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Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally
conserved and unique enzyme that specifically catalyzes the cis-trans isomerization
of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently,
induces the conformational change of its substrates. Mounting evidence has
demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting
a critical influence on tumor initiation and progression via regulation of the biological
activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates.
Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes
and growth enhancers, or inactivating some tumor suppressors and growth inhibitors,
suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we
summarize the findings on the dysregulation, mechanisms, and biological functions of
Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1
dysregulation in human cancer.
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INTRODUCTION

Cellular processes are spatially and temporally regulated by a number of molecular machineries
consisting of proteins and nucleic acids (Csizmok et al., 2016; Koelwyn et al., 2017; Hentze et al.,
2018). Diverse regulatory mechanisms have been well established to interpret cellular processes,
such as epigenetic changes, allosteric regulations, and post-translational modifications (Aebersold
and Mann, 2016; Changeux and Christopoulos, 2016; Luo et al., 2018). Among them, post-
translational modifications are currently emerging as an important regulator of cell fate and thus
have a strong potential to be implicated in cellular disorders (Barber et al., 2018; Steklov et al.,
2018). As a dominative component of post-translational modifications, protein phosphorylation
in response to extracellular or intracellular stimuli mainly controls the signal transduction within
cells (Boss and Im, 2012), which often includes conformational changes in kinase-phosphorylated
substrates (He et al., 2015; Martin et al., 2016). Therein, the conformational switch of peptide bonds
precisely regulated by prolyl cis-trans isomerization plays a central role in many aspects of cellular
processes (Lu et al., 2007; Marsolier et al., 2015).

Proline residues in proteins have cis and trans peptide bond conformations, which are tightly
orchestrated by prolyl cis-trans isomerization (Lummis et al., 2005; Zosel et al., 2018). Proline
conversion occurs very slowly in aqueous solution (Fischer and Aumuller, 2003). But in the
presence of peptidyl prolyl cis-trans isomerases (PPIases), the cis-trans rotation of peptide bond is
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stimulated, thereby adjusting the spatial arrangement of protein
backbone segments (Theuerkorn et al., 2011). There are four
evolutionally conserved PPIase subfamilies: cyclophilins, FK506-
binding proteins (FKBPs), parvulins, and protein phosphatase
2A phosphatase activator (PTPA) (Thapar, 2015; Zhou and Lu,
2016). Peptidyl-prolyl cis-trans isomerase NIMA-interacting
1 (Pin1), a member of parvulins subfamily, was originally
identified in 1996 (Lu et al., 1996), and is a unique enzyme
that specifically catalyzes the isomerization of phosphorylated
serine-proline or phosphorylated threonine-proline (pSer/Thr-
Pro) motifs, representing a novel mechanism that protein
conformation after Ser/Thr-Pro phosphorylation can be
regulated by Pin1 to display alterable biological functions
(Lu and Hunter, 2014; Zhou and Lu, 2016). Furthermore, the
data from global mass spectrometry analysis have suggested
a high percentage of serine/threonine phosphorylation in
all phosphorylated proteins (Shi, 2009). Thus, Pin1 is of
great interest to scientists committing to the research of
molecular cell biology.

Emerging evidence has demonstrated that Pin1-mediated
prolyl isomerization exerts a pivotal effect on multiple
physiological processes including cell growth, cell cycle
regulation, immune response, neuronal differentiation, and
tumorigenesis (Sacktor, 2010; Tun-Kyi et al., 2011; Daza-
Martin et al., 2019). In cancer—one of the leading causes of
human death worldwide (Bray et al., 2018)—Pin1 is widely
overexpressed and/or overactivated compared with normal cells
or tissues (Pang et al., 2004; Pulikkan et al., 2010; Lu and Hunter,
2014). A high level of Pin1 overexpression/overactivation
closely correlates to poor clinical prognosis of diverse cancers
(Wang et al., 2015; Zhou and Lu, 2016). Through multiple
regulatory mechanisms, Pin1 promotes tumor initiation,
development, and drug resistance by acting as an activator of
some oncogenes and growth enhancers, or as an inactivator
of some tumor suppressors and growth inhibitors (Yeh and
Means, 2007; Lu and Hunter, 2014; Zhou and Lu, 2016).
Therefore, these achievements provide strong evidence that
Pin1 is an attractive target for cancer therapy, leading to the
discovery of Pin1 inhibitors for treating cancer and preventing
drug resistance.

Given the critical role of Pin1 in cancer, here we review
the recent findings about dysregulation, mechanisms, and
biological functions of Pin1 in cancer cells, and also discuss
the significance and potential applications of Pin1 dysregulation
in human cancer.

PIN1 DYSREGULATION IN CANCER

The PIN1 gene is located on chromosome 19p13.2 and encodes
Pin1 isomerase, composed of 163 amino acids (Lu et al., 1996;
Ranganathan et al., 1997; Modena et al., 2006). In normal tissues
and cells, the level of Pin1 expression is usually closely correlated
to the cell proliferation potential (Saegusa et al., 2010), and
Pin1 level in tissues decreases with aging (Lee et al., 2011b).
However, Pin1 is aberrantly upregulated or overactivated in many
tumors or cells with a tendency to differentiate into tumors

(Chen et al., 2018). Varied transcriptional, translational, and post-
translational factors contribute to Pin1 dysregulation in cancer
cells (Table 1).

Pin1 expression is regulated by a series of transcriptional
factors. The E2F family are highly active in nearly all cancer types,
regulating gene expression driven by cyclin-dependent kinase
(CDK)-Rb-E2F axis (Dick et al., 2018; Kent and Leone, 2019).
PIN1 transcription is stimulated by the E2F family, which is
located on the E2F binding sites of the PIN1 promoter (Ryo et al.,
2002). Additionally, E2Fs-mediated Pin1 transcription is also
activated by other transcriptional factors. C/EBPα-p30, a mutant
of transcription factor C/EBPα, which was found in around 9% of
acute myeloid leukemia (AML) patients, induces Pin1 expression
by recruiting E2F1 in the PIN1 promoter and enhances leukemia
(Pulikkan et al., 2010). PIN1 promoter activity is also induced
by Neu and Ras signaling via E2F activation in breast cancer
(Ryo et al., 2002; Wulf et al., 2004). Unlike other transcriptional
factors, Notch1 specifically binds the distal BS1 element of PIN1
promoter and directly triggers PIN1 transcription, where Pin1
potentiates Notch1 cleavage by γ-secretase to increase Notch1
transcriptional activity, thereby generating a positive loop to
upregulate Pin1 expression in human breast cancer (Takahashi
et al., 2007; Rustighi et al., 2009, 2013). Because transcriptional
factors of Pin1 are generally overactivated by upstream oncogenic
signaling (Pabst et al., 2001; Giuli et al., 2019; Kent and Leone,
2019), the above-mentioned evidence gives an explanation, at
least in part, for the upregulation of Pin1 in cancer cells.

Along with transcriptional regulation, Pin1 expression is
also controlled at post-transcriptional levels, including mRNA
stability and protein translation. miRNAs are a class of small
non-coding RNAs that regulate gene expression by repressing
protein translation or destabilizing target mRNAs by forming
a functional RNA-induced silencing complex (RISC) (Garzon
et al., 2010; Inui et al., 2010). Diverse miRNAs are found to
regulate Pin1 expression. For example, miR-200c is reported to
directly target the 3′-UTR of Pin1 mRNA, thus decreasing Pin1
level in breast cancer (Luo et al., 2014). MiR-140-5p is also
identified as a potential negative regulator of Pin1 expression
by directly binding to the 3′-UTR of Pin1 mRNA, inhibiting
Pin1 translation in hepatocellular carcinoma (Yan et al., 2017).
Moreover, miR-200b, miR-296-5p, and miR-874-3p were found
to be Pin1-targeted miRNAs (Zhang et al., 2013; Lee et al., 2014;
Leong et al., 2017). Given the fact that global miRNA expression
is downregulated in tumors (Lu et al., 2005; Hermeking, 2012;
Zhang et al., 2015), this reduced miRNA expression could lead to
Pin1 overexpression in cancer.

Post-translational regulation is another strategy affecting
Pin1 dysregulation. PLK1, a trigger for G2/M transition,
mediates phosphorylation of Ser65 in Pin1, stabilizing Pin1 by
inhibiting its ubiquitination in human cancer cells (Eckerdt
et al., 2005). MLK3, a MAP3K family member, phosphorylates
Pin1 on a Ser138 site to activate its catalytic function and
nuclear translocation, driving the cell cycle and promoting
cyclin D1 stability and centrosome amplification of cancer cells
(Rangasamy et al., 2012). By contrast, DAPK1, a known tumor
suppressor, associates with and phosphorylates Pin1 on Ser71,
which suppresses Pin1 nuclear localization and sustains cell cycle
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TABLE 1 | Selected factors contribute to Pin1 dysregulation in cancer.

Regulators Acting sites Regulatory activity to
Pin1 and cancer

Cancer types References

Transcriptional regulators

E2F PIN1 promoter E2F site Activation Breast cancer Ryo et al., 2002

C/EBPα-p30 PIN1 promoter E2F site Activation Leukemia Pulikkan et al., 2010

Ras PIN1 promoter E2F site Activation Breast cancer Ryo et al., 2002; Wulf et al.,
2004

c-Neu PIN1 promoter E2F site Activation Breast cancer Ryo et al., 2002; Wulf et al.,
2004

Notch1 PIN1 promoter BS1 site Activation Breast cancer Takahashi et al., 2007; Rustighi
et al., 2009, 2013

Translational regulators

miR-200c 3′-UTR of Pin1 mRNA Inhibition Breast cancer Luo et al., 2014

miR-140-5p 3′-UTR of Pin1 mRNA Inhibition Hepatocellular carcinoma Yan et al., 2017

miR-200b 3′-UTR of Pin1 mRNA Inhibition Breast cancer Zhang et al., 2013

miR-296-5p 3′-UTR of Pin1 mRNA Inhibition Prostatic cancer Lee et al., 2014

miR-874-3p 3′-UTR of Pin1 mRNA Inhibition Hepatocellular carcinoma Leong et al., 2017

Post-translational regulators

PLK1 Ser65 of Pin1 protein Activation Cervical cancer Eckerdt et al., 2005

MLK3 Ser138 of Pin1 protein Activation Breast cancer Cervical cancer Rangasamy et al., 2012

SENP1 Lys6, Lys63 of Pin1 protein Activation Breast cancer Chen et al., 2013

DAPK1 Ser71 of Pin1 protein Inhibition Cervical cancer Lee et al., 2011a

by activating cyclin D1 promoter in cells (Lee et al., 2011a). In
addition, SENP1 binds to and deSUMOylates Pin1, leading to
increased Pin1 stability and enhanced centrosome amplification
and cell transformation during tumorigenesis (Chen et al., 2013).
Collectively, Pin1 is aberrantly overexpressed/overactivated in
multiple tumors through transcriptional, post-transcriptional,
and post-translational regulations.

PIN1 PARTICIPATES IN TUMORIGENESIS
VIA MULTIPLE MECHANISMS

Pin1 is mainly localized in the nucleus of both normal and
cancer cells, colocalizing with a series of nucleoproteins, such as
NEK6 (Chen et al., 2006), but its nuclear-cytoplasmic distribution
could be changed upon phosphorylation by kinases including
the above-mentioned DAPK1 and MLK3 (Lee et al., 2011a;
Rangasamy et al., 2012). Recently, Chen et al. (2018) reviewed
81 Pin1 targets in human cancer. We have checked these targets
based on published articles and found that Pin1 regulates 29
targets in the nucleus and 35 targets in the cytoplasm (the rest
are unknown for their cellular localization), indicating that Pin1
has no apparent preference between its nuclear or cytoplasmic
clients. Additionally, Pin1 participates in cancer development
via transcriptional, post-transcriptional, and post-translational
mechanisms, and these mechanisms operate in both the nucleus
and cytoplasm (Lu and Hunter, 2014; Zhou and Lu, 2016).
Thus, Pin1 has both nuclear and cytoplasmic functions, and is
extensively involved in the initiation and progression of cancer.

Structurally, Pin1 contains an N-terminal WW domain and a
C-terminal PPIase domain, and these two domains are connected
by a flexible sequence (Yaffe et al., 1997). It is well-established

that WW domain is responsible for specifically recognizing and
binding the pSer/Thr-Pro segment of its substrates (Lu et al.,
1999; Verdecia et al., 2000), while PPIase domain is the bona
fide component catalyzing the conformation change of pSer/Thr-
Pro’s peptide bond (Yaffe et al., 1997; Lu et al., 2007). Recently,
a new opinion has emerged that the WW domain is also
an allosteric effector. Substrate binding to Pin1 WW domain
changes the intra/inter domain mobility under a stereoselective
manner, thereby altering the binding and catalysis in the distal
PPIase domain (Namanja et al., 2011; Peng, 2015). The data from
computational calculations also support this opinion and further
predicts that Ile28 at the flexible sequence between the PPIase and
WW domains is a potential key residue responsible for bridging
the communication between the two domains to realize Pin1
allostery (Barman and Hamelberg, 2016; Momin et al., 2018).
Considering the phosphorylated state of its substrates, Pin1
renders a functional diversity and/or pathological consequences
of given substrates (Zhou and Lu, 2016; Chen et al., 2018),
which is achieved mainly through three mechanisms: regulating
biological activity, protein degradation, and nucleus-cytoplasm
distribution of its substrates (Table 2).

Regulating Biological Activity of Pin1
Substrates
The biological activities of most human proteins are
conformationally specific (Papaleo et al., 2016). Pin1-mediated
conformational change significantly impacts their functions.
The C-terminal domain (CTD) of the RNA polymerase
(RNAP) II plays a critical role in pre-mRNA transcription
(Bentley, 2014; Jeronimo et al., 2016). Pin1 affects CTD
phosphorylation and RNAP II activity during initiation of
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TABLE 2 | Regulatory mechanism of Pin1 in cancer.

Substrates Motif Phenotype Cancer types References

Regulating biological activity of Pin1 substrates

RNAP II Ser2-Pro Regulates cell cycle Cervical cancer Kops et al., 2002; Xu
and Manley, 2007

BRCA1-BARD1 Ser114-Pro
(BRCA1)

Promotes replication fork protection OsteosarcomaCervical cancer Daza-Martin et al.,
2019

B-Myb Not available Regulates cell cycle Cervical cancer Werwein et al., 2019

FAK Ser910-Pro Promotes cell migration, invasion, and metastasis Breast cancerGlioblastoma Zheng et al., 2009

PTP-PEST Ser571-Pro Promotes migration, invasion, and metastasis Glioblastoma Zheng et al., 2011

ATR Ser428-Pro Prevents apoptosis Lung cancerColon cancer Hilton et al., 2015

Rb Ser608-Pro
Ser612-Pro

Regulates cell cycle OsteosarcomaLung cancer Rizzolio et al., 2012
Tong et al., 2015

ERα Ser118-Pro Promotes proliferation Breast cancer Rajbhandari et al., 2012
Rajbhandari et al., 2015

Smad2/3 Thr179-Pro Promotes migration and invasion Prostate cancer Matsuura et al., 2010

STAT3 Ser727-Pro Induce EMT Breast cancer Lufei et al., 2007

Affecting protein degradation of Pin1 substrates

NF-κB Thr254-Pro Promotes migration GlioblastomaLeukemiaLymphomas Ryo et al., 2003
Atkinson et al., 2009

Nanog Ser52-Pro
Ser65-Pro

Promotes cancer stem cell traits Prostate cancer Moretto-Zita et al.,
2010
Zhang et al., 2019

BRD4 Thr205-Pro Promotes proliferation, migration, and invasion Gastric cancer Hu et al., 2017

Fbw7 Thr205-Pro Promotes proliferation and transformation Colon cancer Min et al., 2012;
Bhaskaran et al., 2013

CDK10 Thr133-Pro Induce tamoxifen resistance Breast cancer Khanal et al., 2012

1Np63 Thr538-Pro Promotes proliferation Oral squamous cell carcinoma Li et al., 2013

c-Myc Ser62-Pro Promotes proliferation Breast cancer Farrell et al., 2013

PML Ser403-Pro
Ser505-Pro

Promotes proliferation Breast cancer Lim et al., 2011

RUNX3 Thr209-Pro
Thr212-Pro
Thr214-Pro
Thr231-Pro

Promotes proliferation Breast cancer Nicole Tsang et al.,
2013

HIF-1α Ser641-Pro
Ser643-Pro

Promotes angiogenesis Colon cancer Han et al., 2016

Altering nucleus-cytoplasmic distribution of Pin1 substrates

PKM2 Ser37-Pro Promotes Warburg effect and tumor growth Glioblastoma Yang et al., 2012; Yang
and Lu, 2013

TRIM59 Ser308-Pro Promotes tumor growth Glioblastoma Sang et al., 2019

p53-RS Ser249-Pro Regulates cell cycle Hepatocellular carcinoma Liao et al., 2017

XPO5 Ser497-Pro Promotes proliferation, migration, and invasion Hepatocellular carcinoma Sun et al., 2016; Li
et al., 2018

Cyclin D1 Thr286-Pro Promotes cell cycle and proliferation Nasopharyngeal carcinoma Liou et al., 2002; Xu
et al., 2016

the transcription cycle, and not during elongation, suggesting
the functional role of Pin1 in RNA transcription (Kops
et al., 2002; Xu et al., 2003; Xu and Manley, 2007). Pin1 also
enhances BRCA1-BARD1 interaction with RAD51, thereby
increasing the presence of RAD51 at stalled replication
structures and governing replication fork protection during
cancer development (Daza-Martin et al., 2019). Moreover,
B-Myb phosphorylated by CDK is isomerized by Pin1,
enabling PLK1 docking and subsequent PLK1-mediated
B-Myb phosphorylation to stimulate transcription of late cell
cycle genes (Werwein et al., 2019). In Ras-activated tumor

cells, the function of FAK and PTP-PEST are also regulated by
Pin1. Pin1 isomerizes both Ser910-phosphorylated FAK and
Ser571-phosphorylated PTP-PEST to enhance the interaction
between PTP-PEST and FAK, leading to the dephosphorylation
of FAK Tyr397 by PTP-PEST and the promotion of
migration, invasion, and metastasis of Ras-related tumor cells
(Zheng et al., 2009, 2011).

In addition to activating substrate activity, Pin1 is also able
to deactivate substrates. ATR, a PI3K-like protein kinase, has
an antiapoptotic activity at mitochondria in response to UV-
induced DNA damage. In cancer cells, this mitochondrial activity

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2020 | Volume 8 | Article 168

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00168 March 27, 2020 Time: 17:39 # 5

Pu et al. Role of Pin1 in Cancer

is reduced by Pin1 that catalyzes ATR from cis-isomer to trans-
isomer at the phosphorylated Ser428-Pro motif (Hilton et al.,
2015). Moreover, the function of the tumor suppressor Rb
is largely regulated by a dynamic balance of phosphorylation
and dephosphorylation. Pin1 directly interacts with the spacer
domain of Rb protein, and allows the interaction between
CDK/cyclin complexes and Rb in mid/late G1, leading to the
inactivation of Rb (Rizzolio et al., 2012; Tong et al., 2015).
Subsequently, the Pin1-induced Rb inactivation leads to the
dissociation of E2F from Rb and increased E2F transcriptional
activity, triggering the expression of cell cycle regulatory proteins
and promoting cell cycle progression through the G1 checkpoint
in cancer cells (Cheng and Tse, 2018).

Affecting Protein Degradation of Pin1
Substrates
Pin1 has the ability to prevent protein degradation of oncogenes
and growth-promoting regulators. For example, Pin1 associates
with the pThr254-Pro motif of transcription factor NF-κB
p65 subunit, leading to the increased protein stability of p65
and enhanced transcriptional activity of NF-κB in various
cancers, including leukemia, lymphomas, and glioblastoma
(Ryo et al., 2003; Atkinson et al., 2009). In prostate cancer,
tumor suppressor SPOP interacts with Nanog and promotes
Nanog poly-ubiquitination and subsequent degradation, but
Pin1 functions as an upstream Nanog regulator and impairs its
recognition by SPOP, stabilizing Nanog to promote the cancer
stem cell traits and tumor progression (Zhang et al., 2019).
Moreover, Pin1 directly binds to and isomerizes phosphorylated
Thr204-Pro205 motif of BRD4 to enhance its stability by
inhibiting its polyubiquitination, promoting BRD4’s interaction
with CDK9 and its transcriptional activity. Substitution of
BRD4 with Pin1-binding-defective BRD4-T204A mutant
reduces BRD4 stability, which attenuates BRD4-mediated gene
expression and suppresses cell proliferation, migration, invasion,
and tumor formation, suggesting the positive correlation
of Pin1 function and BRD4 stability in gastric cancer cells
(Hu et al., 2017).

Pin1 could also promote the protein degradation of tumor
suppressors and growth-inhibitory regulators. Fbw7 is the
substrate recognition component of the E3 ligase complex and
is critical for ubiquitylation and degradation of given proteins
(Ji et al., 2015). Pin1 interacts with Fbw7 and induces Fbw7
self-ubiquitination and protein degradation by disrupting Fbw7
dimerization, contributing to oncogenesis. By contrast, depletion
of Pin1 in cancer cells leads to elevated Fbw7 expression, which
subsequently reduces Mcl-1 abundance, sensitizing cancer cells
to taxol treatment (Min et al., 2012; Bhaskaran et al., 2013).
An inverse correlation between the expression of CDK10 and
the degree of tamoxifen resistance suggests CDK10 could be
an important determinant of tamoxifen resistance in breast
cancer. Pin1 facilitates CDK10 degradation as a result of its
interaction with, and subsequent ubiquitination of, CDK10,
thereby suggesting that the Pin1-mediated CDK10 ubiquitination
is a major regulator of tamoxifen-resistant breast cancer cell
growth and survival (Khanal et al., 2012).

Altering Nucleus-Cytoplasmic
Distribution of Pin1 Substrates
Changing the nucleus-cytoplasm distribution is another
mechanism of Pin1 function. A typical example is PKM2.
Upon the activation of EGFR signaling, Ser37-phosphorylated
PKM2 recruits Pin1 for cis-trans isomerization and promotes
PKM2 binding to importin α5 and translocating to the
nucleus, where nuclear PKM2 acts as a coactivator of β-catenin
to promotes the Warburg effect and tumorigenesis (Yang
et al., 2012; Yang and Lu, 2013). This process is similar
to the recently published mechanism of TRIM59 (Sang
et al., 2019). In addition, the mechanism underlying the
gain-of-function of p53-R249S (p53-RS), a p53 mutant
frequently detected in hepatocellular carcinoma, is also
mediated by Pin1. In detail, Pin1 isomerizes p53-RS
phosphorylated by CDK4 in the G1/S phase and enhances
nuclear localization of p53-RS, resulting in a p53-RS-c-
Myc interaction and an elevated c-Myc-dependent rDNA
transcription key for ribosomal biogenesis, which promotes cell
cycle progression and cell growth of hepatocellular carcinoma
(Liao et al., 2017).

Recently, we have demonstrated that Pin1 plays an important
role in miRNA biogenesis. XPO5-mediated nucleus-to-
cytoplasm export of precursor miRNAs (pre-miRNAs) is a
post-transcriptional step in the process of miRNA biogenesis
(Lin and Gregory, 2015; Peng and Croce, 2016; Wu et al.,
2018). Pin1 blocks nucleus-to-cytoplasm export of XPO5
phosphorylated by ERK kinase, decreasing mature miRNA
biogenesis in hepatocellular carcinoma (Sun et al., 2016; Li et al.,
2018; Pu et al., 2018). Moreover, this impaired miRNA biogenesis
in hepatocellular carcinoma could be restored by novel Pin1
inhibitors and their formulations (Pu et al., 2018; Fan et al., 2019;
Sun et al., 2019; Zheng et al., 2019), giving new insight into the
therapy of liver cancer.

SIGNIFICANCE OF PIN1
DYSREGULATION IN TUMOR

Following the epoch-making conclusion by Hanahan and
Weinberg (2011), the major cancer hallmarks are summarized,
such as sustaining proliferative signaling, evading growth
suppressors, activating invasion and metastasis, and inducing
angiogenesis. Emerging evidence demonstrates that Pin1
promotes cancer by acting as an activator of numerous oncogenes
and growth enhancers or as an inactivator of numerous tumor
suppressors and growth inhibitors to affect cancer hallmarks
(Zhou and Lu, 2016). In this section, we review the roles of Pin1
in these cancer hallmarks (Figure 1).

Pin1 Sustains the Proliferative Signaling
Cancer cells possess an excessive cell proliferation ability that
sustains proliferative signaling (Samatar and Poulikakos, 2014;
Bykov et al., 2018). Pin1 is initially identified as a regulator
of mitosis and gives rise to sustaining proliferative signaling in
multiple cancers.
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FIGURE 1 | Pin1 is involved in several cancer hallmarks. Pin1 activates a number of oncogenic proteins to sustain proliferative signaling, evade growth suppressors,
activate invasion and metastasis, and induce angiogenesis. The proteins displayed in red, yellow, and blue participate in these hallmarks through regulating biological
activity, affecting protein degradation, and altering nucleus-cytoplasm distribution of its substrates, respectively.

Cyclin D1, a pivotal cell cycle regulator, promotes cell cycle
progression in human cancer (Sherr, 1996). Pin1 interacts
with and isomerizes cyclin D1 in a phosphorylation-dependent
manner, enhancing the nuclear accumulation of cyclin D1 and
triggering cells into cell cycle, and promotes cell proliferation
(Liou et al., 2002). Dysregulation of ERα expression also
contributes to the proliferation of cancer, especially breast cancer
(Brisken, 2013). Pin1 promotes ERα function through several
mechanisms. Pin1 isomerizes the Ser118-Pro bond of ERα AF1
region to increase AF1 transcriptional activity, promoting the
growth of tamoxifen-resistant breast cancer cells (Rajbhandari
et al., 2012). Furthermore, Pin1 can directly regulate the adjacent
DNA binding domain of ERα in an allosteric manner, enhancing
the DNA binding function of ERα to drive breast cancer
proliferation (Rajbhandari et al., 2015).

1Np63s, the N-terminal truncated isoforms of p63 lacking
the transactivation domain, are associated with human
tumorigenesis (Chen et al., 2017). Pin1 interacts with Thr538-Pro
of 1Np63α and disrupts p63α-WWP1 interaction to inhibit
the proteasomal degradation mediated by E3 ligase WWP1,
promoting 1Np63α-induced cell proliferation of human oral
squamous cell carcinoma (Li et al., 2013). Moreover, Pin1
enhances the stability of BRD4 by inhibiting its ubiquitination
and increasing transcriptional activity of BRD4 to promote the
proliferation of gastric cancer (Hu et al., 2017). In addition, Pin1
also activates many pro-proliferative proteins to enhance tumor

cell proliferation and tumor growth, including c-Myc and XPO5
(Farrell et al., 2013; Li et al., 2018).

Pin1 Evades Growth Suppressors
There are a number of tumor suppressors that negatively regulate
cancer progression within cells, but cancer cells are able to bypass
these barriers via various mechanisms. Several works suggest that
Pin1 is an expert in injuring tumor suppressors.

The promyelocytic leukemia (PML) is a tumor suppressor
involved in apoptosis and DNA damage repair. Pin1 binds and
targets PML for degradation in an ERK-dependent manner by
targeting Ser403 and Ser505 of PML, inducing the development
of breast cancer cells (Lim et al., 2011). Moreover, KLHL20
coordinates with Pin1 and CDK1/2 to mediate hypoxia-induced
PML proteasomal degradation, thereby potentiating multiple
tumor hypoxia responses in human prostate cancer (Yuan et al.,
2011). Furthermore, Pin1 also stabilizes the oncogenic fusion
protein PML-RARα, resulting in a decreased anti-proliferative
activity of ATRA in AML (Gianni et al., 2009).

Runt-related transcription factor 3 (RUNX3) is an ERα

inhibitor in breast cancer (Huang et al., 2012). Pin1 recognizes
four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its
WW domain to suppress the transcriptional activity of RUNX3
and induce the ubiquitination and proteasomal degradation of
RUNX3 in breast cancer (Nicole Tsang et al., 2013). KLF10 is a
member of the Krüppel-like transcription factor family and acts
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as a tumor suppressor, mimicking the anti-proliferative effect of
TGF-β in various cancer cells. Pin1 interacts with KLF10 and
promotes its protein degradation, blocking the anti-proliferative
function of KLF10 in cancer cells (Hwang et al., 2013). Pin1 also
interacts with Fbw7 and CDK10 in a phosphorylation-dependent
manner and promotes their ubiquitination and degradation,
which suppresses their function to trigger cell proliferation
and transformation of cancer cells (Khanal et al., 2012;
Min et al., 2012).

Pin1 Activates Invasion and Metastasis
Invasion and metastasis are the leading causes of death in
cancer patients and remain the greatest challenges in the clinical
management of cancer (Lambert et al., 2017). Mounting works
have demonstrated the invasion- and metastasis-promoting
function of Pin1 in human cancer.

The transforming growth factor β (TGF-β) signaling
pathway is a key player in tumor development, modulating
processes including cell motility, where Smad proteins are major
downstream effectors of TGF-β signaling (Lamouille et al., 2014).
Phosphorylated Thr179-Pro motif of Smad2/3 interacts with
Pin1 in a TGF-β-dependent manner, inducing migration and
invasion via N-cadherin in prostate cancer cells (Matsuura
et al., 2010). In turn, Pin1–Smad3 interaction is reduced
by the inhibition of CDK-mediated Smad3 phosphorylation,
leading to the suppression of triple negative breast cancer cells
(Thomas et al., 2017).

Ras and STAT3 signaling has a significant impact on
tumor metastasis. Pin1 binding and prolyl isomerizing of
FAK cause PTP-PEST to interact with and dephosphorylate
FAK Tyr397, promoting Ras-induced cell migration, invasion,
and metastasis of numerous cancers (Zheng et al., 2009,
2011). Pin1 associates with STAT3 upon cytokine/growth factor
stimulation to promote STAT3 transcriptional activity and target
gene expression as well as recruit transcription coactivator
p300, inducing epithelial–mesenchymal transition of MCF-
7 cells (Lufei et al., 2007). Additionally, Pin1 enhances the
invasion and metastasis of multiple cancers by activating NF-
κB, BRD4, and XPO5 (Hu et al., 2017; Li et al., 2018;
Nakada et al., 2019).

Pin1 Induces Angiogenesis
Solid tumors rely on angiogenesis to supply sufficient nutrients
and oxygen as well as to eliminate metabolic waste and
carbon dioxide for rapidly expanded cancer cells (Chung
et al., 2010). The angiogenesis is strictly controlled in vivo.
Increasing evidence has illustrated that Pin1 is involved in cancer-
associated angiogenesis.

Hypoxia-inducible factor 1α (HIF-1α) is responsible
for promoting the expression of many genes involved in
angiogenesis (Rosmorduc and Housset, 2010). Pin1 directly
interacts with HIF-1α at both exogenous and endogenous
levels to stabilize the HIF-1α protein in human colon
cancer cells and upregulating expression of VEGF, a major
contributor to angiogenesis (Han et al., 2016). Moreover,
Pin1 cooperates with KLHL20 to induce the ubiquitin-
dependent degradation of PML, an inhibitor of HIF-1α-induced

angiogenesis, resulting in the activation of angiogenesis in
many cancers (Yuan et al., 2011). Additionally, NF-κB is also
triggered by Pin1 to promote angiogenesis in hepatocellular
carcinoma (Shinoda et al., 2015). By contrast, inhibition of
Pin1, through RNAi or small molecular inhibitors, significantly
reduces the cancer-induced angiogenesis (Ryo et al., 2005;
Kim et al., 2012), further supporting the crucial role of Pin1
in angiogenesis.

CONCLUSION

Pin1 is identified as a unique enzyme mediating the cis-trans
isomerization of pSer/Thr-Pro motif of proteins specifically,
extensively participating in the initiation and progression of
many human cancers. In this article, we reviewed the existing
works on the dysregulation, biological function, molecular
mechanism, and significance of Pin1 in cancer cells. These
works commonly report that Pin1 is an excellent target for the
diagnosis and therapy of diverse cancers. Over the past two
decades, diverse small-molecule Pin1 inhibitors were developed
and some of them, such as ATRA, KPT-6566, arsenic trioxide,
and API-1, exhibited attractive in vitro and in vivo activity
toward human cancer, including acute PML, breast cancer, and
hepatocellular carcinoma (Wei et al., 2015; Campaner et al.,
2017; Kozono et al., 2018; Pu et al., 2018). However, to date,
no Pin1 inhibitors are submitted to clinical trial for cancer
treatment. Moreover, Pin1 is also not applied in clinical cancer
diagnosis, even though Pin1 seems to be a potential cancer-
specific biomarker. Therefore, more effort should be made to
fill these gaps.

Despite these efforts, a number of highly relevant questions
remain unanswered. First, Pin1 enrichment is precisely
orchestrated by multiple regulatory mechanisms. However, the
theory about the epigenetic regulation and protein decay of
Pin1 is rarely studied. So, the origin of Pin1 dysregulation is
not fully understood. Second, mounting data have indicated
that non-coding RNAs, especially regulatory non-coding RNAs
including miRNA, long non-coding RNA (lncRNA), and circular
RNA (circRNA), construct a complex molecular network along
with numerous functional proteins to regulate cellular processes
as well as canceration (Anastasiadou et al., 2018). But the
relationship of Pin1 and non-coding RNAs is still unclear.
Third, post-translational modifications, such as phosphorylation,
acylation, sumoylation, and glycosylation, could positively
or negatively change protein activity without altering the
sequences of proteins (Han et al., 2018). However, little is
known on how the post-translational modifications modulate
Pin1 function. We expect that the answers to these questions
will be found in the coming years, pushing Pin1 toward a truly
clinical application.
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