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INTRODUCTION

The self-renewal and differentiation of tissue stem cells are dictated by the microenvironment in
which they reside, the so-called stem cell niche (Scadden, 2006; de Cuevas and Matunis, 2011;
Chacón-Martínez et al., 2018; Pinho and Frenette, 2019). To date, the importance of the niche
in maintaining tissue homeostasis is increasingly appreciated, given the capability of stem cells
to restore normal tissue function upon injury (Wabik and Jones, 2015). With the advent of
new techniques, such as in vivo imaging, lineage tracing models and single-cell sequencing, our
understanding of the interaction between stem cells and the niche under both normal physiological
and pathological conditions is broadened (Zepp et al., 2017; Joost et al., 2018; Nguyen and Currie,
2018). However, the complexity and dynamics of the niche within the tissue, which are difficult
to recapitulate in 2D culture, compound the effort to pinpoint the contribution of each niche
component to stem cell function. Here, we discuss how to deconvolute the complexity of the
stem cell niche with organotypic culture methods using alveolar stem cells within the lung as
an example.

The alveoli in the distal regions of the lung are the primary sites for gas exchange (Brody
and Williams, 1992). The alveolar epithelia mainly consist of type II (AEC2) and type I (AEC1)
epithelial cells (Figure 1A; Brody and Williams, 1992). The latter are squamous cells responsible
for gas exchange, covering most of the surface area of alveoli (Brody and Williams, 1992).
AEC2 cells have cuboidal shape and maintain the stability of alveoli through synthesis and
secretion of surfactant proteins (reviewed in detail by Fehrenbach, 2001; Beer and Moodley,
2017). In addition to these characteristics, AEC2 cells are proposed to be the stem cells within
the alveolar epithelia (Fehrenbach, 2001; Barkauskas et al., 2013). This is supported by results
from lineage tracing studies (Barkauskas et al., 2013; Desai et al., 2014; Zacharias et al., 2018).
Within the normal lung, AEC2 cells are able to differentiate into AEC1 cells, albeit at a very
low turnover rate (Barkauskas et al., 2013; Desai et al., 2014). Injuries to the lung trigger the
rapid proliferation of AEC2 cells, followed by differentiation to AEC1 cells to restore the normal
function of the lung (Barkauskas et al., 2013; Desai et al., 2014; Nabhan et al., 2018; Zacharias
et al., 2018). Of note, single-cell sequencing and lineage tracing studies have unraveled the
heterogeneity of AEC2 cells that display differential capacity of proliferation and differentiation in
both homeostatic and regenerative states (Desai et al., 2014; Treutlein et al., 2014; Nabhan et al.,
2018; Zacharias et al., 2018; Riemondy et al., 2019). Therefore, a subpopulation of AEC2 cells
might serve as the stem/progenitor cells to maintain the homeostasis of the alveoli in the lung
(Hogan et al., 2014).
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THE NICHE OF AEC2 CELLS

Within the alveolar epithelia, AEC2 cells are in contact with
AEC1 cells via cell junctions (Fehrenbach, 2001). There are
several types of stromal cells in the interstitial region, including
mesenchymal cells, pericytes, endothelial cells, and immune cells
(Hogan et al., 2014; Tan and Krasnow, 2016; Endale et al.,
2017). Together with extracellular matrix (ECM), these cells
constitute the “putative” niche for AEC2 cells (Figure 1A; Hogan
et al., 2014). How the niche modulates the behavior of AEC2
cells starts to unfold, driven by lineage tracing models. Nabhan
and colleagues showed that a subpopulation of AEC2 cells are
Axin2-positive; these cells localize at close proximity to Wnt-
expressing fibroblasts (Nabhan et al., 2018). The “juxtacrine”Wnt
signal maintains the stemness of Axin2+AEC2 cells, whereas
the loss-of-contact with the niche promotes their differentiation
to AEC1 cells (Nabhan et al., 2018). Using single-cell RNA
sequencing and reporter mouse lines, five subpopulations
of mesenchymal cells are identified, based on the levels of
PDGFRα, Wnt2, and Axin2 (Zepp et al., 2017). Spatial distance
mapping further revealed that PDGFRα-Axin2 double-positive
mesenchymal cells localize closer to AEC2 cells than other
subpopulations (Zepp et al., 2017). Collectively, these results
support the notion that mesenchymal cells in close contact
with AEC2 cells are critical components of the alveolar stem
cell niche.

Deconvolution of the niche complexity requires a reductionist
system through which the contribution of a single niche
component to AEC2 behavior can be examined. Organotypic
culture appears to suit this purpose, in which the interaction
between the stem cell and the niche can be interrogated
(Kretzschmar and Clevers, 2016; Murrow et al., 2017).
AEC2 cells have been cocultured with various types of
stromal cells in Matrigel to form spheroids, including lung
fibroblasts, endothelial cells and macrophages (Figures 1B,C,
Supplementary Table 1; McQualter et al., 2010; Chen et al.,
2012; Barkauskas et al., 2013; Lee et al., 2014; Lechner
et al., 2017). With the support of mesenchymal cells, AEC2
cells grow into spheroids with multiple layers of cells, in
which AEC1 cells are lined along the inner lumen surface,
surrounded by AEC2 cells, referred to as alveolar organoids
(Figure 1B; Chen et al., 2012; Barkauskas et al., 2013, 2017).
It seems that the presence of mesenchymal cells promotes
both the self-renewal and differentiation of AEC2 cells
(Barkauskas et al., 2013). One of the tempting explanations
is the proximity of AEC2 cells to mesenchymal cells, as
suggested by the in vivo data. Indeed, when cultured on
top of mesenchymal cells, the differentiation of AEC2 cells
is blocked (Sucre et al., 2018). Furthermore, the capacity
of organoid induction by subpopulations of mesenchymal
cells is evaluated via the organotypic coculture system,
among which PDGFRα-Axin2 double-positive populations
show the highest efficiency (Zepp et al., 2017). Overall, the
application of alveolar organoid facilitates the examination
of the role of stromal cells in regulating the fate of
AEC2 cells.

SIGNALS FROM THE NICHE DIRECTING
THE FATE OF AEC2 CELLS

Niche-derived paracrine signals modulate the behavior of
AEC2 cells, among which FGF signaling is of particular
importance (Figure 1A). It has been demonstrated that FGF
ligands secreted by lung fibroblasts are pivotal to AEC2
proliferation and differentiation, e.g., FGF7 and FGF10
(Fehrenbach, 2001). Deletion of FGFR2 receptor, which is
highly expressed in AEC2 cells, results in loss of AEC2 cells,
thereby leading to lung fibrosis (Dorry et al., 2019). In agreement
with previous findings, the supplementation of FGF7 in the
medium of organotypic coculture dramatically enhances the
formation and size of alveolar organoids (Zepp et al., 2017).
Nevertheless, FGF7 alone is insufficient to induce alveolar
organoid formation in mesenchymal cell-free organotypic
culture (Shiraishi et al., 2019a), implying that additional
factors from mesenchymal cells are necessary to activate the
proliferation of AEC2 cells. Analysis of putative ligand-receptor
interactions between mesenchymal and AEC2 cells has identified
the TGF-β, BMP, Wnt, and Notch pathways as those that
regulate alveologenesis (Zepp et al., 2017; Shiraishi et al.,
2019a). Results from organotypic coculture systems demonstrate
that these pathways have distinct roles in alveologenesis.
Activation of the Wnt pathway enhances the self-renewal
of AEC2 cells and blocks their differentiation to AEC1 cells
(Nabhan et al., 2018), while addition of BMP4 to the medium
inhibits AEC2 proliferation and promotes their differentiation
(Zepp et al., 2017; Chung et al., 2018).

Prior work has shown that vascular endothelium is essential
for alveolization during lung development and regeneration
(McGrath-Morrow et al., 2005; Ding et al., 2011; Lazarus
et al., 2011), indicating that endothelial cells and pericytes
are important niche components of AEC2 cells (Hogan
et al., 2014; Mammoto and Mammoto, 2019), apart from
mesenchymal cells. In organotypic coculture, endothelial
cells also stimulate the formation of alveolar organoids
(Figure 1B), through the secretion of thrombospondin-1
(Lee et al., 2014). Although not tested yet, pericytes likely
have a similar effect in organotypic coculture of AEC2
cells as other cellular components, since pericytes are
also sources of HGF, Wnt11, TGF-β, and BMP4 ligands
(Kato et al., 2018). Similar to FGF ligands, HGF is a potent
mitogen for AEC2 cells, when added in organotypic coculture
(McQualter et al., 2010).

The impact of immune cells on the proliferation and
differentiation of AEC2 cells has attracted increasing attention
since they are recruited to the lung and release a variety of
cytokines to initiate inflammatory response upon lung injury
(Fehrenbach, 2001; Cohen et al., 2018). Targeted cytokine
screenings with the organotypic coculture of AEC2 cells have
identified cytokines that have distinct influences on alveolar
organoid formation (Katsura et al., 2019; Glisinski et al., 2020).
Specifically, IL-13 treatment disrupts the differentiation of AEC2
cells and reprograms the alveolar cells toward bronchiolar-
like cells (Glisinski et al., 2020). In contrast, other cytokines,
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FIGURE 1 | Organotypic culture to dissect the role of the niche in regulating the fate of AEC2 cells. (A) The microenvironment in which AEC2 cells inhabit composes

of different types of stromal cells within the alveoli regions of the lung, including fibroblasts, endothelial cells, pericytes, and immune cells (adapted from Barkauskas

et al., 2017 with modifications). Together with AEC1 cells and ECM components, these stromal cells form the niche for AEC2 cells. The paracrine signals generated by

stromal cells regulate the behavior of AEC2 stem cells during homeostasis and regeneration states. (B,C) Organotypic coculture of AEC2 cells with stromal cells give

rise to alveolar organoids. The alveolar organoids supported by mesenchymal cells or endothelial cells have similar structure, in which AEC1 cells are surrounded by

AEC2 cells, with stromal cells mingled with alveolar epithelial cells (B). The alveolar organoids promoted by macrophages is mainly composed of cells positive for both

the AEC2 marker (SPC) and the AEC1 marker (RAGE), suggesting that these organoids might originate from the bipotential cells (C). (D) The alveolar organoids

induced by defined culture medium, independent of stromal supporting cells. The cells within this type of organoids exhibit overlapped signals of SPC and AQP5 (the

marker for AEC1 cell). (E) Based on the knowledge of pathways that promote AEC2 proliferation and differentiation, we propose that alveolar organoids that are

similar in structure to alveoli of the lung can be stimulated by defined growth factors in a stepwise manner.

including IL-1, IL-6, and TNF-α, enhance the proliferation
of AEC2 cells without inhibiting their differentiation, thereby
increasing the growth of alveolar organoids (Zepp et al., 2017;

Katsura et al., 2019). The presence of mesenchymal cells in
coculture compounds the effort to determine whether the
effects of these cytokines on AEC2 behavior are direct or
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indirect. Therefore, the role of cytokines in modulating AEC2
behavior can be further verified through mesenchymal cell-free
alveolar organoids.

Recently, progress has been made to use defined growth
factors and inhibitors to stimulate the growth of alveolar
organoids (Supplementary Table 1; Shiraishi et al., 2019a,b;
Weiner et al., 2019). The supplementation of Notch ligands
(Jagged1 and Noggin), KGF, GSK-β inhibitor (CHIR-99021),
and ALK5 inhibitor (SB431542) in the culture medium
replaces the mesenchymal cells to stimulate alveolar organoid
formation (Figure 1D; Shiraishi et al., 2019a,b). Of note,
the cells within these organoids display overlapped signals
of the AEC2 marker SPC and the AEC1 marker AQP5
(Shiraishi et al., 2019a). One explanation is that the cocktail
of growth factors and inhibitors reprograms the AEC2 cells
to a bipotential state (Treutlein et al., 2014). Furthermore,
the AEC2-like cells isolated from these organoids are
unable to differentiate to AEC1 cells when transplanted
into bleomycin-injured lung (Weiner et al., 2019), suggesting
that simultaneous modulation of multiple pathways likely
impairs the differentiation capacity of AEC2 cells. Thus, the
composition of culture medium requires further optimization
for supporting cell-free organotypic culture in the future.
On the other hand, mesenchymal-free organotypic culture
of AEC2 cells implies that it is feasible to stimulate the
growth of alveolar organoids that are similar in structure
to alveoli within the lung (Figure 1E). We propose that
the expansion of AEC2 cells can be initially activated by
mitogens, such as FGFs and HGF, followed by activation of
the BMP pathway to promote the differentiation of AEC2 cells
(Chung et al., 2018).

MODELING THE INTERACTION BETWEEN
AEC2 CELLS AND THE NICHE WITH
ALVEOLAR ORGANOIDS

Alveolar organoids can be employed to elucidate the reciprocal
interaction between AEC2 cells and the niche in a pathological
context (Fiorini et al., 2020; Li et al., 2020). For instance, the
dysfunction of AEC2 cells is regarded as the driver of pulmonary
fibrosis, in which aberrant deposition of collagen produced
by the mesenchymal cells is one of the main manifestations
(Martinez et al., 2017; Parimon et al., 2020). Apart from
ECM, the cellular composition of the niche also changes in
the fibrotic lung, in which seven subtypes of mesenchymal
cell are identified by single-cell sequencing, with increased
percentage of matrix fibroblasts, compared to the normal
lung (Booth et al., 2012; Xie et al., 2018). How do these
changes impact the function of AEC2 cells? Alveolar organoids
allow us to examine the contribution of a niche component
to AEC2 dysfunction by adding the fibrosis-associated niche
components into the housing matrix. To date, Matrigel, the
main component of which is laminin, collagen IV, and entactin
(Li et al., 2016), is widely used as the housing matrix for
organotypic culture of AEC2 cells (Supplementary Table 1).

The laminin-rich Matrigel can promote the growth of integrin-
high AEC2 cells to form alveolar organoids (Chapman et al.,
2011). Thus, to minimize variation due to the heterogeneity
of AEC2 cells, it is recommended to also examine the change
in AEC2 behavior through reseeding alveolar organoids in a
housingmatrix containing fibrosis-associated niche components.
Additionally, the experimental reproducibility can be affected
by the lot-to-lot variability of Matrigel that is produced
from mouse sarcoma (Murrow et al., 2017). In this respect,
well-defined synthetic matrix, such as PEG-based hydrogel,
can replace Matrigel as the starting housing matrix for
alveolar organoids.

Moreover, how AEC2 cells influence the niche in response
to lung injury can be explored with alveolar organoids.
One example is the immune response from AEC2 cells
elicited by microbial infections, such as M. tuberculosis and
coronavirus (Qian et al., 2013; Ryndak and Laal, 2019; Li
et al., 2020). The current outbreak of COVID-19 highlights the
importance of understanding the development of coronavirus-
caused pneumonia (Malta et al., 2020; Zhou et al., 2020). A recent
report shows that, upon infecting the lung explant, SARS-CoV
induces the expression of IFNs in 48 h, but not SARS-CoV-2,
despite that the replication of SARS-CoV-2 is more efficient than
SARS-CoV (Chu et al., 2020). These results lead to a question:
what could be the underlying mechanism for the differential
immune responses to these two coronaviruses, which share 79%
sequence identity and infect AEC2 cells (Chu et al., 2020; Zhou
et al., 2020)? In addition, it remains unclear how coronaviruses
exit the cell (Fehr and Perlman, 2015). The secretory system for
surfactant proteins in AEC2 cells could be utilized by SARS-
CoV-2; Alternatively, the virus may have a unique pathway for
exit, leading to reduced production of surfactant proteins and
destruction of alveolar homeostasis. Alveolar organoids would
be useful models to address these questions and to study the
development of COVID-19 in vitro, complementary to animal
models. Several reports have shown that airway organoids and
intestinal organoids are successfully infected with influenza
virus and MERS-CoV, respectively, by incubating the virus with
organoids or microinjection of the virus into the inner lumen
(Zhou et al., 2017, 2018; Hui et al., 2018; Bui et al., 2019;
Sachs et al., 2019). We anticipate that similar methodology
can be applied with alveolar organoids to investigate how
AEC2 cells respond to coronavirus infection and reshape
the niche.

CONCLUDING REMARKS

Although not every aspect of alveoli within the lung can
be fully recapitulated in organotypic culture, alveolar
organoids help to dissect the role of the niche in AEC2
self-renewal and differentiation, thereby bridging the
gap between in vivo model and in vitro culture. We
envision that application of these model systems in
combination will bring more insight to the development of
lung diseases.
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