor therapy. This review provides

the current overview of the connections between miRNAs and regulation of NK cell

functions and discusses the potential of these miRNAs as innovative biomarkers/targets

for cancer immunotherapy.
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miRNAs AS KEY REGULATORS OF GENE EXPRESSION

About 2,000 human miRNAs are currently recognized. These are small RNAs which originate
from longer precursors (Pri-miRNAs) mainly transcribed by the RNA polymerase II (Macfarlane
and Murphy, 2010). These Pri-miRNAs undergo a precisely coordinated maturation process
involving several steps. In the nucleus, the RNAse III Drosha, supported by the DiGeorge critical
region 8 (DGCR8), converts them in short hairpin intermediates of 70–120 nucleotides-long
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(Pre-miRNAs) (Gregory et al., 2004). After transport to the
cytoplasm by exportin 5 (Yi et al., 2003), Pre-miRNAs are then
processed by the RNAse III Dycer into mature miRNAs which
are duplexes of approximately 22 nucleotides. One strand of
the duplex is incorporated along with the argonaute protein
in the miRNA-induced silencing complex RISC (Diederichs
and Haber, 2007). These complexes promote the pairing of

miRNA nucleotide sequences to their target sequences on 3
′

UTR sequences of mRNAs and RISC cofactors mediate site-
specific cleavage, degradation of the target mRNA, or inhibition
of its translation in protein (Gu and Kay, 2010). It is well-
known that miRNA can repress the expression of hundreds
of different mRNAs. Furthermore, as several different miRNA
target sequences may be present on the 3

′
UTR of a single

mRNA, complex networks of cooperative regulation by several
miRNAs may affect the stability or the translation of a multitude
of mRNAs (Filipowicz et al., 2008; Liu et al., 2009, 2014). As
miRNA recognition sequences appear to be present on most
of the protein-coding human mRNAs, the role of miRNAs as
regulators of gene expression is quite relevant in mammalian
development physiology and pathology (Dallaire and Simard,
2016; Peng and Croce, 2016; Ivanova et al., 2018; Johnson, 2019;
Horsburgh et al., 2017). Therefore, miRNAs and in particular
those present in body fluids and blood, either as free molecules
or included in extracellular vesicles, are receiving increasing
attention as possible disease biomarkers (Mori et al., 2019).

NK CELLS AS INNATE IMMUNE CELLS
WITH A KEY ROLE IN FIGHTING VIRAL
INFECTIONS AND IN THE SURVEILLANCE
AGAINST MALIGNANT TRANSFORMATION

Natural Killer (NK) cells represent cytotoxic, innate lymphoid
cells (ILCs) (Cortez and Colonna, 2016), and their main function
is to provide the organism with a rapid immune response against
infections, autologous transformed cells, and allogeneic cells
(Vivier et al., 2011; Del Zotto et al., 2017; Freud et al., 2017). In
fact, NK cells do not need to be primed with antigens to become
fully functional and the mechanisms of non-self recognition do
not rely on genomic recombination and subsequent cell clone
expansion events.

Nowadays it is recognized that these cells mediate immune-
surveillance also via regulatory functions by secreting cytokines,
primarily interferon-γ (IFN-γ) and tumor necrosis factor-α
(TNF-α), and by interacting with other immune or adaptive
immune cells (Marcenaro et al., 2006; Vivier et al., 2011; Riise
et al., 2015; Pesce et al., 2017b; Bernson et al., 2019). In turn,
NK cells can respond to different types of chemokines and
cytokines produced by other immune cells (Marcenaro et al.,
2005a,b, 2006; Moretta et al., 2006; Parodi et al., 2015; Pesce et al.,
2016).

NK cells are not a homogeneous population, but there are
different NK subsets that differ in phenotype, maturational step,
and functions. Among circulating mature NK cells, two main
subsets can be identified: regulatory NKs (CD56bright/CD16−),
which are the most abundant in secondary lymphoid organs

(SLO) and display the ability to secrete high amounts of pro-
inflammatory cytokines, and cytotoxic NKs (CD56dim/CD16+),
which represent about 90% of circulating NK cells (Farag and
Caligiuri, 2006; Carrega and Ferlazzo, 2012; Del Zotto et al.,
2017).

SLO have been suggested being the anatomical sites where NK
cells complete their maturation process that is associated with the
transition from a CD56bright to a CD56dim phenotype, acquisition
of self-tolerance and lytic activity (Romagnani et al., 2007; Yu
et al., 2010).

Both the killing and immune-regulative functions of NK
cells depend on a balance of activating or inhibiting signals
that originate from NK receptors (NKRs) (activating NKR-
aNKR and inhibitory NKR -iNKR-, respectively). The iNKRs
include the human leucocyte antigens (HLA) class I-specific
Killer Ig-like receptors (KIRs) recognizing allotypic determinants
shared by groups of classical HLA-ABC alleles (Moretta et al.,
1996), the leukocyte immunoglobulin-like receptor subfamily
B member 1 (LILRB1) that is specific for different HLA-class
I molecules (Cosman et al., 1997), and the CD94/NKG2A
heterodimer specific for HLA-E (Braud et al., 1998) ad
well as additional non-HLA-I specific inhibitory receptors,
including programmed cell death protein 1 (PD-1), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), T-
cell immunoglobulin domain and mucin domain 3 (TIM-
3), lymphocyte-activation gene 3 (LAG-3), and CD96 (Di
Vito et al., 2019). The activating NKRs (aKIRs) include
non-HLA-specific receptors such as NCRs (NKp30, NKp44
and NKp46), NKG2D, DNAM-1, NKp80, CD59, NTB-A,
and 2B4 (Moretta et al., 2001) as well as the activating
HLA class I-specific Killer Ig-like receptors and the HLA-
E specific CD94/NKG2C heterodimer. NK cells can also
express different Toll-like receptors (TLR), including TLR2,
TLR3, TLR5, TLR7, TLR8, and TLR9 (Sivori et al., 2004;
Hart et al., 2005; Tsujimoto et al., 2005; Marcenaro et al.,
2008; Voo et al., 2014). These receptors, by recognizing
conserved pathogen structures, induce NK cell activation
(Della Chiesa et al., 2014).

During NK cell development/differentiation, CD94/NKG2A
is the first HLA-I specific receptor to be expressed. It appears
on the most immature CD56bright CD16neg/dim NK cell subset.
After several maturation steps, CD56bright cells become CD56dim

CD16+, lose NKG2A and acquire KIR and LILRB1 receptors
(Di Santo, 2006; Freud and Caligiuri, 2006; Romagnani et al.,
2007). The most mature NK cells are KIR+ (and/or LILRB1+),
NKG2A− CD16bright and express the marker of terminal
differentiation, CD57 (Moretta et al., 2004; Bjorkstrom et al.,
2010; Marcenaro et al., 2017).

Under homeostatic conditions, NK cells continuously receive
inhibitory signals mainly originating from the interaction
between iNKRs and a large spectrum of classical and non-
classical HLA-I molecules expressed on the surface of autologous
cells (self-cells). Allogeneic or viral-infected or tumor cells
often downregulate or lack altogether the expression of
these antigens and therefore fail to be recognized as self-
cells by the iNKRs. Under these conditions, the signaling
from the aNKRs, engaged with ligands displayed on target
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cells, prevails, and the NK-mediated killing of these non-
self cells is unleashed. Notably, in tumors that maintain
the expression of HLA-I molecules, the iNKRs function as
immune checkpoints and block the cytotoxic activity of NK
cells (Romagne et al., 2009; Vey et al., 2012; Kohrt et al.,
2014).

Several strategies have been forwarded to strenghten NK cell
activity against HLA-I-expressing cancer cells. For example, IL-
2-based immunotherapy allows NK cells to override inhibitory
signals from acute myeloid leukemia (AML) blasts (Hallner
et al., 2019), and recently, immunotherapies based on the
use of therapeutic monoclonal antibodies specific for iNKRs,
in particular anti-pan-KIR2D (lirilumab) (Romagne et al.,
2009; Kohrt et al., 2014; Vey et al., 2018) and anti-NKG2A
(monalizumab), have been developed (André et al., 2018; Tinker
et al., 2019; Zaghi et al., 2019). These agents efficiently disrupt the
interaction between these NK cell immune checkpoints and their
ligands, and will in this way enable NK cells to efficiently kill also
HLA-I+ tumor cells (Chiossone et al., 2017; Di Vito et al., 2019).

In addition, the microenvironment of chronic infections and
tumors may lead to NK cell phenotypic changes and impairment
of NK cell functions (Bi and Tian, 2017). The most frequently NK
cell phenotypic changes are represented by downregulation of
the aNKRs expression (Costello et al., 2002; Romero et al., 2006;
Carlsten et al., 2009; Pesce et al., 2015; Han et al., 2018; Poznanski
and Ashkar, 2019) and/or upregulation/de novo expression of
iNKRs (Carlsten et al., 2009; Di Vito et al., 2019; Sanchez-
Correa et al., 2019). In fact, it has been unveiled that besides
T lymphocytes also NK cells can express PD-1, an immune
checkpoint specific for the PD-L1/2 molecules often displayed on
the surface of tumor cells (Pesce et al., 2019b).

PD-1 is expressed on a subset of fully mature
(KIR+CD57+NKG2A−) NK cells from one-fourth of human
cytomegalovirus (HCMV) seropositive individuals (Della Chiesa
et al., 2016; Pesce et al., 2017a; Mariotti et al., 2019). Increased
proportions of PD-1+ NK cells can be observed in patients
affected by different types of tumors (Beldi-Ferchiou et al., 2016;
Pesce et al., 2017a, 2019a,b; André et al., 2018). Accordingly,
studies suggest a role for NK cells in immunotherapy targeting
the PD-1/PD-L1 axis (Hsu et al., 2018) and this is clinically
relevant for patients with tumors characterized by a T cell
resistant (HLA-Ineg) phenotype.

Apart from the wide-spread use of checkpoint inhibitors
in melanoma, lung cancer etc., agents blocking the PD-1/PD-
L1 axis are currently being evaluated in clinical trials on both
hematologic and solid tumors as monotherapy or in combination
with other agents, including other forms of immune checkpoint
blockade, such as anti-panKIR2D and anti-NKG2A antibodies
in the case of HLA-I+ tumor cells (Moretta et al., 1996, 2001;
Cosman et al., 1997; Braud et al., 1998; Sivori et al., 2004;
Marcenaro et al., 2008; Di Vito et al., 2019).

In summary, NK cell activation depends on the nature of
interactions between inhibitory/activating receptors on their
surface and the relative ligands on target cells, and thus
receptor/ligand pairs could represent key checkpoints in the
regulation of anti-tumor NK cell activity and in the planning of
innovative NK cell-based immunotherapy.

miRNAs AS REGULATORS OF NK CELLS
SURVIVAL, DEVELOPMENT/MATURATION,
AND FUNCTIONS

Numerous studies showed that miRNAs play a relevant role
in the regulation of NK cell survival, development/maturation,
activation, proliferation, cytotoxicity, and cytokine production
both in healthy and pathological conditions (i.e., tumors/viral
infections) by targeting receptors or factors involved in
transcriptional expression (Table 1).

miRNAs Involved in NK Cell
Differentiation/Development
The first evidence of the important role played bymiRNAs within
the immune system was provided by genetic studies showing a
critical requirement for Dicer in vivo. Conditional deletion of
Dicer in various hematopoietic lineages inmice produced defects,
such as impaired cell differentiation, proliferation, and survival
(Muljo et al., 2005; Cobb et al., 2006; Koralov et al., 2008; Liston
et al., 2008; Fedeli et al., 2009).

Bezman et al. (2010) investigated the role of miRNAs by
ablation of the miRNA biogenesis pathway, through deletion of
Dicer or Dgcr8 in the mature murine peripheral NK cells. Dicer-
and Dgcr8- deficient NK cells showed an increased cell death
supporting the important role of miRNAs in controlling cell
survival. Moreover, Dicer- and Dgcr8-deficient NK cells are able
to respond efficiently through their cytokine receptors; however,
function of their immunoreceptor tyrosine-based activation
motif (ITAM)-containing aKIRs is impaired.

By using another molecular approach, Sullivan et al. (2012)
eliminated Dicer during the earliest stages of murine NK cell
development in the bone marrow to better characterize the
phenotypic features derived from global loss of mature miRNA
expression. These studies confirmed that the absence of miRNAs
led to reduced numbers and percentages of NK cells, and a
decreased in vitro survival/proliferation.

Studies utilizing next-generation sequencing in mouse and
human reported some information about the miRNA repertoire
in resting CD56+ CD3− human or NK1.1+CD3− murine NK
cells and upon cytokine activation (Fehniger et al., 2010; Liu
et al., 2012; Wang et al., 2012). Furthermore, Ni et al. (2015)
identified the miRNA profiles of human NK cells from different
compartments (peripheral blood, cord blood, and uterine
decidua). Very recently, our group, by analyzing peripheral blood
NK cells from 10 different human healthy donors, identified a 108
miRNA signature able to discriminate CD56bright from CD56dim

NK cell subsets independently from their surface phenotype
(Pesce et al., 2018). Interestingly, we found some miRNAs (miR-
146a-5p, miR-92a-3p, miR-223-3p, miR-873-5p, miR-31a-5p,
hsa-miR-130a-5p, miR-181a-2-3p) with consistent differential
expression in the two NK cell subsets, and with an intermediate
expression in the CD56bright/CD16dim NK cell subset, which
represents a transition phase in the NK cell maturation process
of NK cells.

A key miRNA for NK cell development is miR-150. A gain
of function miR-150 transgene in mouse was demonstrated to
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TABLE 1 | Examples of miRNAs expressed in NK cells and involved in the modulation of several aspects of NK cell development and functions.

miRNAs Induced by Inhibited by Targets Effects References

miRNAs involved

in NK cell

differentiation/

development

miR-150¶ Myb Promotes the development of

NK cells

Bezman et al., 2011

miR-181a/b NLK Promotes the development of

NK cells

↑ INF-γ production

Cichocki et al., 2011

miR-583 IL2Rγ ↓ NK cell differentiation Yun et al., 2014

miRNAs involved

in the regulation

of NK cell

functions

miR-27a-5p IL-15 GzmB

Prf1

↓ NK killing activity Kim et al., 2011

miR-30e IFN-α Prf1 ↓ NK killing activity Wang et al., 2012

miR-378 IFN-α GzmB ↓ NK killing activity Wang et al., 2012

miR-150 IL-15 Prf1 ↓ Prf1

↓ NK killing activity

Kim et al., 2014

miR-362-5p¬ CYLD (neg. reg. of

NF-kb)

↑ Expression of: IFN-gamma,

perforin, granzyme-B, and

CD107a

Ni et al., 2015

miR-155‡ IL-2, IL15 or

IL-21

↑ NK killing activity Liu et al., 2012

miR-155 IL-12, IL-15,

IL-18

SHIP-1 ↑ NK killing activity

↑ INF-γ production

Sullivan et al., 2013

miR-99b

miR-330-3p$

NK cell activation but diminished

cytotoxicity

Petty et al., 2016

miR-1245 TGFß NKG2D ↓ NK killing activity Espinoza et al., 2012

miR-183 TGFß DAP12 Destabilization of 2DS4 and

NKp44

↓ NK killing activity

Donatelli et al., 2014

miR-218-5p IL-2 SHMT1 ↓ IFN-γ and TNF-α production

↓ Cytotoxicity

Yang et al., 2019

Pathogens-

modulated

miRNAs in NK

cells

miR-15a† EBV-encoded

latent membrane

protein (LMP1)

Myb Cyclin D1 Growth arrest Komabayashi et al., 2014

miR-155 IL-12 and IL-18

via STAT4

Noxa (early post

MCMV); SOCS1

(late post MCMV)

↑ Antiviral immunity Zawislak et al., 2013

miR-29a-5p HCV PU.1

Prf1

↑ miR-155

↓ Prf1

↓ NK killing activity

Elemam et al., 2015

miRNAs in

tumor-

associated NK

cells

miR-183∧ TGFß DAP12 Destabilization of 2DS4 and

NKp44

↓ NK killing activity

Donatelli et al., 2014

miR-1245 TGFß NKG2D ↓ NK killing activity Espinoza et al., 2012

miR-218-5p IL-2 SHMT1 ↓ IFN-γ and TNF-α production

↓ Cytotoxicity

Yang et al., 2019

miR-150 DKC1

AKT2

↑ Apoptosis in tumor cells

↑ Tumor suppression

Watanabe et al., 2011

miR-203 Promoter

methylation in

lymphoma

Tumor suppression Chim et al., 2011

miR-494-3p PTEN AKT activation (Chen et al., 2015)

miR-142-3p§ RICTOR Suppression of AKT (Chen et al., 2015)

miR-155 SHIP1 ↓ Cell survival and Cell-cycle

progression

Yamanaka et al., 2009

miR-21 PTEN; PDCD4 ↓ Cell survival (anti-apoptotic) Yamanaka et al., 2009

(Continued)
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TABLE 1 | Continued

miRNAs Induced by Inhibited by Targets Effects References

miR-26a/b

miR-28-5

miR-30b

miR-101

miR-363

c-Myc MUM1, BLIMP1,

and STMN1 in

NKTL

↓ Cell growth (NK/T-cell

Lymphoma)

Ng et al., 2011

miR26a/b BCL2 ↓ Cell growth Ng et al., 2011

miR-363

miR-28-5

↓ Cell growth Ng et al., 2011

miR-101 STMN1IGF1

BCL2

↓ Cell growth Ng et al., 2011

miRNA-10a

miRNA-342-3p

TIAM1 Low miRNA expression

correlated with development of

Extranodal NK/T-cell lymphoma

Huang et al., 2016

miR-221 Poor Survival in Plasma NK/T-cell

Lymphoma

Guo et al., 2010

miR-155 BRG1 Activation of STAT3/VEGFC

signaling and promotion of

NKTCL viability and

lymphangiogenesis

Chang et al., 2019

miRNAs involved

in the regulation

of NK cell

immune

checkpoints

miR-182# NKG2D? NKG2A? ↑ Cytotoxicity via Prf1 counter

intuitive effects on NKG2D and

NKG2A

Abdelrahman et al., 2016;

El Sobky et al., 2016

miR-146a-5p◦ KIR2DL1 KIR2DL2 ↑ NK killing activity Pesce et al., 2018

miR-26b-5p

miR-26a-5p

miR-185-5p

KIR3DL3 NK cell activation? Nutalai et al., 2019

¶Controls iNKT cells development and apoptosis (Bezman et al., 2011; Winter and Krueger, 2019) and has negative effects on acute T-cell lymphoblastic leukemia (T-ALL) survival (Saki

et al., 2015) whereas it has a protective effect on CD4+ and CD8+ T cells by controlling the expression of pro-apoptotic genes (Cron et al., 2019).
¬Promotes malignancy of chronic lymphocytic leukemia (CLL) (Yang et al., 2015).
‡Reported to be also involved in CD8+ T cell activation (Gracias et al., 2013) and T cell development.
$Also involved in the inhibition of TGF-β expression in CD8+ Treg cells (Rouas et al., 2019).
†
Also involved in the control of chronic lymphocytic leukemia clonal expansion (Cutrona et al., 2017).

∧See also involvement of miR-183C (Ichiyama et al., 2016) and miR-183-5p in Th17 cytokine production and Th17/Treg imbalance in thrombocytopenia (Hua et al., 2019), respectively.
§Also involved in CD25+ CD4T cell proliferation by targeting the expression of GARP (Zhou et al., 2013).
#Also Promotes clonal expansion of activated T helper lymphocytes (Stittrich et al., 2010).
◦Promotes growth of acute leukemia cells (Wang L. et al., 2019).

drive the development and maturation of NK cells. In line with
this, mice with a targeted deletion of miR-150 instead display cell
lineage–intrinsic defect in their ability to generate mature NK
cells (Bezman et al., 2011).

Additional miRNAs relevant for NK cell development and
maturation are miR-181 and miR-583. Cichocki and coworkers
found thatmiR-181 promotes NK cell development via inhibition
of the Nemo like kinase (NLK) (Cichocki et al., 2011) while
Yun and collaborators showed that the miR-583 targets and
downregulates IL2Rγ in NK cells acting as a negative regulator
of their differentiation process (Yun et al., 2014).

miRNAs Involved in the Regulation of NK
Cell Functions
Accumulating evidence suggests that distinct miRNAs may play
regulative roles on NK cell functions both in terms of cytotoxicity
and cytokine production. In this context, miR-27a-5p (Kim

et al., 2011), miR-378, miR-30e (Wang et al., 2012), and miR-
150 (Kim et al., 2014), were proposed as negative regulators
of NK cell killing ability. In particular, miR-378 was found to
target granzyme b (Gzmb) (Wang et al., 2012), miR-30e and
miR-150 have as target perforin (Prf1) (Wang et al., 2012; Kim
et al., 2014) while miR-27a-5p targets both (Kim et al., 2011).
By contrast, Prf1, Gzmb, IFN-γ, and CD107a in human NK
cells were all upregulated after miR-362-5p overexpression. Ni
and collaborators indeed found that this miRNA targets the
mRNA coding for the cylindromatosis lysine 63 deubiquitase
(CYLD) and suggested that miR-362-5p promotes NK cell
effector functions (Ni et al., 2015).

miR-155 should also be included among the miRNAs that
enhance NK cell functions. In particular, IL-2, IL-15, and IL-
21 upregulate this miRNA, which in turn, enhances NK cell

cytotoxicity (Liu et al., 2012). Moreover, miR-155 extensively

regulates the NK cell activation threshold regulating molecules
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involved in NK cell activation and their IFN-γ release by
modulating the expression of the phosphatase SHIP-1, T-
bet/Tim-3, or the activation of several signaling pathways,
including those involving PI3K, NF-kB, and calcineurin (Trotta
et al., 2012; Sullivan et al., 2013; Cheng et al., 2015). Similarly,
miR-181 was also found to promote IFN-γ production in primary
NK cells in response to cytokine stimulation through regulation
of the Notch pathway (Cichocki et al., 2011).

In a study aimed to identify miRNAs potentially involved
in the pathogenesis of chronic fatigue syndrome or myalgia
encephalomyelitis in peripheral blood mononucleate cells
(PBMC), 34 miRNAs were found upregulated compared to
healthy controls and 2 of these (miR-99b, miR-330-3p) were
confirmed having the most important deregulation in NK cells
in terms of cytotoxic activity (Petty et al., 2016).

Pathogens-Modulated miRNAs in NK Cells
The host’s immune responses must be strictly regulated by
an sophisticated balance between positive and negative signals
during the fight against pathogens.

One of the mechanisms by which pathogens can break this
balance is that of interfering with the regulatory role of miRNAs.

TLRs are receptors of the innate immune system that directly
recognize conserved structures of both viral and bacterial origin
that are present and functional on NK cells (Della Chiesa et al.,
2014). It has been recently demonstrated that several miRNAs,
including miR-21, miR-146, miR-155, and let-7 family can bind
to TLRs (acting also as physiological ligands for these receptors)
or proteins in TLR signaling pathways. These interactions can
regulate the expression and the transcriptional responses of TLRs
(Bayraktar et al., 2019). In addition, some miRNAs and miRNA-
containing exosomes can selectively activate innate immune
effector cells, including NK cells, via the TLR1–NF-kB signaling
pathway (He et al., 2013).

Enhancement of NK cell cytotoxicity with upregulation of
Prf1 was described as associated with miR-182 overexpression in
NK cells derived from hepatocellular carcinoma (HCC) patients
(Abdelrahman et al., 2016). However, a subsequent study from
the same group reported contradicting roles of this miRNA in
both NK cells and in hepatocytes infected by hepatitis C virus
(HCV) (El Sobky et al., 2016).

Komabayashi and collaborators demonstrated that the
Epstein-Barr virus (EBV)-encoded latent membrane protein 1
(LMP1) is able to downregulate the expression of the miR-15a
and increase MYB and cyclin D1 in cell lines with an NK cell
phenotype (Komabayashi et al., 2014), thus suggesting that miR-
15a may have a role in the repression of NK cell proliferation.
In line with this, Cheng and collaborators found that the down-
regulation of miR-155 suppressed IFN-γ production through
Tim-3 signaling and lead to HCV evading immune clearance
(Cheng et al., 2015). However, the specific target of miR-155 in
the context of these two studies remains unknown.

miR-155 was found to be induced by IL-2 and IL-18 via
STAT4 and able to reduce the expression of NOXA and SOCS1
at distinct stages of homeostasis and activation. As NK cells of
mice with a targeted miR-155 deletion displayed dramatically
diminished effector activities and reduce memory cell numbers

in both lymphoid and non-lymphoid tissues afterwards murine
cytomegalovirus (MCMV) infection, these findings suggest that
miR-155 promotes antiviral immunity (Zawislak et al., 2013).
However, a study by Elemam et al. (2015) reached contrasting
conclusions as they observed that HCV infection might abolish
NK cell cytotoxicity via modification of PU.1 (a key transcription
factor in the NK cell development), and Prf1/NKG2D expression
by miR-29a-5p and miR-155 overexpression, respectively.

miRNAs in Tumor-Associated NK Cells
Several studies demonstrated that miRNAs might also act as
oncogenes or tumor suppressor genes in different human cancer
histotypes. Most of the endogenous miRNAs that have been
characterized so far modulate NK cell antitumor activity in the
tumor microenvironment (TME). TGFß released by tumor cells
in the TME is a powerful inhibitor of the NK cell killing activity,
and Donatelli and collaborators have shown that a specific
miRNA, miR183, is induced by TGFß (Donatelli et al., 2014).
They also formally proved that this miRNA downregulates the
expression of the DNAX activating protein 12 kDa (DAP12) that
was found critically involved in the stabilization of KIR2DS4
and NKp44 receptors on the plasma membrane and required for
their signaling activities. Interestingly, loss of DAP12 was also
identified as a common trait in tumor-infiltrating lymphocytes
in lung cancer (Donatelli et al., 2014). TGFß has also been
reported to increase post-transcriptionally the levels of mature
miR-1245 which suppresses NKG2D expression, thus spoiling
NKG2D-mediated immune responses and enhancing the tumor
supporting properties of the TME (Espinoza et al., 2012).

Yang and collaborators reported that miR-218-5p suppresses
the NK-mediated killing of lung adenocarcinoma by targeting
Serine Hydroxymethyltransferase 1 (SHMT1) (Yang et al., 2019).

Several studies identified miRNAs (miR-203, miR-494-3p,
miR-142-3p, miR-155, miR-21) that affect NK cell lymphoma
survival and apoptosis modulating different pathways including
the PTEN-AKT-mTOR pathway (Yamanaka et al., 2009; Chim
et al., 2010, 2011; Ichimura et al., 2010; Chen et al., 2015).

Recent findings provided evidence on the role of some
miRNAs as tumor suppressors, such as miR-150 that is involved
in the pathogenesis of malignant lymphoma, by increasing the
incidence of apoptosis and reducing cancer cell proliferation
(Watanabe et al., 2011).

Several studies were performed using as model the NK/T cell
lymphoma (NKTL), a progressive malignancy with unfavorable
prognosis without a specific treatment, and most of them were
pursued to identify dysregulated miRNAs that can affect targets
involved in the oncogenesis of NKTL. In this context, Ng and
collaborators found that miR-26a, miR-26b, miR-28-5, miR-30b,
miR-101, andmiR-363 were downregulated, possibly viaMYC, in
NKTL and NK cell lines compared to normal NK cells and that
the suppressed miRNA expression allowed increased expression
of genes implicated in oncogenesis (Ng et al., 2011). Furthermore,
in a recent study focused on NKTL, Huang and collaborators
reported data suggesting that miR-10a and miR-342-3p may
be implicated in the development of NKTL through the T-
lymphoma invasion and metastasis inducing factor 1 (TIAM1)
pathway, which has a crucial role in the development of several
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types of human cancer (Huang et al., 2016). Other miRNAs such
as miR-221 and miR-155, associated with promotion of NKTL
viability, have been proposed as potential molecular markers of
NKTL (Guo et al., 2010; Chang et al., 2019).

Recently, growing evidence has shown that extracellular
vesicles (EVs) released by NK cells transport miRNAs capable of
exerting a strong anti-tumor effect in immunosuppressive TME
(Fabbri, 2020). Previous studies have also demonstrated that NK
cell-derived exosomes have tumor-specific accumulation with no
cytotoxic activity against normal tissues (Lugini et al., 2012).
Meanwhile, microenvironment acidic pH promotes the traffic of
this EVs in tumor cells (Parolini et al., 2009). In addition, NK cell-
derived exosomes also exhibit the benefits of being stable vesicles
and maintain their biological activities. Thus, NK cell-derived
exosomes can both facilitate tumor targeting and act as direct
antitumor agent. These properties make them more suitable for
clinical applications, thus suggesting a possible use of NK-cell
derived EVs as anticancer agents as a new avenue for tumor
therapy (Wang H. et al., 2019).

miRNAs Involved in the Regulation of NK
Cell Immune Checkpoints
Immune checkpoints have a key role in regulating the
intensity of immune responses of lymphocytes by performing
inhibitory functions. The use of immune checkpoint inhibitors
in immunotherapy has driven anti-cancer treatment on a novel
level. Emerging evidence suggests that some miRNAs can control
the expression of immune checkpoints on the surface of NK cells
or that of their ligands on tumor cells. This suggests a possible use
of miRNAs in the context of anti-tumor therapy.

In a recent study we proved that the miR-146a-5p is able to
downregulate both KIR2DL1 and KIR2DL2, two HLA-specific
inhibitory receptors belonging to KIR family (Pesce et al., 2018)
(Figure 1A). Furthermore, in silico functional characterization
of miR-146a-5p gene targets, identified CD94, HLA-C, HLA-E,
Prf1, and several other KIRs genes as additional targets. These
results are in line with the higher levels of miR-146a-5p found
in CD56bright NK cells and with other studies suggesting that
this miRNA is engaged in the regulation of NK cell maturation
via the STAT1 (Xu et al., 2017) and NF-kappaB (Wang et al.,
2018) signaling pathways. A different research group identified
very recently three miRNAs, miR-26a-5p, miR-26b-5p, and miR-
185-5p, as inhibitors of the expression of an additional KIR,
the KIR3DL3, which is included in the iNKRs group but it
is still poorly characterized (Nutalai et al., 2019) (Figure 1A).
Therefore, the role of these miRNAs in NK cells development or
function remains to be defined.

The study of Abdelrahman and collaborators showed that
enhancement of NK cell cytotoxicity by miR-182 in human
hepatocellular carcinoma and increased Prf1 expression were
indirect effects likely mediated by a complex modulation of
NKG2D and NKG2A levels in these cells at different stages of the
disease (Abdelrahman et al., 2016) (Figure 1B).

Regarding miRNAs regulating PD-1 expression, miR-28 (Li
et al., 2016), miR138 (Wei et al., 2016), and miR-4717 (Zhang
et al., 2015) have been found to target this immune checkpoint,

and to induce T cell exhaustion. It has been demonstrated
that miR-4717 play a role in chronic Hepatitis B Virus (HBV)
infection, where this miRNA is significantly reduced (Zhang
et al., 2015). Since also NK cells may express PD-1, it cannot be
excluded that these miRNAs may play an important regulatory
role also in these innate cells.

Notably, some mi-RNAs target additional immune
checkpoints playing a critical role for cytotoxic immune
cell functions, such as miR-28 targeting TIM-3 (Li et al., 2016),
expressed by both T and NK cells (Di Vito et al., 2019), and
miR-16, miR-138, andmiR-195 targeting cytotoxic T-lymphocyte
antigen 4 (CTLA-4), mainly expressed by T cells (Wei et al.,
2016; Tao et al., 2018).

miRNAs Involved in the Regulation of the
Expression of Ligands for NK Cell
Receptors
Tumor immune evasion is not restricted to the upregulation of
immune checkpoint proteins, but also to the dysregulation in the
expression of immune checkpoint ligands, including classical and
non-classical HLA-I molecules or ligands for activating NK cell
receptors. In this context, it has been found that miR-9 is involved
in the downmodulation of the expression of HLA-I molecules in
human cancer cells, preventing the detection of cancer cells by
the immune system (Gao et al., 2013) (Figure 1C). This suggests
that tumors overexpressing this miRNA might become resistant
to CD8+ T-cell mediated killing but susceptible to NK cell-
mediated attack. In addition, the tumor-suppressive miR-148
family has been found to regulate the expression of HLA-G, a
ligand for different NK cell inhibitory receptors (Mandelboim
et al., 1997; Seliger, 2016) (Figure 1D).

Recently, it has been demonstrated that some miRNAs
directly target the 3′-UTR of PD-L1 mRNA and others the PD-
1/PD-L1 indirectly by targeting the related signaling pathways
(Wang et al., 2017; Gao et al., 2019; Omar et al., 2019). miR-
15a, miR-15b and miR-16 were discovered to downregulate
the PD-L1 expression in malignant pleural mesothelioma cell
line (Kao et al., 2017) (Figure 1D). miR-34a was found to
be inversely correlated with PD-L1 expression in 44 AML
samples (Wang et al., 2015) (Figure 1D). miR-935p, miR-
106b-5p, miR-138-5p, miR-142-5p, miR-193a-3p, miR-200, and
miR-570 overexpression downregulate PD-L1 in tumor cell
lines of different hystotypes (Chen et al., 2014; Guo et al.,
2015; Cioffi et al., 2017; Jia et al., 2017; Kao et al., 2017)
(Figure 1D). miR-152 was found to regulate PD-L1 in gastric
cancer tissues (Guo et al., 2015), while miR-424 regulates the
PD-L1 expression in chemo-resistant ovarian cancer patients
(Xu et al., 2016) (Figure 1D). Notably, miR-873 decreased
the stemness and resistance to chemotherapy of breast cancer
cells, depending on PD-L1 and the downstream PI3K/Akt and
ERK1/2 signaling, by directly inhibiting PD-L1 expression. This
suggests that miR-873/PD-L1 regulatory axis may represent a
new therapeutic target in breast cancer. Such data are interesting
for employing miRNAs as useful diagnostic targets and valuable
biomarkers for prognosis in the PD-1/PD-L1 blockade therapy.
miR-155, a key component of inflammatory responses, is
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FIGURE 1 | A new strategy for improving NK cell-based immunotherapy: miRNAs can directly regulate the expression of different NK cell immune checkpoints

(including KIRs, PD-1, NKG2A, and other iNKR) (A,B) or their ligands (HLA-I, PD-L1, HLA-E/G) (C,D). In addition, some miRNAs can also regulate the expression of

activating NK cell receptors (i.e., NKG2D) or their ligands (e.g., MIC A/B) (E). This effect can deeply impact on NK cell ability to recognize and kill cancer cells. In

particular, a downregulation of immune-checkpoints or immune-checkpoints’ ligands can restore an appropriate NK cell anti-tumor activity; on the contrary, a

downregulation of activating receptor expression or their ligands can affect their anti-tumor potential. This suggests innovative miRNA-based therapeutic approaches

to unleash NK cell effector functions in the cancer treatment.

dysregulated in different cancer cell types. In this context, it
has been recently demonstrated that the induction of miRNA-
155 expression, suppresses the expression of PD-L1 in both

primary lymphatic endothelial cells and fibroblasts, by exposing
these cells to the TNF-a and IFN-γ proinflammatory cytokines
(Yee et al., 2017).
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Moreover, different miRNAs downregulate MHC class I
chain-related protein A/B (MICA/B) expression (NKG2D NK-
cell receptor ligands) and this represents another mechanism
of immune suppression targeting NK cells cytotoxicity. These
miRNAs include miR-183 that targets MIC A/B in lung cancer
(Trinh et al., 2019), miR-20a that induces the same effect in
ovarian cancer (Xie et al., 2014) andmiR-25/93/106b family, miR-
20a, miR-93 and miR-106b that act in HCC (Kishikawa et al.,
2013) (Figure 1E).

CONCLUDING REMARKS

Recently, there has been a substantial evolution in cancer
therapy, mainly oriented toward immunotherapy approaches,
in substitution or in combination with classical therapy.
Cancer immunotherapy represents a promising new era
in cancer management due to the relatively high safety
margins and selectivity, compared to the classical cancer
chemotherapeutic agents.

miRNAs have come to light over the last years as key actors
in epigenetic regulation and for their capacity to modulate
tumor immunity by directly regulating the expression of genes
involved in the activation or suppression of the immune
response. In this review, we focused our attention on the
current state of knowledge concerning the involvement of

miRNAs in various physiologic processes of NK cells. In
particular, we discussed their abilty to regulate NK immune
responses and their potential implications in resistance
to cancer immunotherapy, with main focus on immune
checkpoints. In this context, several miRNAs have been
found to modulate different immune checkpoints/ligands
interaction, including the PD-1/PD-L1 axis or their upstream
genes. Future studies comparing miRNAs’ expression profiles
in patients who respond to immune checkpoint blockade
immunotherapies as compared to non-responders will
help to disclose the potential role of miRNAs as non-
invasive predictive biomarkers for monitoring the response
and clinical outcomes to immunotherapy with immune
checkpoint inhibitors.
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