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The fine arrangement of neuronal connectivity during development involves the
coordinated action of guidance cues and their receptors. In adolescence, the dopamine
circuitry is still developing, with mesolimbic dopamine axons undergoing target-
recognition events in the nucleus accumbens (NAcc), while mesocortical projections
continue to grow toward the prefrontal cortex (PFC) until adulthood. This segregation
of mesolimbic versus mesocortical dopamine pathways is mediated by the guidance
cue receptor DCC, which signals dopamine axons intended to innervate the NAcc
to recognize this region as their final target. Whether DCC-dependent mesolimbic
dopamine axon targeting in adolescence requires the action of its ligand, Netrin-1,
is unknown. Here we combined shRNA strategies, quantitative analysis of pre- and
post-synaptic markers of neuronal connectivity, and pharmacological manipulations to
address this question. Similar to DCC levels in the ventral tegmental area, Netrin-1
expression in the NAcc is dynamic across postnatal life, transitioning from high to low
expression across adolescence. Silencing Netrin-1 in the NAcc in adolescence results
in an increase in the expanse of the dopamine input to the PFC in adulthood, with a
corresponding increase in the number of presynaptic dopamine sites. This manipulation
also results in altered dendritic spine density and morphology of medium spiny neurons
in the NAcc in adulthood and in reduced sensitivity to the behavioral activating effects of
the stimulant drug of abuse, amphetamine. These cellular and behavioral effects mirror
those induced by Dcc haploinsufficiency within dopamine neurons in adolescence.
Dopamine targeting in adolescence requires the complementary interaction between
DCC receptors in mesolimbic dopamine axons and Netrin-1 in the NAcc. Factors
regulating either DCC or Netrin-1 in adolescence can disrupt mesocorticolimbic
dopamine development, rendering vulnerability or protection to phenotypes associated
with psychiatric disorders.

Keywords: adolescence, cortical development, guidance cues, nucleus accumbens, dopamine innervation

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2020 | Volume 8 | Article 487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00487
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.00487
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00487&domain=pdf&date_stamp=2020-06-25
https://www.frontiersin.org/articles/10.3389/fcell.2020.00487/full
http://loop.frontiersin.org/people/631030/overview
http://loop.frontiersin.org/people/959486/overview
http://loop.frontiersin.org/people/988314/overview
http://loop.frontiersin.org/people/514772/overview
http://loop.frontiersin.org/people/37431/overview
http://loop.frontiersin.org/people/35062/overview
http://loop.frontiersin.org/people/959489/overview
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00487 June 23, 2020 Time: 15:38 # 2

Cuesta et al. Adolescent Dopamine Targeting Requires Netrin-1

INTRODUCTION

Adolescence is a critical developmental period characterized
by dramatic neurological and behavioral changes, with
neurocircuitry in the prefrontal cortex (PFC), a brain region
essential for cognitive and reward functions, being established
during this time (Gogtay et al., 2004; Sowell et al., 2004;
Petanjek et al., 2011). The developmental trajectory of the
PFC in adolescence is demarcated by the gradual increase in
dopamine innervation (Rosenberg and Lewis, 1995; Weickert
et al., 2007; Rothmond et al., 2012; Gulley and Juraska, 2013;
Hoops and Flores, 2017), is highly responsive to genetic
and environmental factors, and determines vulnerability or
resilience to psychiatric disease (Lee et al., 2014; Fuhrmann
et al., 2015). The density of the mesocortical dopamine input
continues to increase across adolescence due to the ongoing
growth of dopamine axons toward the PFC (Hoops et al., 2018;
Reynolds et al., 2018). This contrasts with the anatomically
and functionally distinct mesolimbic dopamine pathway,
which achieves adult-like density levels soon after postnatal
development (Antonopoulos et al., 2002; Brummelte and
Teuchert-Noodt, 2006). Both pathways extend from the ventral
tegmental area (VTA) along the medial forebrain bundle, but
segregate at the level of the striatum in a process mediated by
the guidance cue receptor DCC (Figure 1A). In mesolimbic
dopamine axons, DCC receptors promote target recognition
events in the nucleus accumbens (NAcc) in adolescence
(Reynolds et al., 2018). Mesocortical dopamine axons, however,
lack or only rarely express DCC receptors and instead of
recognizing the NAcc as their final target, they continue to
grow to the PFC across adolescence (Manitt et al., 2011;
Reynolds et al., 2018).

The DCC receptors, like other guidance cue receptors,
interpret secreted soluble or cell-bound molecules in the
extracellular environment that act as a signal for growing axons.
The primary ligand for DCC is the guidance cue Netrin-1,
which is expressed in forebrain targets of dopamine neurons,
including the NAcc and dorsal striatum (Shatzmiller et al., 2008;
Manitt et al., 2011; Li et al., 2014). DCC receptors may require
Netrin-1 to induce dopamine targeting in adolescence because
the expression pattern of these proteins in dopamine axons
and forebrain post-synaptic targets is complementary (Manitt
et al., 2011). In the PFC, Netrin-1 expression is substantial
and localized mainly to the cortical layers that receive the
densest dopamine innervation (Manitt et al., 2011), but PFC
dopamine axons lack or rarely express DCC. In contrast, in
the NAcc, where Netrin-1 expression is widespread but weak,
DCC receptors are highly and exclusively expressed by dopamine
axons (Manitt et al., 2011). A coordinated action of DCC
and Netrin-1 in the development of the mesocorticolimbic
dopamine system in adolescence is also suggested by findings
from studies with Netrin-1 haploinsufficiency mice. Adult
mice with Netrin-1 haploinsufficiency show increased medial
PFC dopamine concentrations in comparison to wild-type
mice and are protected against amphetamine-induced increase
in locomotor activity similarly to adult mice with Dcc
haploinsufficiency (Flores et al., 2005; Grant et al., 2007;

Manitt et al., 2011, 2013; Pokinko et al., 2015). This idea has
not been tested directly and cannot be assumed because DCC
receptors also interact with ligands other than Netrin-1, including
Draxin (Ahmed et al., 2011; Meli et al., 2015; Shinmyo et al., 2015;
Liu et al., 2018).

Netrin-1 has long been thought to diffuse far from its
source to form a gradient along which axons grow. Still, recent
evidence shows that Netrin-1 binds avidly to cell surfaces and
to the extracellular matrix, functioning as an adhesive cue
promoting haptotaxis and fasciculation (Manitt and Kennedy,
2002; Varadarajan et al., 2017; Moreno-Bravo et al., 2019;
Wu et al., 2019). Once axons reach their intended targets,
Netrin-1 also plays a critical role in synapse formation (Boyer
and Gupton, 2018) and in synaptic plasticity by potentiating
excitatory synaptic transmission via the insertion of GluA1
AMPA receptors (Glasgow et al., 2018). All these processes
require DCC-mediated Netrin-1 signaling and maybe also
occurring throughout adolescence.

Here we assessed whether Netrin-1 in the NAcc is required for
the adolescent maturation of the mesocorticolimbic dopamine
circuitry. We first characterized the expression pattern of
Netrin-1 in the NAcc across postnatal life and compared it
to the dynamic expression of DCC receptors in the VTA.
We then evaluated whether reducing Netrin-1 levels in the
NAcc in adolescence affects the extent and the organization
of dopamine connectivity in the PFC, neuronal connectivity
in the NAcc itself, and behavioral responses to stimulant
drugs in adulthood.

MATERIALS AND METHODS

Animals
All experiments and procedures were performed according
to the guidelines of the Canadian Council of Animal Care
and the McGill University/Douglas Mental Health University
Institute Animal Care Committee. C57BL/6 wild-type male mice
were obtained from Charles River Canada and maintained in
the colony room of the Douglas Mental Health University
Institute Neurophenotyping Center on a 12-h light–dark
cycle (light on at 0800 h) with food and water available
ad libitum. All the experiments were conducted during the light
part of the cycle.

Drugs
d-Amphetamine sulfate (Sigma-Aldrich, Dorset,
United Kingdom, Cat#A5880) was dissolved in 0.9% saline
and administered i.p. at a volume of 0.1 ml/10 g and at a dose of
2.5 mg/kg of amphetamine.

Western Blot Analysis
Mice were rapidly decapitated, and their brains were flash-
frozen in 2-methylbutane (Thermo Fisher Scientific, Hampton,
NH, United States) chilled with dry ice. Bilateral punches of
the NAcc were excised from 1-mm-thick coronal slices starting
from sections corresponding to Plate 14 of the mouse brain
atlas (Franklin and Paxinos, 2007) and processed for western

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 June 2020 | Volume 8 | Article 487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00487 June 23, 2020 Time: 15:38 # 3

Cuesta et al. Adolescent Dopamine Targeting Requires Netrin-1

3V

PFC

VVV

PFC

VTA
NAcc

C
Developmental expression

 of Netrin-1

A

Fo
ld

ch
an

ge

P21 P35 Adult
0.0

0.5

1.0

1.5

Netrin-1

Ac�n 42 kDa

68 kDa

PND 21±1

PND 75±15

PND 35±1

Western Blot

Fo
ld

ch
an

ge

P21 P35 Adult
0.0

0.5

1.0

1.5

Developmental 
expression of DCC

NAcc VTA*

DCC

Tubulin

185 kDa

55 kDa

B

FIGURE 1 | Netrin-1 levels in the nucleus accumbens (NAcc) vary across postnatal life. (A) Sagittal section of an adolescent mouse brain showing the mesolimbic
system, composed of dopamine projection neurons that innervate the NAcc and the mesocortical circuitry, that innervate the prefrontal cortex (PFC) (image adapted
from Torres-Berrio et al., 2018). Mesolimbic dopamine axons are already present in the NAcc while mesocortical dopamine axons continue to grow to the PFC
across the adolescent period. The different shades of green represent DCC expression levels in dopaminergic axons and the shades of blue the expression levels of
Netrin-1 in target regions. (B) Timeline and experimental procedures. (C) Levels of Netrin-1 in the NAcc of mice at three different postnatal ages. Expression
decreases significantly from early adolescence to adulthood (*significantly different from adulthood, p < 0.05; n = 8–9/group). Inset: Data reproduced from Manitt
et al. (2010) showing levels of DCC protein in the ventral tegmental area (VTA) at the at same three postnatal ages (one-way ANOVA: F(2,14) = 3.50, p = 0.06). All
data are shown as mean ± SEM.
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blot as before (Manitt et al., 2010; Cuesta et al., 2018). Briefly,
protein samples (15 µg) were separated on a 10% SDS-PAGE and
transferred to a nitrocellulose membrane which was incubated
overnight at 4◦C with antibodies against Netrin-1 (1:7500,
Cat#554223, BD Pharmingen, Mississauga, ON, Canada) and
β-actin (1:15,000, Sigma-Aldrich, Oakville, ON, Canada). All the
samples of the experiment were run and developed in parallel. To
calculate the fold change, the optical density (OD) obtained for
each band of Netrin-1 was normalized using the corresponding
actin OD. To normalize the data to P21, the average of the Netrin-
1 OD/actin OD ratio obtained for each animal was calculated
and used as a reference to normalize all the ratios obtained
in the experiment.

Netrin-1 shRNA Expressing Lentivirus
Pre-designed and validated siRNA sequences (Ambion) were
used to create shRNA by the addition of a standard hairpin loop
(TTCAAGAGA) between the sense and antisense sequences.
Three independent pre-designed and validated siRNA sequences
against mouse Netrin-1 were used (Netrin-1 shRNA sequence
1: CGCCUAUCACCAAACAGAA; Netrin-1 shRNA sequence 2:
GGAGCUCUAUAAGCUAUCA; and Netrin-1 shRNA sequence
3: UCAUCUCCGUGUACAAGCA). Three scrambled controls
were created by rearranging the sequence order so that there
was less than a 64% interaction rate. Active or control shRNA
sequences were cloned into a pLentiLox 3.7 vector (Addgene,
Plasmid #11795). Importantly, the constructs express GFP under
the CMV promoter and the shRNA sequence under the U6
promoter, which allows verification of infection and visualization
of the injection site for the in vivo experiments. The efficiency
of knockdown for shRNA constructs was tested in cultured HEK
cells by co-expressing a pBKNetrin-1-Flag plasmid containing
the mouse Netrin-1 cDNA cloned into a pBK-CMV vector
(Stratagene) with a C-terminal Flag tag (gift of Dr. Andreas
Püschel to HM Cooper), Flag expression was then evaluated by
western blot using an anti-Flag antibody (1:5000; Cat#F1804;
Sigma-Aldrich, Saint Louis, MO, United States). Lentiviruses
expressing shRNAs and scrambled controls were prepared by
the SPARC Biocentre lentiviral core facility (SickKids Hospital,
Toronto, ON, Canada).

Stereotaxic Surgery
Post-natal day (PND) 21±1 mice were anesthetized with
isoflurane (5% for induction and 2% for maintenance) and
placed in a stereotaxic apparatus. Simultaneous bilateral
microinfusions of the lentivirus expressing an shRNA against
Netrin-1 or a scrambled sequence, each with GFP, into the
NAcc were performed stereotaxically using Hamilton syringes.
NAcc coordinates: +2.6 mm (anterior/posterior), +1.5 mm
(lateral), and −3.75 mm (dorsal/ventral) relative to Bregma,
at a 30◦. A total of 0.5 µl of purified virus was delivered
on each side over an 8-min period followed by a pause of
6 min as previously (Reynolds et al., 2018). At the end of each
corresponding experiment, all the infected mice were euthanized
for immunohistochemistry to verify the site of microinjection via
evaluation of GFP expression.

Neuroanatomical Analysis
Perfusion
Adult mice received an intraperitoneal overdose of ketamine
50 mg/kg, xylazine 5 mg/kg and acepromazine 1 mg/kg and
were perfused intracardially with 50 ml of 0.9% saline followed
by 75 ml of chilled fixative solution (4% paraformaldehyde in
phosphate-buffered saline). Brains were dissected and placed in
the fixative solution overnight at 4◦C and were then transferred
to phosphate-buffered saline and stored for a maximum of 2 days.
Brains were sectioned using a vibratome (35-µm-thick coronal
slices for medial PFC analysis and 100 µm thick coronal slices for
spine morphology analysis).

Immunofluorescence
Every second coronal section was processed (1:2 series)
as previously reported (Manitt et al., 2010, 2011, 2013).
A rabbit polyclonal anti-tyrosine hydroxylase (TH) antibody
(1:1000 dilution, catalog #AB152; Millipore Bioscience Research
Reagents) and an Alexa Fluor 594-conjugated secondary
antibody raised in goat (1:500 dilution, 1 h incubation,
Invitrogen) were used.

Stereology
The TH antibody selected labels dopamine axons in the PFC
with high specificity, and rarely labels norepinephrine axons
(Miner et al., 2003; Manitt et al., 2011, 2013). As previously,
and because of the lateralization of the dopamine system, we
obtained counts only from the right hemisphere. To evaluate
changes in dopamine connectivity in animals with reduced levels
of Netrin-1 in the NAcc during adolescence, we performed
stereological quantification of the span of TH-positive fibers
in the cingulate 1, prelimbic, and infralimbic subregions of
the pregenual medial PFC (Figure 3B). The specific role of
mesocortical dopamine function appears to vary across these
medial PFC subregions (Kalivas, 2008; Peters et al., 2009;
Van De Werd et al., 2010) and in the past we have found
developmental changes in dopamine connectivity to be more
pronounced across the ventral or dorsal axis (e.g., Reynolds
et al., 2015). The total volume of TH-positive fiber innervation
(in cubic micrometers) was assessed using the Cavalieri method
using Stereoinvestigator R© (MicroBrightField) (Manitt et al., 2011,
2013). To determine the density of TH-positive varicosities,
we used the optical fractionator probe of Stereoinvestigator R©

(MicroBrightField) (Manitt et al., 2011, 2013). The coefficient of
error was below 0.1 for all regions of interest in all sampled brains.
Counts were performed blind.

Medial PFC Analysis
The medial PFC subregions were delineated according to plates
spanning 14–18 of the mouse brain atlas (Franklin and Paxinos,
2007). A 5× magnification was used to trace the contours of the
dense TH-positive innervation of the subregions using a Leica
DM400B microscope (Figure 3B). An unbiased counting frame
(25 × 25 µm) was superimposed on each contour and counts
were made at regular predetermined intervals (x = 175 µm,
y = 175 µm) from a random start point. Counting of varicosities
was performed at ×100 magnification on 5 of the 12 sections

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2020 | Volume 8 | Article 487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00487 June 23, 2020 Time: 15:38 # 5

Cuesta et al. Adolescent Dopamine Targeting Requires Netrin-1

contained within the rostrocaudal borders of our region of
interest (Plates 14–18; 1:4 series). A guard zone of 5 µm was used
and the optical dissector height was set to 10 µm.

Analysis of Spine Density and
Morphology
Dendrites from GFP-positive neurons contained in the NAcc
were systematically selected for imaging fluorescence, using a
confocal microscope (Olympus FV 1200) at 60× immersion
objective at 4× zoom and 1024 × 1024 pixels resolution. The Z
stacks acquisition were performed at 0.3 µm increments. For each
mouse, approximately 5–8 dendritic segments were quantified
using NeuronStudio software1. Only dendritic segments from
both hemispheres with at least 10 µm of length and that
were clearly distinguishable from other segments were included
in the analysis. NeuronStudio determines dendrite length
semi-automatically and classifies individual spines into thin,
mushroom, or stubby according to (i) spine aspect ratios, (ii)
head-to-neck diameter ratios, and (iii) head diameters. Thin
spines have a neck ratio value (head to neck diameter ratio)
less than 1.1 and a length to spine head diameter greater than
2.0. Mushroom spines have a neck ratio value above 1.1 and
a spine head diameter equal or greater than 0.3 µm. Stubby
spines were discernable by the lack of neck. Each dendritic
segment was analyzed separately according to the number
of spines and the diameter of the head spines. The density
and head diameter were calculated per 10 µm of dendritic
length. The analysis was performed by an experimenter fully
blinded across groups.

Acute Amphetamine Behavioral
Response
Locomotor activity was quantified as before (Reynolds et al.,
2015) using an infrared activity monitoring apparatus modified
for use with mice (AccuScan Instruments, Columbus, OH,
United States). Locomotion was measured as distance traveled
(cm). Stereotypy counts were measured as the number of
breaks of the same photocell beam or set of beams repeatedly
as defined by the AccuScan system. D-amphetamine sulfate
salt was dissolved in 0.9% saline (2.5 mg/kg) and injected
intraperitoneally (i.p.) to adult mice microinfused with the
shRNA for Netrin-1 or the scrambled sequence into the NAcc
during adolescence.

Statistical Analysis
All statistical analyses were performed using Prism 6 for
Windows (GraphPad Software, La Jolla, CA, United States).
All values are represented as means ± S.E.M. A significance
threshold of α = 0.05 was used in all the experiments. Statistical
differences between two groups were analyzed with Student’s
t-tests. All data are normally distributed, and the variance is
similar between groups. Statistical differences between more than
two groups were analyzed with one-way or two-way ANOVAs,
followed by Bonferroni multiple comparison post hoc tests.

1http://research.mssm.edu/cnic/tools-ns.html

The sample size in all the experiments varied from 4 to 8
animals per group.

RESULTS

Dynamic Postnatal Developmental
Expression of Netrin-1 Expression in the
NAcc
We have shown previously that Dcc mRNA and protein
expression in the VTA decreases from adolescence to adulthood
(Manitt et al., 2010; Cuesta et al., 2018). If Netrin-1 in the
NAcc contributes to DCC-dependent dopamine axon targeting
in adolescence, its expression may follow a similar expression
pattern to DCC. We measured Netrin-1 expression in the NAcc
of mice at PND21±1, PND35±1, and PND75±15 (Figure 1B)
and found that the levels are high in early adolescence,
but diminish significantly by adulthood (Figure 1C; one-
way ANOVA: F(2,23) = 5.20, p = 0.014; the expression at
PND21 is significantly higher than PND75; post hoc Bonferroni,
p < 0.05). The similarity between Netrin-1 (Figure 1B) and DCC
protein expression patterns (Figure 1C inset, one-way ANOVA:
F(2,14) = 3.50, p = 0.06, adapted from Manitt et al., 2010) during
postnatal life suggests that coordinated regulatory mechanisms
titrate the expression of this receptor-ligand pair.

Silencing Netrin-1 Expression in vivo
We tested the efficiency of three different viral constructs
expressing shRNA sequences against Netrin-1 (Netrin-1 shRNA
1–3) and their corresponding scrambled sequences (Scrambled
1–3) using cultured HEK cells that co-expressed a mouse Netrin-
1 protein with a C-terminal Flag tag (Figure 2A). Infection
with the Netrin-1 shRNA constructs differentially downregulated
Netrin-1 expression in comparison to the Netrin-1-Flag construct
and the scrambled sequences. However, of the three constructs
we designed, only constructs 1 and 2 downregulated Netrin-1
expression by more than 50%. These findings were replicated in a
second separate experiment (data not shown).

We packaged the shRNA construct 2 (henceforth referred
to as “Netrin-1 shRNA”) into a lentivirus and injected
it bilaterally into the NAcc of P21 mice. Control mice
received bilateral microinfusions of the corresponding scrambled
sequence (Figure 2B). Netrin-1 protein expression was reduced
(∼60%) in the NAcc 2 weeks following Netrin-1 shRNA
microinfusions, in comparison to control groups (Figure 2C,
t(7) = 3.76, p = 0.007). This effect is transient because Netrin-
1 protein expression in the NAcc of adult mice that received
Netrin-1 shRNA or scrambled construct microinfusions in early
adolescence do not differ (Figure 2D, t(8) = 1.25, p = 0.25).

Netrin-1 Downregulation in the Nacc
During Adolescence Disrupts Pfc Da
Connectivity
We used unbiased stereology to assess whether the
downregulation of Netrin-1 in the NAcc during adolescence
affects PFC dopamine connectivity in adulthood (Figures 3A–C).
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FIGURE 2 | Downregulation of Netrin-1 protein expression in adolescence
in vivo. (A) HEK293 cells transfected to express a mouse Netrin-1 protein with
a C-terminal Flag tag were co-transfected with three different shRNA
constructs (Netrin-1 shRNA 1, 2, and 3), their corresponding Scrambled (Scr)
sequences (Scr 1, 2 and 3) or mock transfected. Only Netrin-1 shRNA
constructs 1 and 2 downregulated Netrin-1 protein expression by more than
50% in comparison to cells transfected with the corresponding scrambled
sequence or the mock transfected Netrin-1-Flag expressing cells. This finding
was replicated in two separate experiments. (B) Timeline and experimental
procedures for in vivo regulation of Netrin-1 protein expression. (C) Significant
downregulation of Netrin-1 protein expression in the nucleus accumbens
(NAcc) 2 weeks after microinfusing a lentiviral construct containing the
Netrin-1 shRNA sequence (*significantly different from Scrambled; p = 0.007;
n = 4–5/group). (D) Netrin-1 shRNA-mediated downregulation in adolescence
does not alter Netrin-1 protein expression in adulthood (n = 4–6/group). All
data are shown as mean ± SEM.

We found a significant increase in the span (i.e., volume) of
the dopamine input across the three subregions of the PFC,
infralimbic, prelimbic and cingulate in adult mice microinfused
with theNetrin-1 shRNA construct in adolescence, in comparison
to scrambled controls (Figure 3D: two-way ANOVA, significant
main effect of virus microinfusion, F(1,7) = 9.09, p = 0.0195;
no significant virus microinfusion × medial PFC region
interaction, F(2,14) = 0.117, p = 0.89; significant main effect
of medial PFC region, F(2,14) = 139.1, p < 0.0001). This
effect is accompanied by a significant increase in the total
number of dopamine varicosities in Netrin-1 shRNA mice
versus controls (Figure 3E two-way ANOVA, significant
main effect of virus microinfusion, F(1,7) = 14.23, p = 0.007;
no significant virus microinfusion × medial PFC region
interaction, F(2,14) = 0.173, p = 0.21; significant main effect
of medial PFC region, F(2,14) = 118.5, p < 0.0001, post hoc
Bonferroni, significant difference in the prelimbic subregion
between Netrin-1 shRNA- and Scrambled-infused mice,
p = 0.002). There are no differences between Netrin-1 shRNA and
scrambled groups in the density of PFC TH-positive varicosities
(Figure 3F: two-way ANOVA, no significant main effect of
virus microinfusion, F(1,7) = 0.63, p = 0.45; no significant virus
microinfusion × medial PFC region interaction, F(2,14) = 0.58,
p = 0.57; no significant main effect of medial PFC region,
F(2,14) = 1.10, p = 0.36). These anatomical changes are similar
to those observed in adult mice with downregulation of DCC
receptors in dopamine axons in adolescence, suggesting that
Netrin-1 signaling through DCC receptors is required for
mesolimbic dopamine axon targeting in the NAcc (Manitt
et al., 2011, 2013; Reynolds et al., 2018). There was no visible
tissue damage present in the site of infection (Figure 3K),
which is consistent with previous reports (Naldini et al.,
1996; Blömer et al., 1997; Davidson and Breakefield, 2003;
Ahmed et al., 2004).

Silencing Netrin-1 in the NAcc in
Adolescence Remodels Spine
Morphology in Adulthood
Netrin-1 promotes synapse formation in the PFC (Goldman
et al., 2013) and potentiates excitatory synaptic transmission in
the hippocampus via the insertion of GluA1 AMPA receptors
in adult mice (Glasgow et al., 2018). We analyzed the dendritic
segments of this neurons in adult mice bilaterally microinfused
with either Netrin-1 shRNA or Scrambled virus into the NAcc
at P21 (Figure 3A). Total dendritic spine density is significantly
reduced in the Netrin-1 shRNA group when compared with
Scrambled controls (Figure 3G: t(41) = 2.04, p = 0.048) and
there is a significant reduction in the density of mushroom
spines in the Netrin-1 shRNA group compared to Scrambled-
infused mice (Figures 3I,J: two-way ANOVA, significant main
effect of virus microinfusion, F(1,41) = 4.26, p = 0.045; significant
virus microinfusion × spine type interaction, F(2,82) = 4.38,
p = 0.016; significant main effect of spine type, F(2,82) = 29.86,
p < 0.0001, post hoc Bonferroni, significant difference in
mushroom spines between Netrin-1 shRNA- and Scrambled-
infused mice, p = 0.0038). While not significant, we also observed
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FIGURE 3 | Netrin-1 downregulation in the nucleus accumbens (NAcc) during adolescence disrupts dopamine connectivity in the adult prefrontal cortex (PFC) and
alters NAcc dendritic spine structure in adulthood. (A) Timeline of treatment and experimental procedures. (B) Schematic representation of the regions of interest in
the medial PFC outlined according to the Mouse Brain Atlas (Franklin and Paxinos, 2007). The cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subregions of the
medial PFC were analyzed. Left panels: (i) micrograph of a coronal section of the pregenual medial PFC at a low magnification (×5) showing an overlay of the
contours traced to delineate subregions of interest; (ii) micrograph of a coronal section of the pregenual mPFC a high magnification (×100) showing the tyrosine
hydroxylase (TH)-positive varicosities (adapted from Reynolds et al., 2015). (C) Representative serial micrographs of an adult mouse showing lentiviral infection in the
NAcc. Adult mice microinfused with a lentivirus containing the Netrin-1 shRNA in the NAcc in adolescence have (D) increased dopamine input volume (E) and total
number of TH-positive varicosities in comparison to their shRNA scrambled microinfused counterparts (*significantly different from Scrambled microinfused mice,
p < 0.05). (F) There are no differences in TH-positive varicosities between groups. n = 4–5/group. Netrin-1 downregulation in the NAcc in adolescence leads to local
structural changes in medium spiny neurons (MSN) in adulthood. Specifically, in comparison to Scrambled, Netrin-1 shRNA induces (G) a reduction in dendritic spine
density, (H) a trend toward decreased spine head diameter (p = 0.07), and (I) a decrease in mushroom-type spines (*significantly different from Scrambled
microinfused mice, p < 0.05) n = 3-4/group. (J) Representative images of dendritic segments of MSN from a Scrambled- or shRNA- injected mice. White arrows
indicate mushroom spines. (K) High magnification picture of an injection site stained with nuclear marker DAPI reveals not significant cells loss in the infected area.
All data are shown as mean ± SEM.

a trend toward a reduction in the total head diameter (Figure 3H:
t(41) = 1.82, p = 0.076).

Reduced Sensitivity to the Locomotor
Effects of Amphetamine in Adulthood as
a Consequence of Silencing Netrin-1 in
Adolescence
We have shown that reduced Dcc expression in dopamine
neurons in adolescence leads to blunted locomotor response
to amphetamine in adulthood (Manitt et al., 2013), and that
this effect results from increased dopamine input to the

PFC (Pokinko et al., 2015). Here we investigated whether
silencing Netrin-1 in the NAcc in adolescence would lead
to a similar phenotype. P21 mice were microinfused in the
NAcc with the Netrin-1 shRNA or Scrambled lentivirus. In
adulthood, all mice were administered an i.p. injection of
saline or amphetamine (2.5 mg/kg; Figure 4A). There are no
group differences in locomotor activity or in stereotypy counts
following i.p. saline administration (Figure 4B, distance traveled:
no significant main effect of virus microinfusion: F(1,20) = 0.80,
p = 0.38, no significant virus microinfusion × time interaction:
F(17,340) = 0.79, p = 0.70; significant main effect of time:
F(17,340) = 13.8, p < 0.0001; stereotype counts (inset): no

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 June 2020 | Volume 8 | Article 487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00487 June 23, 2020 Time: 15:38 # 8

Cuesta et al. Adolescent Dopamine Targeting Requires Netrin-1

FIGURE 4 | Netrin-1 downregulation in the nucleus accumbens (NAcc) in adolescence leads to reduced sensitivity to amphetamine in adulthood. (A) Timeline of
drug treatment and experimental procedures. Distance traveled and total stereotypy (inset) after (B) a saline i.p. injection or (C) an amphetamine i.p. injection
(2.5 mg/kg). n = 10–12/group. All data are shown as mean ± SEM.

significant main effect of virus microinfusion: F(1,20) = 3.78,
p = 0.066, significant virus microinfusion × time interaction:
F(17,340) = 2.02, p = 0.010, significant main effect of time:

F(17,340) = 5.09, p < 0.0001). However, mice that had
received Netrin-1 shRNA infusions in adolescence show reduced
amphetamine-induced locomotion and stereotypy counts in
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adulthood, when compared to Scrambled controls (Figure 4C;
distance traveled: significant main effect of virus microinfusion:
F(1,20) = 4.92, p = 0.038, significant virus microinfusion × time
interaction: F(17,340) = 2.13, p = 0.006; significant main effect
of time: F(17,340) = 8.55, p < 0.0001; stereotype counts (inset):
no significant main effect of virus microinfusion: F(1,20) = 3.78,
p = 0.066, significant virus microinfusion × time interaction:
F(17,340) = 2.02, p = 0.010, significant main effect of time:
F(17,340) = 5.09, p < 0.0001).

DISCUSSION

The fine arrangement of neuronal connectivity during
development involves the coordinated action of guidance
cues and their receptors. DCC receptors within VTA dopamine
neurons are crucial for the targeting of their mesolimbic
projections to the NAcc in adolescence and for delimiting
the extent of their input to the PFC (Manitt et al., 2013;
Reynolds et al., 2018). Here we assessed whether dopamine
axon targeting in adolescence also requires Netrin-1 expression
in the NAcc. We find that similar to the expression of DCC
in the VTA, Netrin-1 levels in the NAcc are dynamic across
postnatal life, with levels transitioning from high to low in
adolescence. Netrin-1 downregulation, specifically in the NAcc
during adolescence, results in an increased expanse of PFC
dopamine innervation, in altered spine morphology of NAcc
medium spiny neurons (MSNs), and in reduced sensitivity to
the behavioral effects of stimulant drugs of abuse in adulthood.
These developmental changes and adult behavioral outcomes
mimic the phenotypes induced by Dcc haploinsufficiency,
strongly suggesting that the interaction between DCC receptors
in dopamine axons and Netrin-1 in the NAcc is required for
the appropriate establishment of mesocorticolimbic dopamine
circuitry in adolescence.

We have previously observed a high-to-low complementary
expression of Netrin-1 in the NAcc and of DCC receptors in
mesolimbic dopamine axons during adolescence and adulthood
that suggested a direct interaction of DCC and Netrin-1 signaling
(Manitt et al., 2011). The similarity in the postnatal expression
patterns of Netrin-1 in the NAcc and DCC in the VTA support
this idea and raise the possibility that the regulation of ligand and
receptor levels may involve a common mechanism and may be
required for mesolimbic DA axons to recognize the NAcc as their
final target (Reynolds et al., 2015, 2018).

Spines of MSN in the NAcc emerge after the second
postnatal week, with peak spine density occurring around the
third postnatal week in rodents (Antonopoulos et al., 2002).
Netrin-1 in the NAcc appears to participate in this process
because silencing Netrin-1 in the NAcc at PND21, produces
a decrease in spine density in adulthood. Netrin-1 has been
shown to promote dendritic arbor complexity (Goldman et al.,
2013) and to facilitate the microenvironment that stimulates
filopodia extension and synaptogenesis (Colon-Ramos et al.,
2007; Shen and Cowan, 2010; Poon et al., 2013). This process
seems to involve alterations in the organization of the actin
cytoskeleton (Hlushchenko et al., 2016), the clustering of pre- and

post-synaptic proteins via Src kinase signaling and m-Tor-
dependent protein translation (Goldman et al., 2013), and the
activation of the JNK1/c-Jun signaling pathway (Zheng et al.,
2018). The Rho family of small GTPases, Rac1 and Cdc42, is
an integral component of the signaling pathway that regulates
spine morphogenesis (Luo et al., 1996; Luo, 2000; Nakayama
et al., 2000). Netrin-1/DCC interactions are known to activate
both Rac1- and Cdc42-mediated actin polymerization (De
Vries and Cooper, 2008; see Lanoue and Cooper, 2019 for an
extensive review).

The overall reduction in spine density after Netrin-1
downregulation appears to be driven by a reduction in the density
of mushroom spines, which are required for synapse maturation
and stabilization (Matsuzaki et al., 2001; Berry and Nedivi,
2017). Mushroom spines contain the largest excitatory synapses
and contain AMPA receptors (Zito et al., 2009). The reduction
of mushroom spines suggests that viral-mediated silencing of
Netrin-1 disrupts the mechanisms by which AMPA receptors
are recruited. The structural plasticity of dendrites decreases as
circuits mature. During adolescence (P21–P60), changes ongoing
in dendrite branches begin to stabilize in rodents, while a fraction
of dendritic spines remain dynamic, with a net loss of spines
(Koleske, 2013). In contrast to early timepoints, it is possible
that Netrin-1 expression in the NAcc becomes more important
for maintaining the stabilized/matured (mushroom) spines at the
beginning of adolescence. In this case, Netrin-1 downregulation
in the NAcc in adolescence could lead to a net loss of this
type of spines without affecting the stability or number of
immature thin spines.

Adult mice microinfused with the Netrin-1 shRNA in
adolescence show diminished locomotor response to a challenge
injection of the stimulant drug amphetamine. The increase
in PFC dopamine connectivity is likely underlying these
behavioral effects, considering that mesocortical dopamine
neurotransmission exerts inhibitory control over mesolimbic
dopamine activity (Grace, 1991; Le Moal and Simon, 1991;
Ventura et al., 2004; Pokinko et al., 2015). The increase in
PFC dopamine innervation observed in mice treated with
the Netrin-1 shRNA likely prevents amphetamine-induced
dopamine release into the NAcc, resulting in the observed
blunted drug locomotor response. This idea is consistent with
the behavioral phenotype displayed by adult mice with Netrin-
1 or with Dcc haploinsufficiency (Grant et al., 2007; Pokinko
et al., 2015). These mice show reduced locomotor activity in
response to amphetamine and this effect is restored following 6-
OHDA intra-PFC injections (Pokinko et al., 2015). We cannot
rule out that alterations in synaptic organization at the level of
the NAcc may account for the behavioral phenotype observed in
adult mice with Netrin-1 shRNA infusions in adolescence. MSN
receive multiple excitatory synaptic inputs via their numerous
spines. A reduction in spine density and altered shape may
render MSNs less excitable, affecting NAcc-mediated behaviors,
including drug-induced locomotor activity. Indeed, dopamine
and excitatory inputs converge onto MSN and mediate behavioral
and incentive motivational effects of amphetamine and other
psychostimulants (Swanson and Kalivas, 2000; Sesack et al., 2003;
Li et al., 2011).
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CONCLUSION

In summary, our findings indicate that the complementary
interaction between DCC receptors expressed by dopamine
axons and Netrin-1 expressed by NAcc neurons and located
in the surrounding extracellular matrix is required for
the developmental organization of the mesocorticolimbic
dopamine circuitry. Environmental risk or protective factors for
psychopathology may impact the development of this system
by regulating DCC and/or Netrin-1 expression in adolescence.
Adolescent exposure to recreational-like doses of amphetamine
[i.e., doses that reach peak plasma concentrations within the
range of those seen in recreational use (Cuesta et al., 2019)]
downregulates both DCC in dopamine neurons and Netrin-1
in the NAcc, disrupting the development of dopamine circuitry
and of cognitive control (Yetnikoff et al., 2010; Reynolds et al.,
2015, 2018; Cuesta et al., 2018, 2019; Reynolds and Flores, 2019).
In contrast, therapeutic-like doses of amphetamine [i.e., doses
that reach peak plasma concentrations within the range of those
observed in therapeutic settings (Cuesta et al., 2019)] upregulate
DCC protein expression without altering Netrin-1, leading to
protective-like phenotypes. Interventions for adolescents are
currently lacking (Das et al., 2016). Targeting DCC or Netrin-1
may serve as a novel preventive/treatment strategy for youth.
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