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Next generation sequencing (NGS) methods have allowed for unprecedented genomic
characterization of acute myeloid leukemia (AML) over the last several years. Further
advances in NGS-based methods including error correction using unique molecular
identifiers (UMIs) have more recently enabled the use of NGS-based measurable residual
disease (MRD) detection. This review focuses on the use of NGS-based MRD detection
in AML, including basic methodologies and clinical applications.
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of clonal hematopoietic stem cell
malignancies characterized by a block in myeloid differentiation resulting in increased myeloid
blasts and rapidly aggressive clinical course (Estey and Dohner, 2006; O’Donnell et al., 2013;
Papaemmanuil et al., 2016; Cai and Levine, 2019). With few exceptions for targeted treatments
(e.g., midostaurin, enasidenib, etc.), risk-adapted therapy plays a major role in AML treatment
decisions. Patients with low risk disease (e.g., core binding factor leukemias) are typically treated
with standard induction and consolidation therapy whereas high risk patients (including those
with complex karyotype or secondary AML) may be treated more aggressively, often with an
allogeneic stem cell transplant after first remission (Schlenk et al., 2003; Dohner et al., 2017; Stein
et al., 2017; Stone et al., 2017). However, the majority of AML patients remain intermediate risk at
diagnosis, which makes risk-adapted treatment decisions less clear despite the widespread adoption
of clinical sequencing-based panels that can identify recurrent gene mutations (Ivey et al., 2016).
As large-scale sequencing studies of AML have shown, most AML patients harbor between 15
and 30 coding region mutations including driver and passenger mutations; the large number of
combinatorial mutation profiles makes inferring individualized risk at diagnosis based on published
studies difficult (Cancer Genome Atlas Research Network et al., 2013; Cai and Levine, 2019).

Measurable residual disease (MRD; also referred to as minimal residual disease) testing in AML
fulfills several unmet clinical needs, including the ability to determine individual risk in AML
patients based on mutational clearance after treatment. MRD can be assessed by flow cytometry
(Loken et al., 2012; Zhou and Wood, 2017) and a variety of molecular techniques (Yin et al.,
2012; Hourigan et al., 2017; Vedula and Lindsley, 2017; Schuurhuis et al., 2018; Voso et al.,
2019). Molecular MRD methods include single gene/fusion PCR-based monitoring (digital droplet
and quantitative PCR) (Ivey et al., 2016; Mencia-Trinchant et al., 2017; Delsing Malmberg et al.,
2019), chimerism-based studies (for post stem cell transplant patients) (Tsirigotis et al., 2016),
TCR or IgH clonality-based MRD (possible in a subset of AML patients) (Zhong et al., 2018),
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FIGURE 1 | An approximate comparison of the sensitivity (left axis) and
fraction of monitorable cases for commonly used AML MRD methods.
Approximate sensitivity of molecular methods was converted from VAFs to
number of mutated cells (double the VAF) to facilitate comparisons across
methods. Cytogenetic analysis assumes that 50% of AML cases have at least
one cytogenetic abnormality (Haferlach et al., 2012) with a detection sensitivity
of one clonal cell in 20 metaphases. Morphologic evaluation assumes that a
blast count of > 5% is considered relapse. FISH assumes a sensitivity of two
clonal events in 200 evaluated metaphases. Panel-based NGS assumes a
40-50 gene panel capable of detecting at least one mutation in 85% of AML
patients with a minimum sensitivity of 0.1% VAF (Cancer Genome Atlas
Research Network et al., 2013). NPM1 qPCR assumes a sensitivity of 0.001%
VAF and an NPM1 prevalence of 27% (Jongen-Lavrencic et al., 2018). qPCR
for translocations assumes monitoring of inv(16), t(8;21), and t(15;17) with a
prevalence of 13% (Papaemmanuil et al., 2016). Comparisons to AML MRD
flow are complicated as the assay sensitivity depends to a large extent on the
exact phenotype of the leukemia. The exact fraction of cases amenable to
flow-based MRD is uncertain as indicated by the hashed line, but is modeled
at 100% with a sensitivity of 0.0002% (Loken et al., 2012; Zhou and Wood,
2017; Schuurhuis et al., 2018). We also note that there may be discrepancies
between MRD flow-based methods and molecular MRD (Jongen-Lavrencic
et al., 2018).

and next generation sequencing (NGS)-based methods.
A comparison of commonly used clinical MRD methods is
summarized in Figure 1.

At AML diagnosis, mutation identification is important for
determining patient risk and treatment. However, for the purpose
of molecular-based MRD testing, the assumption is that clearance
of disease-associated variants after therapy is associated with
clinical outcome. While the idea of mutation clearance seems
intuitive, there are several caveats including the persistence
of “ancestral clones” which may represent return to a pre-
leukemic age-related clonal hematopoiesis (ARCH) characterized
by mutations in genes such as DNMT3A, TET2, and ASXL1

(Jongen-Lavrencic et al., 2018); detection of these mutations may
not represent persistent leukemia. Conversely clearance of other
mutations thought to be acquired later in leukemogenesis, such
as FLT3 ITDs or mutations in activated cell signaling genes
(KRAS, NRAS, etc.), may represent clearance of a subclone and
not the leukemic founding clone (Bullinger et al., 2017). In
essence, if any AML-specific mutation present at diagnosis is still
detectable after treatment (e.g., 7+ 3, or allogeneic transplant), it
follows that patients should be at higher a priori risk of relapse,
regardless of the particular gene mutation. While conceptually
simple, clearance-based molecular biomarkers in AML have been
challenging to implement in the clinical setting for a variety of
reasons related to both technical limitations and disease biology.
One of the biggest technical challenges for AML MRD assays
has been making them broadly applicable to most or all AML
patients. Sensitive PCR-based AML MRD assays have been used
for some time to monitor both recurrent translocations including
core binding factor leukemias (Yin et al., 2012; Pigazzi et al., 2015;
Ouyang et al., 2016; Schumacher et al., 2017) inv(16) and t(8;21)
RUNX1-RUNX1T1 and t(15;17) PML-RARA (Burnett et al., 2015;
Brunetti et al., 2017) from RNA and can now be detected
using multiplex RNAseq NGS-based approaches (Dillon et al.,
2019). Specific recurrent gene mutations can also be monitored
including NPM1 (Salipante et al., 2014; Ivey et al., 2016) and
FLT3 (Bibault et al., 2015; Levis et al., 2018) from RNA or DNA.
However, these methods are only applicable to a fraction of AML
patients that carry these specific translocations or gene mutations.
Further, some recurrently mutated single genes such as FLT3 ITD
are not always present at relapse or are unstable, thereby making
them poor standalone targets for MRD (Shih et al., 2002; Garg
et al., 2015). For this reason, DNA-based NGS panels that can
detect multiple mutations in the majority of AML patients have
become a popular approach to MRD detection. Consequently,
this review will focus on DNA-based somatic mutation NGS
monitoring methods for the detection of AML MRD in the
clinical setting.

NGS KEY TERMS AND DEFINITIONS

While translocation-driven leukemias (e.g., PML-RARA,
RUNX1-RUNX1T1, and CBFB-MYH11) can be tested by qPCR
with high sensitivity similar to AMLs with NPM1 mutations,
for most AML patients molecular-based MRD is not an option
due to the lack of a robustly targetable mutation to measure.
NGS-based MRD provides a way to monitor nearly all AML
patients for molecular MRD by allowing for the detection of
multiple gene mutations in a single assay. NGS-based MRD
involves several key terms that will be explained in more detail
including sensitivity [reported as variant allele frequency (VAF)],
sequencing coverage, sequencing error rate, and assay breadth.

The VAF represents the fraction of reads containing a
mutation divided by the total number of reads at a given locus
and is a measure of mutational abundance. For example, a
U2AF1 p.S34F mutation present in 105 of 230 reads would
yield a VAF of 45.6%. By clustering the VAFs from different
mutations, one can reconstruct the clonal architecture of the
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leukemia (Ding et al., 2012; Welch et al., 2012); mutations with
VAFs similar to the U2AF1 mutation in this case (∼45%)
are presumably contained in the same clone. The clone with
the highest mutation VAF (after adjusting for copy number
changes) is presumed to be the “founding clone,” while mutations
with lower VAFs represent distinct subclones that contain the
founding clone mutation (in this case U2AF1) plus the lower VAF
mutation(s). The maximum sensitivity for NGS-based assays is
also defined in terms of VAF. For example, an assay with a
maximum sensitivity of 1% VAF would correspond to one mutant
cell (with heterozygous mutations) in 50 normal cells. Similarly,
an assay with a maximum detection sensitivity of 0.1% would
detect one mutant cell in 500 normal cells.

In NGS-based assays, coverage is defined as the number
sequencing reads that span (or cover) a particular locus. Coverage
can be expressed in terms of “total coverage” or “unique
coverage,” although not all sequencing methods are able to
differentiate the two. Unique coverage refers to the number of
reads that come from distinct DNA molecules and can be used
to infer the maximal sensitivity of an NGS assay. For example, if
a locus has 100x unique coverage and 10,000 total coverage, the
maximum sensitivity for this locus is 1/100 = 1% VAF, as there
were only 100 unique DNA molecules sequenced (Figure 2A).
The duplicate rate in this example is 10,000/100 = 100x; duplicate
reads descend from the same DNA molecules, and there is no
new information contained in these reads. While standard NGS
analysis pipelines will generally discard duplicate reads, they can
be useful for sequencing error correction as described below. In
order to achieve high detection sensitivities for MRD detection,
NGS assays must have high numbers of unique reads. This can
be obtained by using large DNA input amounts, sequencing to
high total coverage depths (to ensure all DNA molecules are
sequenced), and using efficient enrichment methods that allow
for a high fraction of input DNA molecules to be sequenced.
It is also important to note that not all sequencing enrichment
technologies allow for differentiation between duplicate and total
reads. For this reason, pure PCR-based enrichment methods
are not ideal for MRD, unless steps can be implemented to
distinguish duplicate reads originating from the same DNA
templates from unique reads which originate from different
template molecules.

Like all measurements, base calling by NGS is subject to error.
This error rate is partly due to the intrinsic properties of the
sequencing platform (e.g., Illumina and Thermo Fisher) as well
as errors that occur during PCR amplification (Schmitt et al.,
2012). While the sensitivity of an NGS assay can be increased by
increasing unique coverage, the specificity cannot be increased
with increased coverage depths; therefore, calling variants below
the intrinsic error rate will result in large numbers of false
positive calls. For most standard clinical NGS pipelines, the
limit of detection is 2–5% VAF, well above the ∼1% error rate
associated with most sequencers (Spencer et al., 2014; Salk et al.,
2018). However, the desired sensitivity for MRD applications
is generally 0.01–0.5% VAF, well below the error rate of the
sequencing process. There are several approaches to overcoming
problems with the error rate, including computational methods
and physical error correction methods as described below.

FIGURE 2 | (A) Coverage depth required to detect variants at various VAFs.
Binomial sampling probability for detection of variants with VAFs of 50%
(black), 2% (red), and 0.1% (blue) assuming each variant must be seen at least
twice. (B) Overview of UMI-based sequencing. Fragments of genomic DNA
are first ligated to unique barcode sequences (red, blue, and green). Libraries
are then sequenced to high coverage depths, such that each DNA molecule is
sequenced at least 3x. Read families with the same barcode are collapsed
such that only variants present in > 90% of reads (black) are retained; variants
present in only a subset of reads (orange), representing sequencing error, are
discarded. (C) UMI-based error correction using cell line DNA with BRAF
p.V600E mutation. In this example, cell line DNA was diluted such that the
BRAF p.V600E was 1.3%. DNA was then sequenced to 10,000x total
coverage. The plot represents the BRAF genomic locus containing the
p. V600E mutation (circled). Black points represent VAFs of variants detected
without error correction and red points represent the VAFs of variants
detected using UMI-based error correction on the same data. While the raw
data (black) show background sequencing errors making it difficult to discern
the true positive variant from noise at this locus, application of error correction
(red) reduces background noise leaving only the true positive variant.

ERROR CORRECTED SEQUENCING
METHODS

A key component necessary for NGS-based AML MRD assays
is high sensitivity, or sequencing below the error rate of the
sequencing platform, which requires additional steps to improve

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 May 2020 | Volume 8 | Article 249

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00249 May 6, 2020 Time: 19:33 # 4

Yoest et al. NGS-Based MRD in AML

the error rate and reduce false positive calls. There are many
computational approaches to reducing sequencing error rates
that do not require physical changes to sample library preparation
(Prosperi and Salemi, 2012; Gerstung et al., 2014; Lee et al., 2017;
Zhao et al., 2017). The simplest computational approaches rely
on removing reads with high base error rates (Q scores < 30)
and low mapping scores (Spencer et al., 2014). More complex
methods use background error rate models that are generated
by sequencing numerous control specimens to determine the
baseline error rate for each position in the targeted region. For
example, comparing base counts for a single position in 100
normal cases where the expected reference base is a C may
indicate that 0.2% of calls are A, 0.1% of calls are G, and 0.1%
of calls are T. If an MRD sample has a T variant detected at this
position with a VAF of 0.4%, various statistical measures may be
used to determine whether this variant represents background
error or a true positive event. While fairly simple to implement,
these methods are highly susceptible to batch effects including
factors that may affect the error rate such as instrument cluster
density, PCR conditions, and sequencer variability. Improved
error rate modeling can be obtained using in-run controls;
however, these methods can be cumbersome and generally have
limited performance improvements in the clinical laboratory
(Vallania et al., 2010; Spencer et al., 2014).

Another important factor that may alter clinical error rates in
NGS-based MRD assays is prior knowledge of mutations present
at diagnosis. For example, the positive predictive value of a
patient with a specificTP53mutation at diagnosis and subsequent
detection at low VAF post treatment is higher than a patient with
no prior sequencing data and the same mutation detected post
treatment. In the former, the prior probability of the low VAF
post-treatment mutation being a true positive is high whereas in
the latter example, in which low VAF mutations are essentially
being discovered de novo, the mutation may represent a false
positive depending on the specificity of the assay. It should also
be noted that the error rates for other classes of mutations such as
insertions/deletions differ from that of single nucleotide variants
and is in general much lower. This observation can be leveraged
in MRD assays that target common recurrent indels such as FLT3
ITDs or NPM1 insertions (Salipante et al., 2014; Lin et al., 2015;
Zhou et al., 2020).

Physical error correction methods generally involve changes
to library preparation to incorporate unique molecular identifiers
(UMIs) in sample DNA (Salk et al., 2018). UMIs are DNA
oligonucleotides that are added to genomic DNA before
amplification or capture and allow for tracking of individual DNA
molecules throughout the sequencing process (Kinde et al., 2011).
UMI-based error corrected sequencing has found numerous
applications in addition to detection of MRD including detection
of subclonal hematopoiesis and rare pre-existing mutations
(Wong et al., 2015; Young et al., 2016; Duncavage et al., 2018).
UMIs can range in length from 3 to 16 nucleotides and may be
random sequences (synthesized as degenerate oligonucleotides)
or have fixed sequences. In general, UMIs are ligated to sample
DNA during the first steps of the library preparation process
to avoid problems with early cycle PCR errors. Once a sample
is sequenced, UMIs allow for sequenced reads to be tracked
back to individual input DNA molecules (Figure 2B). UMI-based

error correction leverages duplicate reads to determine whether
a variant is an error or a true mutation by comparing all the
reads that descend from a single DNA molecule (i.e., share the
same UMI) to one another. Duplicate reads that contain the
same UMI are referred to as a “read family.” During the error
correction process, reads that belong to the same read family
are collapsed such that only variants present in all (or most)
members of the read family are included in the final consensus
read. Using this approach, random sequencing errors can be
corrected, as a true positive variant should be present in all of
the reads generated from a single UMI-tagged DNA molecule
(Figure 2C); errors or false positive calls will be present in only
a subset of read family members.

Currently, there are various vendor and laboratory-derived
approaches for UMI-based sequencing including Agilent
Haloplex HS, Agilent SureSelect XT HS, IDT xGen Dual Index
UMI, New England Biolabs NEBNext Direct, smMIPS (Hiatt
et al., 2013), ArcherDx, and modifications of other commercial
kits (Wong et al., 2018). While all approaches are similar in
concept, they can be further divided by single UMI and duplex
UMI-based error correction. Duplex UMI methods differ from
single UMI methods in that both DNA strands are tagged
with complementary UMIs making it possible to determine
whether an observed mutation was initially present in both DNA
strands and therefore less likely to be an artifact. In the ideal
setting, single UMI error correction can achieve an error rate of
3.4 × 10−4, while duplex-based methods are capable of reducing
the error rate by at least two orders of magnitude to 2.5 × 10−6

(Schmitt et al., 2012). Performance in the clinical laboratory
when sequencing a panel of genes is generally much lower and
often limited to VAFs of 0.1–0.5% (Duncavage et al., 2018; Kim
et al., 2018). Despite the potential increase in sensitivity and
specificity achieved with duplex error correction, most clinical
AML MRD methods rely on single strand UMI-based error
correction, since the coverage required to realize performance
gains with duplex UMI error correction across a panel of genes is
generally not tenable in the clinical laboratory.

DESIGN CHALLENGES FOR CLINICAL
NGS-BASED AML MRD

Next generation sequencing-based MRD can be implemented
in many ways in the clinical laboratory, and at present the
optimal solution to NGS-based tracking is unclear. Key design
challenges revolve around the compromises between breadth vs
depth of an MRD assay and one-size-fits-most assays vs patient-
specific, bespoke assays.

Acute myeloid leukemia is composed of a founding clone
and one or more subclones that contain the founding clone
mutations plus additional mutations (Welch et al., 2012).
Most AMLs will harbor between 15 and 30 somatic coding
region mutations. A subset of these mutations occur in a
core group of frequently mutated genes such as FLT3, NPM1,
DNMT3A, etc.; however, the remainder of mutations are
non-recurrent and require broad sequencing approaches to
identify (Cancer Genome Atlas Research Network et al., 2013).
Therefore, tracking all mutations (and therefore all clones)
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present in an individual AML patient requires a “wide” approach
and an assay with sufficient breadth such as exome or whole
genome sequencing. While a “wide” approach will permit
monitoring of all clonal mutations in nearly all AML patients,
it will be limited by a low depth of coverage in a wide target
space; high depth of coverage is needed for a highly sensitive
MRD assessment, especially compared to other MRD techniques
such as flow cytometry and single-gene PCR-based assays. For
example, most exome sequencing is performed at coverage
depths of 100–500x, permitting detection of variants in the range
of only 10–2.5% VAF (Tyner et al., 2018).

“Deep” approaches to NGS-based MRD have the advantage
of increased sensitivity due to high coverage depths (often >
20,000x) but may lack the ability to track all clonal mutations.
“Deep” approaches can be implemented in two ways: using a
patient-specific approach or a fixed panel of genes. In the patient-
specific approach, somatic mutations are first identified using
exome or whole genome sequencing of “diseased” bone marrow
and “normal” skin (or other source of normal DNA) (Tyner et al.,
2018). Probes are then constructed to detect these mutations in
subsequent samples using high-coverage sequencing, allowing
for high detection sensitivities for all mutations detected in the
diagnostic sample. The fixed panel of genes approach relies on
the observation that nearly all AML cases have mutations in
a small core group of genes (presumably involved in disease
pathogenesis) that can easily be sequenced to high coverage
depths. Since fixed panels do not cover all mutations present in a
patient, they may not be sufficient to track all clones present in a
patient. In addition, both “deep” approaches will also miss “rising
clones” or newly acquired mutations that are often associated
with AML relapse (Wong et al., 2016).

Generating NGS-based MRD data in the CLIA-regulated
clinical environment in a clinically relevant time-frame presents
additional challenges; therefore, most studies of NGS-based MRD
to date have been retrospective studies. While patient-specific
deep sequencing approaches as described above are capable
of highly sensitive monitoring of all mutations in an AML
patient, they are logistically challenging to implement in the
clinical setting. The generation and analysis of initial paired
tumor/normal exome or whole genome data may take many
weeks. Design, manufacture, and validation of targeted probes
based on mutations detected in the diagnostic sample take
additional time, making these methods impractical for MRD
monitoring based on standard post treatment time points (e.g.,
day 14 or day 30). Deep panel-based NGS is far easier to
implement in the clinical setting and can be used with standard
post treatment time points.

In addition to design challenges associated with clinical NGS-
based MRD, there are also interpretive challenges. A major
potential pitfall of NGS panel-based MRD interpretation is the
detection of persistent age-related clonal hematopoiesis (ARCH),
which may not represent AML (Genovese et al., 2014; Jaiswal
et al., 2014; Steensma et al., 2015). For example, in a study of
NGS-based AML MRD, Jongen-Lavrencic et al. (2018) noted the
persistence of so-called “DTA mutations” in DNMT3A, TET2,
and ASXL1 after chemotherapy which were not correlated with
an increased relapse rate. This finding was also observed in

post allogeneic transplant patients by Thol et al. (2018). In
the clinical setting, unless an AML patient had persistence of
other non-DTA mutations, it would be difficult to interpret
persistent DTA mutations as persistent AML. Another potential
interpretative issue is that most clinical AML NGS assays rely on
“tumor only” sequencing and do not use paired normal tissue to
assure somatic status of a mutation. It is therefore possible that
constitutional variants incorrectly assigned somatic status could
be interpreted as persistent molecular disease, especially if VAFs
of these variants are skewed from the normal heterozygous VAF
for technical reasons.

Likely the single biggest challenge to widespread clinical
implementation of NGS-based MRD is the lack of payer coverage
for such testing in the United States. While flow cytometry-based
MRD evaluation is generally covered by payers under existing
CPT codes for most standard surveillance time points, panel-
based NGS testing is generally covered only at initial diagnosis
and relapse, but not for MRD testing purposes when the patient
is in complete morphologic remission. For NGS-based MRD
testing to have an impact in the clinical setting, local and national
coverage determinations will have to be amended to include NGS
testing at surveillance time points. Further, under existing CPT
codes, current reimbursement rates are often too low to cover
the costs of high-coverage sequencing-based MRD evaluation.
Due to these practical challenges, most clinical NGS-based MRD
testing in AML is confined to clinical trials at present.

CLINICAL STUDIES OF NGS-BASED
MRD

In one of the earliest examples to show the clinical relevance of
NGS-based MRD, Klco et al. (2015) used exome or whole genome
sequencing in 50 diagnostic AML samples and paired normal
tissue to first identify somatic mutations and then used either
exome or targeted sequencing of bone marrow biopsies taken
30 days after chemotherapy to determine whether mutations had
cleared. Even using a fairly insensitive approach (VAF cut-off
of 2.5%), they found that patients who cleared their somatic
mutations had longer event-free and overall survival with hazard
ratios of 6.0 (CI 1.93–7.11) and 2.86 (CI 1.39–5.88), respectively.

Jongen-Lavrencic et al. (2018) used a 54 gene panel on 482
AML patients who achieved a complete remission of which 430
(89.2%) had at least one detectable mutation prior to standard
induction chemotherapy. They then sequenced bone marrow
DNA post treatment using computational error correction to
achieve a maximum sensitivity of 0.02% for previously identified
mutations and found that persistent molecular disease was
correlated with significant decreases in relapse-free survival
(hazard ratio of 1.92; CI 1.46–2.54) and overall survival (hazard
ratio of 2.06; CI 1.57–2.91) after excluding “DTA mutations” as
described above. Similar observations were seen in multivariate
analysis. In addition, the group compared NGS-based MRD
to flow cytometry-based MRD. Specifically, they were able to
demonstrate that agreement between the two methodologies
in either direction strengthened the resulting correlations with
outcome, but disagreement between the two methodologies
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in either direction (flow positive/NGS negative or vice versa)
defined a group of patients with similar intermediate prognosis.
Importantly, they concluded that NGS-based molecular MRD
had a significant additive prognostic value when combined with
flow cytometric MRD studies.

In a similar study, Morita et al. (2018) evaluated 131 AML
patients who achieved complete remission of which 122 (93%)
had at least one mutation detectable with a 295 gene panel.
Thirty day post-induction bone marrows were then sequenced
using maximum VAF cut-offs of 2.5%, 1.0%, and undetectable.
The authors found that day 30 VAFs < 1% were associated with
significantly better overall survival than that of patients with
detectable mutations > 1% VAF. Patients who had undetectable
mutations at day 30 had significantly better event-free survival
in multivariable analysis after adjusting for age, cytogenetic risk,
allogeneic stem-cell transplantation, and flow cytometry-based
minimal residual disease. Removal of DTA mutations from the
analysis resulted in stronger prognostic associations.

Next generation sequencing-based MRD has also been used
in AML allogeneic transplant setting. Thol et al. (2018) used
a 46 gene sequencing panel to identify mutations in 116 pre-
transplant AML patients, identifying at least one trackable
mutation in 93% of patients. High-coverage UMI-based error
correction of pre-allogeneic transplant blood or bone marrow
specimens with a sensitivity of < 0.02% demonstrated that
45% of patients were MRD positive with a median VAF of
0.33% (range 0.016–4.91%). These pre-transplant MRD positive
patients had a higher cumulative incidence of relapse according
to a competing risk analysis (hazard ratio 5.58; P < 0.001). No
difference, however, was observed in overall survival between
MRD positive and negative patients. Similarly, Press et al.
(2019) used a 42 gene NGS panel with a sensitivity of 0.5%
VAF to evaluate 42 AML patients for MRD before and after
allogeneic transplant. They found that the cumulative incidence
of relapse was significantly higher in pre-transplant MRD positive
patients (P = 0.014). In multivariate analysis, pre-transplant
MRD positivity was associated with a higher relapse risk (hazard
ratio = 7.3; P = 0.05), shortened progression free survival
(P = 0.038), and marginally shortened overall survival (P = 0.068).
A third study by Hourigan and colleagues (Bloomfield et al.,
2018) tested pre-transplant blood samples from AML patients
in morphologic CR who were randomly assigned to either
myeloablative or reduced-intensity pre-transplant conditioning
using a 13 gene NGS panel. For patients with a detectable
mutation, they found significant differences in relapse (19 vs
67%; P < 0.001) and overall survival (61 vs 43%; P = 0.02)
between patients with myeloablative or reduced-intensity pre-
transplant conditioning, respectively. In multivariate analysis,
they found pre-transplant NGS positive patients who underwent
reduced-intensity pre-transplant conditioning had a higher risk
of relapse (hazard ratio 6.38; 95% CI 3.37 to 2.10), decreased
relapse free survival (hazard ratio 2.94; 95% CI, 1.84–4.69), and
decreased overall survival (hazard ratio 1.97; 95% CI, 1.17–
3.30) compared to patients who underwent myeloablative pre-
transplant conditioning. These data suggest that myeloablative
conditioning may improve outcomes for MRD positive pre-
transplant patients.

Kim et al. (2018) reported similar findings using a cohort of
104 AML patients who underwent allogeneic stem cell transplant.
Using a panel of 84 genes on pre-transplant bone marrows and
paired CD3+ T-cells, 90 patients (81%) of the 104 had a trackable
mutation. Post-transplant bone marrow samples were collected
21 days after transplant and sequenced using computational
error correction with a VAF sensitivity of 0.2%. The authors
found that post-transplant MRD positive status was associated
with an increased risk of relapse (56.2 vs 16.0% at 3 years;
P < 0.001) and reduced overall survival (36.5 vs 67.0% at
3 years; P = 0.006) compared to MRD negative patients. These
associations remained significant in multivariate analysis when
taking in to account European LeukemiaNet risk groups.

In another recent publication, Balagopal et al. (2019) used a
UMI error corrected hybrid capture enrichment panel targeting
22 recurrently mutated genes and tested 30 post-transplant AML
patients who were negative for MRD by conventional short
tandem repeat (STR)-based testing. STR testing is frequently
used to monitor post bone marrow transplant patients in the
clinical setting and works by comparing differences in highly
polymorphic alleles between recipient and donor bone marrow
via PCR and capillary-based fragment sizing. If a transplant
patient is fully engrafted, the marrow will show an STR pattern
consistent with the donor with no evidence of the recipient’s
DNA. The sensitivity for STR based studies is approximately
2.5%. In their study, Balagopal et al. found that 18 of 30 (60%)
of post-transplant AML patients who were negative by STRs
had a detectable clone by their NGS assay. They also found a
high concordance between blood and bone marrow samples,
suggesting that blood could be a surrogate for marrow.

Clinical studies are summarized in Table 1.
Another promising avenue for NGS-based MRD testing is

“liquid biopsies” or cell-free DNA assays which use many of the
same techniques as previously described for detecting MRD in
bone marrow samples and have recently been investigated as
a potential methodology for AML MRD analysis by Nakamura
et al. (2019). These circulating tumor DNA (ctDNA) methods are
more commonly used for solid tumors including in the clinical
setting (Merker et al., 2018). Although their study demonstrated
proof of concept by detecting mutations down to a VAF of
0.04% from a blood sample and would spare patients the
discomfort of repeated bone marrow biopsies, the digital droplet
PCR (ddPCR)-based methodology is likely too cumbersome for
use in the clinical setting as it requires patient-specific primer
design and validation. NGS panel-based ctDNA MRD methods,
however, that have been successfully used for solid tumors and
lymphoma could be applied to AML (Newman et al., 2014;
Kurtz et al., 2018). Future studies will have to determine whether
ctDNA or peripheral blood leukocytes are a more sensitive
substrate for AML MRD.

CONSIDERATIONS AND FUTURE
DIRECTIONS

Next generation sequencing-based MRD evaluation of post-
transplant AML patients has been shown to predict clinical
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TABLE 1 | Summary of NGS-based multi-gene MRD studies in AML.

Study Mean Maximum

size MRD sensitivity

Author Year Key findings Disease state Technique (n) coverage (VAF)

Klco 2015 Clearance of disease-specific mutations at 30 days
post induction correlated with better EFS and OS

AML, post induction WES or WGS, and
amplicon-based
sequencing with paired
normal tissue

50 543X
(exome)
14,780X

(amplicon)

2.5%

Jongen-
Lavrencic

2018 Persistence of non-“DTA” mutations correlated with
decreased RFS and OS. Combining NGS and flow
MRD data produced strong correlations with outcome
when methods were concordant and defined an
intermediate prognosis group when methods were
discordant

AML, post induction 54 Gene tumor-only NGS
panel with position-based
error correction

482 Not stated 0.02%

Morita 2018 Patients with clearance of disease-associated
mutations (<1% VAF) at 30 days post induction had
better OS and better EFS after multivariate analysis; this
correlation was strengthened by the exclusion of “DTA
mutations” from the analysis

AML, post induction 295 Gene tumor only
NGS panel

131 575X <1.0%

Thol 2018 Detection of disease-associated mutations
post-transplant was associated with higher incidence of
relapse, but no difference in OS

AML, pre- transplant 46 Gene custom
amplicon panel with
UMI-based error
correction

116 6,100x 0.02%

Kim 2018 MRD positive patients had a higher incidence of relapse
and lower OS

AML, post-transplant 84 Gene NGS panel with
paired normal T-cells and
position-based error
correction

104 1726X 0.02%

Balagopal 2019 Found evidence of MRD in 18/30 (60%) of
post-transplant AML patients who showed no evidence
of disease by standard engraftment studies

AML, post-transplant 22 Gene panel with
UMI-based error
correction

30 >10,000X 0.1%

Press 2019 NGS MRD positive pre-transplant patients had higher
risk of relapse in multivariate analysis

AML, pre- transplant 42 Gene panel,
coverage-based error
correction

42 1900x 0.5%

Hourigan 2019 NGS MRD positive pre-transplant patients with
reduced-intensity conditioning had increased relapse
rates, decreased overall survival, and decreased OS
compared to patients who underwent myeloablative
conditioning

AML, pre- transplant 13 Gene panel with
UMI-error correction run
in peripheral blood
samples.

190 >100,000x 0.001%

Abbreviations: EFS, event free survival; OS, overall survival; NGS, next generation sequencing; WES, whole exome sequencing; WGS, whole genome sequencing; RFS,
relapse free survival; MRD, measurable residual disease; UMI, unique molecular identifier.

outcome. A major advantage of NGS-based monitoring methods
is that they are applicable to nearly all AML patients, unlike
translocation-based or single gene molecular MRD assays that
are only available to the minority of AML patients with recurrent
translocations or NPM1 mutations. At present, there are limited
data comparing NGS-based MRD testing to flow cytometry
based MRD in AML; however, one of the major potential
advantages of NGS-based MRD is that it is less subjective than
flow cytometry-based approaches, and may therefore be a more
reliable measure of MRD status. Another potential advantage
of NGS-based MRD methods over flow cytometry-based MRD
is that they appear to show similar results in blood and bone
marrow as they detect mutations present in mature cells and
do not rely on phenotypic aberrancies present only in rare bone
marrow blasts (Duncavage et al., 2017). Potential disadvantages
of NGS-based MRD over flow cytometry-based MRD include
longer turnaround times, increased assay costs, and uncertain
payer reimbursement. Since the detection targets are distinct,
NGS MRD and flow cytometry-based MRD approaches may

complement one another, as suggested by Jongen-Lavrencic et al.
(2018). Additional studies are needed to better define the optimal
clinical use for NGS and flow-based MRD methods.

In addition to predicting clinical outcomes, NGS-based MRD
assays can be used to monitor treatment response in AML
patients (Uy et al., 2017). Such assays could potentially be used to
define more objective surrogate “molecular clearance” endpoints
in clinical trials. They could also be used to define early treatment
response, determine therapeutic efficacy of new drugs or drug
combinations, or to understand the clonal/mutational dynamics
caused by specific therapies. Since NGS-based assays can be run
from blood and do not necessarily require a bone marrow biopsy,
more frequent monitoring of patients could be performed during
clinical trials.

While multiple studies have demonstrated the utility of
NGS-based MRD assays to predict clinical outcome, it remains
unclear whether therapeutic intervention based on these data
will ultimately change patient outcomes and result in increased
overall survival (Hourigan et al., 2019). It also remains unclear
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exactly what level of mutation clearance is required (i.e., VAF)
to determine whether a patient should be deemed MRD negative
and how issues surrounding persistent clonal hematopoesis
should be resolved. Future clinical trials will be required to
evaluate the effects of early therapeutic intervention based on
MRD positive post-treatment findings.
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