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Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD)
worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-
glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the
risk of ESRD. However, patients vary in their response to RAAS blockades, and
the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity
of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming
growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating
leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis,
immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1
signaling pathway has been implicated as a critical profibrotic factor in the progression of
chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies
and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD.
Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal
efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and
anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1
signaling abolished its multiple physiological functions, which are highly associated with
undesirable adverse events. Ideal strategies for DKD therapy would be either specific
and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion
of latent TGF-β1 to active TGF-β1.

Keywords: diabetic kidney disease, transforming growth factor-β1, fibrosis, inflammation, Smad signaling

INTRODUCTION

Diabetic kidney disease (DKD), the most common cause of end-stage renal disease (ESRD)
worldwide, accounts for about 40% of new cases of ESRD each year in the United States and
China (Zhang et al., 2016; Alicic et al., 2017). With the increasing incidence of diabetes, there is
a heightened need for therapy to delay progression of DKD. Existing therapies have had limited
success. Renin-angiotensin-aldosterone system (RAAS) inhibitors, such as losartan and irbesartan,
have been effective in reducing the risk of ESRD for patients with DKD (Brenner et al., 2001;
Lewis et al., 2001; Parving et al., 2001). However, patients exhibited great variation in their
responses to RAAS blockades. In the past two decades, there has been a decline in the rate of acute
myocardial infarction and death from hyperglycemic crisis, but no change has occurred in the rate
of ESRD (Gregg et al., 2014). Although sodium-glucose co-transporter 2 (SGLT2) inhibitors have
conferred cardiovascular and renal protection (Perkovic et al., 2019), effective therapy for DKD
is still unavailable. An epidemiological study revealed that the 5-year mortality rate of DKD was
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approximately 40%, as high as many cancers (Abdel Aziz et al.,
2017). Transforming growth factor-β1 (TGF-β1) signaling
contributes to DKD progression, and inhibiting TGF-β1
signaling has shown potential renoprotective properties
in animal and human studies. In this mini-review, we
discuss the pleiotropic and the potential therapeutic effects
of TGF-β1 in DKD.

TGF-β1 AND TGF-β1 SIGNALING
PATHWAY

TGF-βs exist as five isoforms, but only TGF-β1, TGF-β2, and
TGF-β3 are present in mammals; the three isoforms elicit similar
responses in vitro. TGF-β1, the most abundant isoform, is
synthesized by all types of resident renal cells and infiltrating
inflammatory cells (Aihara et al., 2010). TGF-β1 is secreted into
the extracellular matrix (ECM) in an inactive complex (latent
TGF-β1) with TGF-β-latency-associated peptide (LAP) and
latent TGF-β binding proteins (LTBP) (Munger et al., 1997). The
activation of latent TGF-β1 is mediated by proteolytic cleavage
in the presence of the serine protease plasmin, reactive oxygen
species (ROS), thrombospondin-1 (TSP-1), or integrins (Khalil,
1999; Kim et al., 2018). Integrins bind to the arginine-glycine-
aspartic acid sequence in LAP. This binding appears to change the
conformation of the latent TGF-β1 complex by tractional force
(Munger et al., 1999). This conformational change presents the
latent TGF-β1 complex to transmembrane metalloproteinases,
such as membrane-type-1-matrix metalloproteinase (MT-1-
MMP), which cleave the latent TGF-β1 complex and release
active TGF-β1 (Mu et al., 2002; Sheppard, 2004; Araya et al., 2006;
Wipff and Hinz, 2008). Active TGF-β1 interacts with its receptors
to activate Smad-dependent and Smad-independent downstream
signaling (Lan, 2011; Sutariya et al., 2016).

Smad-Dependent Signaling Pathway
Active TGF-β1 binds to a Type II membrane receptor,
TGF-β Type II receptor (TβRII). This binding results in
the phosphorylation and recruitment of the TGF-β Type I
receptor (TβRI). The activated complex of TGF-β1-TβRI-TβRII
phosphorylates Smad2 and -3. Then, the phosphorylated Smad2
and -3 bind to Smad4 to form the Smad complex (Lan, 2011).
This Smad complex translocates into the nucleus and binds to
Smad-binding elements (SBEs) or Smads-containing complexes
(Nakao et al., 1997b; Meng et al., 2013), in turn, regulating
transcription of genes encoding, e.g., collagen, fibronectin,
α-smooth muscle actin (Chakravarthy et al., 2018), and Smad7
(Yan et al., 2009).

Smad proteins are classified into three subgroups. Smad2 and
-3 comprise the receptor-regulated Smads (R-Smads) for TGF-
β1 signaling, and Smad1, -5, and -8 for bone morphogenetic
protein (BMP) signaling. Smad2 and -3 are key downstream
mediators of TGF-β1, and they are highly activated in animal
renal tissues in DKD (Isono et al., 2002; Høj Thomsen et al.,
2017). Smad2 and -3 may have distinct functions in renal
fibrosis. Either a Smad3 knockout or a Smad3-specific inhibitor
delayed de-differentiation of proximal tubular cells and alleviated

renal fibrosis in a streptozotocin-induced model of diabetes
(Fujimoto et al., 2003; Li et al., 2010). These findings suggested
that TGF-β1/Smad3 signaling has critical activities in renal
fibrosis. Conversely, unlike Smad3, the function of Smad2 in
DKD is unclear. Overexpression of Smad2 attenuated TGF-β1-
induced phosphorylated Smad3 and collagen expression, whereas
deletion of Smad2 promoted renal fibrosis via substantially
enhanced Smad3 signaling (Meng et al., 2010; Loeffler et al.,
2018). Although Smad2 interacts with Smad3 physically, Smad2
and -3 may compete for phosphorylation in response to
TGF-β1 stimulation. Thus, Smad2 may competitively inhibit
phosphorylation of Smad3 in response to TGF-β1 (Meng et al.,
2010). Besides TGF-β1 signaling, Smad2 nuclear translocation
and phosphorylation can also be mediated by advanced glycation
end-products in DKD (Li et al., 2004). Thus, the activity of Smad2
is complicated in DKD.

The second Smad subgroup is the common-partner Smad
(co-Smad), Smad4, which forms a heterotrimeric complex
with phosphorylated R-Smads. The Smad4-containing complex
translocates into the nucleus and regulates expression of the
genes indicated earlier. Furthermore, Smad4 is implicated in
suppressing nuclear factor-κB (NF-κB)-driven inflammation by
inducing Smad7 expression (Ka et al., 2012).

The third Smad subgroup is the inhibitory Smads (I-Smads).
Members of this Smad family have a conserved carboxy-terminal
MH2 domain. I-Smads inhibit TGF-β1 family signaling via
interaction with type I receptors, and I-Smads compete with
R-Smads for receptor activation (Miyazawa and Miyazono, 2017).
Smad7, one of the most investigated I-Smad in DKD, can cause
degradation of TβRI and Smads activity in a negative feedback
process. Smad7 inhibits Smad2/3 during renal fibrosis. In chronic
kidney disease, TGF-β1 signaling upregulated the Smurfs and
caused ubiquitin-dependent degradation of Smad7, which led
to a decrease in Smad7 protein level (Kavsak et al., 2000;
Ebisawa et al., 2001; Fukasawa et al., 2004; Liu et al., 2008).
Smad7 knockout mice progressed to more severe interstitial
fibrosis and enhanced inflammation (Cheng et al., 2013; Chung
et al., 2013), and overexpression of Smad7 in kidney was
effective in reducing collagen matrix expression and in alleviating
inflammatory infiltration in DKD (Ka et al., 2012). These
findings revealed anti-fibrotic and anti-inflammatory functions
of Smad7 in DKD.

Smad-Independent Signaling Pathway
In addition to Smad-mediated transcription, TGF-β1
directly activates other signal transduction pathways in the
pathophysiology of kidney disease. These other pathways include
the mitogen-activated protein kinases (MAPK) pathway (Meng,
2019), growth and survival kinases phosphatidylinositol-3-kinase
(PI3K)/Akt (Lu et al., 2019), small GTP-binding proteins such as
Ras, RhoA, Rac1, and Cdc42, the Notch signaling pathway (Atfi
et al., 1997; Sweetwyne et al., 2015), Integrin-linked kinase (ILK),
and the Wnt/β-catenin pathway (Xu et al., 2017; Zhang and
Huang, 2018). These non-canonical, non-Smad pathways can
indirectly participate in de-differentiation of proximal tubular
cells (Lu et al., 2019), apoptosis (Matoba et al., 2017), and matrix
formation (Meng, 2019), thereby mediating signaling responses
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either as stand-alone pathways or as pathways that converge onto
Smads to control Smad activities.

TGF-β1 PROMOTES RENAL FIBROSIS IN
DKD

Diabetic kidney disease pathology is characterized by thickening
of the glomerular basement membrane, mesangial expansion,
segmental glomerulosclerosis or global glomerulosclerosis,
tubulointerstitial fibrosis, and afferent and efferent arteriole
hyalinosis (Najafian et al., 2015). The TGF-β1 signaling pathway
is activated in DKD, and the inhibition of TGF-β1 attenuates
fibrosis in animal models of diabetes (Meng, 2019). Pathogenic
stimuli in DKD activate TGF-β1 signaling. Angiotensin-II, which
was elevated in mesangial cells and glomerular endothelial cells,
has been implicated in activating TGF-β1 by generation of ROS
from nicotinamide adenine dinucleotide phosphate oxidases
(Lee, 2011; Morales et al., 2012) or by activating protein kinase
C- and p38 MAPK-dependent pathways (Weigert et al., 2002).
Hyperglycemia, mechanical stretch, and advanced glycation end
products were found to upregulate TGF-β1 in DKD (Gruden
et al., 2000; Chuang et al., 2015). TSP-1, a prototypic matricellular
ECM protein, was heavily deposited in glomeruli of patients with
DKD (Hohenstein et al., 2008). TSP-1 binds to the latent TGF-β1
complex, and, by a non-proteolytic mechanism, converts latent
TGF-β1 to the active form, which leads to upregulation of TGF-
β1 signaling (Murphy-Ullrich and Suto, 2018). Direct evidence
for the importance of TSP-1 in regulating TGF-β signaling
in DKD comes from two different models of type 1 diabetes.
Streptozotocin-treated TSP-1 knockout mice showed decreased
glomerular TGF-β signaling as measured by phosphorylated
Smad2, and attenuated glomerulosclerosis (Daniel et al., 2007).
In another type 1 diabetic animal model, uninephrectomized
Akita mice treated with TSP-1 blocking peptide LSKL were
protected from tubulointerstitial fibrosis and had reduced
phosphorylation of Smad2 and -3 (Lu et al., 2011).

Mechanisms of TGF-β1 regulated fibrosis in DKD are
multifactorial and involve (1) overexpression of ECM, (2)
decreased degradation of ECM, (3) enhanced cross-linking
between collagen and elastin fibers, and (4) overactivation of
proximal tubular and endothelial cell de-differentiation. Both
canonical TGF-β1/Smads-dependent signaling pathways and
alternative signaling by TGF-β1 are involved in stimulating
collagen expression and accumulation. Neutralizing all three
mammalian TGF-β isoforms (-β1, -β2, and -β3) with antibodies
reduced ECM gene (fibronectin and type IV collagen) expression
and attenuated renal fibrosis in mice with type 1 or type 2 diabetes
(Sharma et al., 1996; Ziyadeh et al., 2000). Thus, TGF-β1 has a
critical signaling function in ECM accumulation in DKD.

TGF-β1 expression greatly inhibited ECM degradation by
promoting the synthesis of plasminogen activator inhibitor-1
(PAI-1) which resulted in renal fibrosis (Shihab et al., 1997).
The abundance of matrix metalloproteinase-9 (MMP-9), an
ECM-degradation MMP, was decreased in transgenic mice that
overexpressed TGF-β1 (Zechel et al., 2002; Ueberham et al.,
2003). In addition, TGF-β1 augmented the expression of tissue

inhibitor of metalloproteinases-1 (Ueberham et al., 2003; Abdel
Aziz et al., 2017), which inhibited the ECM-degrading MMPs.

TGF-β1 promotes formation of the cross-linking between
collagen and elastin fibers by upregulating lysyl oxidase (Boak
et al., 1994; Di Donato et al., 1997). In vitro, TGF-β1
significantly increased (∼5 times) lysyl oxidase expression in
tubular epithelial cells (Di Donato et al., 1997). In addition, TGF-
β1 stimulated expression of procollagen lysyl hydroxylase 2, an
enzyme that hydroxylates lysyl residues of collagen telopeptides
and stabilizes collagen cross-linking (Gjaltema et al., 2015).
Crosslinking increases ECM resistance to degradation by MMPs
(El Hajj et al., 2018).

De-differentiation of the proximal tubular cells and
endothelial cells contributes to renal fibrosis in diabetic
mice. Extensive studies confirmed that TGF-β1 contributes to
renal fibrosis by stimulating proximal tubular de-differentiation
(Zeisberg et al., 2003) and endothelial de-differentiation (Li
et al., 2009; Pardali et al., 2017). Hypoxia-inducible factor
1α (HIF-1α) accumulated in DKD and HIF-1α enhanced de-
differentiation of murine proximal tubular epithelial cells in vitro
(Higgins et al., 2007). Conditional HIF-1α ablation decreased
interstitial collagen deposition and inhibited the development of
tubulointerstitial fibrosis (Higgins et al., 2007). Although TGF-
β1 stimulation increased HIF-1α expression, blocking TGF-β1
signaling inhibited HIF-1α activity, and, conversely, blocking
HIF-1α activity decreased TGF-β1 signaling (Basu et al., 2011).
These studies suggested cross-talk between TGF-β1 and HIF-1α

signaling in regulating proximal tubular de-differentiation
(Basu et al., 2011). As to endothelial de-differentiation, in
animal models of folic acid nephropathy or unilateral ureteral
obstruction, curtailed TGF-β signaling in the endothelium by
endothelium-specific heterozygous TβRII knockout reduced
endothelial de-differentiation and led to less tubulointerstitial
fibrosis (Xavier et al., 2015). The mechanism by which TGF-β1
regulates endothelial de-differentiation is unknown. TGF-β1
stimulated endothelial de-differentiation in mouse endothelial
cells by activating Snail expression (Kokudo et al., 2008).

In summary, the active TGF-β1 system promotes renal
fibrosis, and it is involved in elevating collagen synthesis,
suppressing ECM degradation, promoting collagen cross-
linking, and fostering proximal tubular or endothelial cell de-
differentiation (Figure 1).

DIVERSE INFLAMMATORY FUNCTIONS
OF TGF-β1 IN DKD

TGF-β1 is a critical factor in the pathophysiological progression
of DKD, having both pro- and anti-inflammatory properties
(Sureshbabu et al., 2016).

TGF-β1 control of innate immune cells can have severe
pathological consequences. Leukocytes and fibroblasts are
recruited by the activation of resident kidney immune cells
in DKD. This recruitment stimulates the expression of pro-
inflammatory and chemotactic cytokines, which further drives
the infiltration of monocytes and macrophages (Lv et al., 2018).
TGF-β1 recruited macrophages and dendritic cells by stimulating
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FIGURE 1 | Simplified schematic diagram of pathological role of TGF-β1 signaling in diabetic kidney disease. Pathogenic stimuli in diabetic kidney disease like
hyperglycemia, angiotensin-II, reactive oxygen species, mechanical stretch, advanced glycation end products, and thrombospondin-1 are able to active TGF-β1
signaling. TGF-β1 signaling plays an important role in mediating renal fibrosis, inflammation, and autophagy in proximal tubular epithelial cells in diabetic kidney
disease. TGF-β, transforming growth factor-beta; ROS, reactive oxygen species; PTECs, proximal tubular epithelial cells; AGE, advanced glycation end products;
TSP-1, thrombospondin-1; ECM, extracellular matrix.

the production of chemokines, including tumor necrosis factor-
alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1),
and inducible nitric oxide synthase. Furthermore, the secreted
chemokines induced TGF-β1 expression in a positive feedback
loop (Cheng et al., 2005), which sustained the high levels of TGF-
β1 in the microenvironment. TGF-β1 induced the expression and
release of other proinflammatory cytokines such as interleukin-8
(IL-8) and MCP-1 (Qi et al., 2006) in proximal tubular cells. In
addition, TGF-β1 drove the differentiation of T helper 17 cells,
which were activated in various proinflammatory conditions. In
the presence of IL-6, TGF-β1 promoted the differentiation of
naive T lymphocytes into proinflammatory T helper cells that
produced IL-17 and augmented autoimmune conditions, which
were enhanced by IL-1β and TNF-α (Korn et al., 2009; Sanjabi
et al., 2009). In this way, TGF-β1 propagates and amplifies the
proinflammatory and profibrotic processes that contribute to
renal insufficiency in DKD (Figure 1).

Nevertheless, TGF-β1 also possesses anti-inflammatory
properties, which was suggested by the findings that targeted
deletion of the TGF-β1 gene resulted in profound multifocal
inflammatory disease in mice (Shull et al., 1992). Additionally,
TGF-β1 knockout mice developed severe inflammatory responses
that were evidenced by massive lymphocytes, macrophages,
immunoblasts, and plasma cell infiltration in many organs
(Kulkarni et al., 1993). Tubular epithelial cell-specific TβRII
knockout mice showed massive leukocytes or macrophages
infiltration, increased proinflammatory cytokine release, and
enhanced renal inflammation (Meng et al., 2012). Direct evidence
for the importance of TGF-β1 in anti-inflammation comes from
two studies. First, Ma et al. (2004) used animal studies to
investigate the effect of different doses of TGF-β antibodies on
glomerulosclerosis. Only low dose TGF-β antibody decreased

macrophage infiltration, and reduced sclerosis, indicating that
the amount of TGF-β may influence the inflammatory process.
Second, regulatory T cells appeared to ameliorate DKD, and
nude mice, which lacked all T-cell subtypes, had more severe
DKD (Lim et al., 2010; Eller et al., 2011). In the presence of IL-2,
TGF-β1 converted naive T cells into Foxp3 + regulatory T cells
and inhibited the progression of DKD (Davidson et al., 2007;
Kanamori et al., 2016).

Thus, the effects of TGF-β1 activation in renal inflammation
may be protective or harmful depending on concentration or the
presence of IL-6. However, the underlying mechanism by which
TGF-β1 exerts its anti-inflammatory properties in DKD requires
further investigation.

OTHER ACTIVITIES OF TGF-β1 IN DKD

Recent studies illustrated that TGF-β1 promoted autophagy
(Ding et al., 2010; Koesters et al., 2010). Autophagy, a system
for removing protein aggregates and damaged organelles to
maintain cellular homeostasis, is impaired in glomeruli and
tubules in DKD (Yang et al., 2018). However, persistent activation
of autophagy in kidney tubular epithelial cells induced tubular
degeneration and promoted renal fibrosis (Livingston et al.,
2016). Overexpression of TGF-β1 in renal tubules induced the
accumulation of autophagosomes and stimulated expression
of autophagy-related genes (Koesters et al., 2010; Xu et al.,
2012). In proximal tubular cells, TGF-β1 promoted autophagy
by generation of ROS, which contributed to the proapoptotic
effect of TGF-β1 (Xu et al., 2012). Koesters et al. (2010)
proposed TGF-β1-driven autophagy as a novel mechanism of
tubular degeneration that led to renal interstitial fibrosis. On the
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contrary, TGF-β1 induced autophagy had positive effects. In
a study by Ding et al. (2010), TGF-β1 induced autophagy
in mesangial cells, and autophagy enhanced cell survival by
preventing mesangial cells from undergoing apoptosis. Whether
TGF-β1 driven autophagy has protective or deleterious effects
on kidney depending upon the amount. In the study by
Koesters et al., TGF-β1 level was higher than its level in
pathological disease states, which triggered violent autophagy
and promoted kidney injury. Thus, we need further clarification
of the functions of TGF-β1 signaling-induced autophagy in the
pathogenesis of DKD.

TGF-β1 also suppresses reabsorption of glucose by
proximal epithelial cells. A dose-dependent increase in TGF-β1
expression by genetic manipulation increased urinary output
of glucose in Akita mice, whereas genetic insufficiency of
TGF-β1 decreased glucose output (Hathaway et al., 2015).
Moreover, SGLT2 was directly regulated by TGF-β1 via Smad3
(Panchapakesan et al., 2013) and TGF-β1 showed decreased
expression of SGLT1 and SGLT2 (Lee and Han, 2010). Thus,
these results support the notion that TGF-β1 suppresses
urinary glucose reabsorption in proximal tubular epithelial
cells (Figure 1).

TABLE 1 | Pre-clinical and clinical studies aimed to TGF-β signaling in diabetic kidney disease.

Authors Target Method Subject Major findings

Preclinical studies

Sharma et al., 1996 TGF-β1, TGF-β2, TGF-β3 Neutralizing monoclonal
antibody

Streptozotocin-induced
diabetic mice

Attenuated renal fibrosis

Ziyadeh et al., 2000 TGF-β1, TGF-β2, TGF-β3 Neutralizing monoclonal
antibody

db/db mice Decreased glomerular mesangial matrix
expansion and attenuated renal fibrosis

Chen et al., 2003 TGF-β1, TGF-β2, TGF-β3 Neutralizing monoclonal
antibody

db/db mice Reversed the glomerular basement
membrane thickening and mesangial
matrix expansion, attenuated renal
fibrosis

Benigni et al., 2006 TGF-β1, TGF-β2, TGF-β3 Neutralizing monoclonal
antibody

Streptozotocin-induced
diabetic mice

Alleviated sclerotic glomerulosclerosis
and attenuated renal fibrosis

Petersen et al., 2008 TGF-β type I and type II
receptor kinase activity

GW788388,
pharmacological inhibitor

db/db mice Decreased epithelial-mesenchymal
transitions and attenuated renal fibrosis

RamachandraRao
et al., 2009

TGF-β1 promoter activity; other
pathways besides TGF-β
(suppressing production of
reactive oxygen species and
downregulating profibrotic
cytokine genes)

Pirfenidone, a
pharmacological inhibitor

db/db mice Ameliorated mesangial matrix
expansion and attenuated renal fibrosis

Hathaway et al., 2015 TGF-β1 Genetic overexpression Akita mice Progressively exacerbated thicker
glomerular basement membranes and
severe podocyte effacement is
dose-dependent

Fujimoto et al., 2003 Smad3 Genetic knockout Streptozotocin-induced
diabetic mice

Alleviated glomerular basement
membrane thickness and attenuated
renal fibrosis

Li et al., 2010 Smad3 SIS3, pharmacological
inhibitor

Streptozotocin-induced
diabetic mice

Attenuated renal fibrosis

Ka et al., 2012 Smad7 Ultrasound-mediated gene
transfer of inducible Smad7
overexpression plasmids

db/db mice Inhibited diabetic kidney injury including
fibrosis and inflammation

Loeffler et al., 2018 Smad2 Renal tubular, endothelial,
and interstitial cells-specific
knockout

Streptozotocin-induced
diabetic mice

Reduced epithelial-to-mesenchymal
transition and attenuated renal fibrosis

Clinical studies

Sharma et al., 2011 TGF-β1 promoter activity; other
pathways besides TGF-β
(suppressing production of
reactive oxygen species and
downregulating profibrotic
cytokine genes)

Pirfenidone, a
pharmacological inhibitor

Type 1 and type 2
diabetic patients

Increased estimated glomerular filtration
rate level

Voelker et al., 2017 TGF-β1 Neutralizing monoclonal
antibody added to renin-
angiotensin-aldosterone
system inhibitor

Type 1 and type 2
diabetic patients

Failed to slow the progression of
diabetic kidney disease

TGF-β1, transforming growth factor-β1.
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TGF-β1 SIGNALING AS A THERAPEUTIC
STRATEGY FOR DKD

Blockade of TGF-β1 signaling as a therapeutic strategy has been
achieved by gene technology and pharmacological drugs
(Table 1). Inhibition of TGF-β with a pan-neutralizing
monoclonal antibody (1D11) against all three isoforms
ameliorated renal fibrosis and alleviated kidney structural
changes in the rodent models of type 1 and type 2 diabetes
mellitus (Sharma et al., 1996; Ziyadeh et al., 2000; Chen et al.,
2003; Benigni et al., 2006). Pirfenidone is a low molecular weight
synthetic molecule that has antifibrotic properties in animal
models; it suppresses production of ROS and downregulates
genes encoding profibrotic cytokines, such as α-SMA, collagen I,
and collagen IV. Pirfenidone upregulates regulator of G-protein
signaling 2 (Xie et al., 2016; Li et al., 2018; Pourgholamhossein
et al., 2018). Moreover, RamachandraRao et al. (2009) found that
pirfenidone decreased TGF-β promoter activity, blocked TGF-β1
production, and was effective in reducing mesangial matrix
expansion and fibrosis in DKD. Switching TGF-β1 expression
from low to high by genetic manipulation exacerbated renal
injury in Akita mice, a result that further supported the
idea that blockade of TGF-β1 was renoprotective for DKD
(Hathaway et al., 2015).

The success of TGF-β1 signaling inhibition in animal
studies has promoted the strategy in clinical investigations with
DKD (Sharma et al., 2011; Voelker et al., 2017). Pirfenidone
significantly increased estimated glomerular filtration rates
(eGFR) in a cohort of 77 diabetic patients with baseline eGFR of
20–75 ml/min/1.73 m2 (Sharma et al., 2011). However, a placebo-
controlled, phase II study that used a humanized TGF-β1-specific
neutralizing monoclonal antibody plus renin-angiotensin system
blockades failed to slow the progression of DKD in diabetic
patients who had eGFR of 20–60 ml/min/1.73 m2 (Voelker et al.,
2017). Lack of improvement in clinical trials may be explained
by the fact that rodent models of diabetes do not recapitulate
tubulointerstitial fibrosis to the same degree observed in human
disease. Also, inhibiting TGF-β1 fully and indiscriminately may
not be wise because of its multiple physiological functions.

Nevertheless, targeting the conversion of latent to active TGF-
β1 holds promise as a DKD therapeutic intervention. Animal
studies revealed that overexpression of an active form of TGF-
β1 in liver led to progressive kidney fibrosis in mice (Kopp
et al., 1996), whereas overexpression of latent TGF-β1 in the
skin displayed anti-inflammatory and anti-fibrosis effects in
obstructive and crescentic glomerulonephritis (Huang et al.,
2008a,b). The distinct functions of active and latent TGF-
β1 in renal fibrosis and inflammation suggest that a better
therapeutic approach would be to block conversion of latent
TGF-β to active TGF-β. Wong et al. (2011) showed that inhibiting
conversion of latent to active TGF-β1 in human proximal
tubular cells reduced matrix protein expression and inhibited
fibrosis under hyperglycemia and hypoxia conditions. What is
more, the αv-containing integrins with different β-subunits that
interact with latent TGF-β1 and activate TGF-β1 have a critical
function in kidney fibrosis. A pharmacologic inhibitor of αvβ1

integrin prevented activation of the latent TGF-β complex and
ameliorated renal fibrosis in mice fed an adenine diet (Chang
et al., 2017). The mechanisms of the distinct functions of latent
versus active TGF-β1 may be related to the prevention of
Smad7 from Smurf-mediated ubiquitination and degradation in
response to higher levels of latent TGF-β1 (Lan, 2011). Smad7
inhibits TGF-β signaling by promoting degradation of the TβRI
and inhibiting Smad2/3/4 activity (Nakao et al., 1997a; Miyazawa
and Miyazono, 2017). But in chronic kidney disease, active
TGF-β1 activates the Smurfs and arkadia-dependent ubiquitin-
proteasome pathways, which degrades Smad7 protein by a post-
transcriptional modification mechanism (Kavsak et al., 2000;
Ebisawa et al., 2001; Fukasawa et al., 2004).

CONCLUSION

On the basis of experimental and clinical studies, modulating
TGF-β1, instead of directly inhibiting TGF-β1 ligands/receptors,
may be a good antifibrosis tactic for DKD. TGF-β1 promotes
wound healing (Wang et al., 2014), tissue regeneration (Borges
et al., 2013), anti-inflammation (Kulkarni et al., 1993), autophagy
(Koesters et al., 2010), and urinary glucose regulation (Hathaway
et al., 2015). Nonetheless, the dose regimen must be considered
carefully because a large dose of TGF-β blockade had severe
toxicity and poor efficacy in animal experiments (Khanna
et al., 2004; Ma et al., 2004). A pan-neutralizing monoclonal
antibody could also lead to undesired effects such as tumor
formation, even though animal studies have not exhibited such
events during prolonged TGF-β1 inhibition. What is more,
developing molecules that suppress the activation of latent TGF-
β1 would be a potential therapy. Given the central role of
TGF-β1 in the pathophysiology of DKD, the TGF-β1 system is
an attractive target to retard the progression of DKD, provided
that the approach maintains an acceptable balance between
renoprotective and harmful effects.
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