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Glioma is a fatal brain tumor characterized by rapid proliferation and treatment
resistance. Ferroptosis is a newly discovered programmed cell death and plays a
crucial role in the occurrence and progression of tumors. In this study, we identified
ferroptosis specific markers to reveal the relationship between ferroptosis-related genes
and glioma by analyzing whole transcriptome data from Chinese Glioma Genome Atlas,
The Cancer Genome Atlas dataset, GSE16011 dataset, and the Repository of Molecular
Brain Neoplasia Data dataset. Nineteen ferroptosis-related genes with clinical and
pathological features of glioma were identified as highly correlated. Functional assays in
glioma cell lines indicated the association of ferroptosis with temozolomide resistance,
autophagy, and glioma cell migration. Therefore, the identified ferroptosis-related genes
were significantly correlated with glioma progression.

Keywords: ferroptosis, prognosis, glioma, gene signature, dataset

INTRODUCTION

Glioma is the most common primary malignant tumor in the central nervous system (Rasmussen
et al., 2017). It can be graded from I to IV in accordance with the 2016 World Health Organization
(WHO) classification (Louis et al., 2016). Owing to high proliferative rate, heterogeneity of tumor
cells and diffuse infiltrating property, high-grade glioma is difficult to completely removed by

Abbreviations: 1p/19q, the short arm of chromosome 1 and the long arm of chromosome 19; AKR1C2, Aldo-Keto
Reductase Family 1 Member C2; ALOX12B, Arachidonate 12-Lipoxygenase, 12R Type; ALOX5, arachidonate 5-lipoxygenase;
ALOX5AP, arachidonate 5-lipoxygenase activating protein; ATP5G3, ATP synthase membrane subunit C locus 3; ATRX,
alpha thalassemia/mental retardation syndrome X-linked; CBS, cystathionine beta synthase; CCK-8, cell counting kit-8
assay kits; CGCG, Chinese Glioma Cooperative Group; CGGA, Chinese Glioma Genome Atlas; CISD1, CDGSH iron sulfur
domain 1; CL, confidence level; DMEM, Dulbecco’s modified Eagle’s medium; DPP4, dipeptidyl peptidase 4; EGFR, epidermal
growth factor receptor; EMC2, ER membrane protein complex subunit 2; FANCD2, FA complementation group D2; FBS,
bovine serum albumin; G6PD, glucose-6-phosphate dehydrogenase; GBM, glioblastoma multiforme; GCLC, glutamate-
cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit; GEO, gene expression omnibus; GO,
gene ontology; GPX4, glutathione peroxidase 4; GSCs, stemness of glioma stem cells; GSH, glutathione; GSVA, gene set
variation analysis; HIF, hypoxia-inducible factor; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HR, Hazard ratios;
HSPB1, heat shock protein beta-1; ICD-O-3, International Classification of Diseases–Oncology, version 3; IDH, isocitrate
dehydrogenase; KEGG, Kyoto Encyclopedia of Genes and Genomes; LOXs, lipoxygenases; LPCAT3, lysophosphatidylcholine
acyltransferase 3; MGMT, O6-methylguanine-DNA methyltransferase; NCOA4, nuclear receptor coactivator 4; NFE2L2,
nuclear factor, erythroid 2 like 2; OS, overall survival; PCD, programmed cell death; PUFAs, polyunsaturated fatty
acids; REMBRANDT, The Repository of Molecular Brain Neoplasia Data; ROC, receiver operating characteristic; ROS,
reactive oxygen species; SAT1, spermine N1-acetyltransferase 1; SIRT2, sirtuin 2; TCGA, The Cancer Genome Atlas; TMZ,
temozolomide; TRAIL, TNF-related apoptosis-inducing ligand; U251TR, temozolomide resistant U251MG cells; U87TR,
temozolomide resistant U87MG cells; WHO, World Health Organization.
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surgery (Lara-Velazquez et al., 2017; Manrique-Guzman
et al., 2017; Ferguson and McCutcheon, 2018). Moreover,
chemotherapy resistance often occurs and leads to treatment
failure and tumor recurrence (Osuka and Van Meir, 2017).
Glioblastoma (WHO grade IV glioma, GBM) has a median
overall survival (OS) of only 14.6 months (Lara-Velazquez et al.,
2017). Molecular markers, such as O6-methylguanine-DNA
methyltransferase (MGMT) methylation, codeletion of the
short arm of chromosome 1 and the long arm of chromosome
19 (1p/19q), mutations in isocitrate dehydrogenase (IDH),
mutations in alpha thalassemia/mental retardation syndrome
X-linked, and epidermal growth factor receptor are being
used in molecular pathological diagnosis, treatment options,
and prognostic evaluation with glioma patients (Zeng et al.,
2015). These molecular markers play a central role in regulating
tumor cell proliferation and death (Ceccarelli et al., 2016;
Stupp et al., 2019). Numerous glioma therapies targeting these
molecular markers are used in clinical trials, but few have
ultimately succeeded. Thus, novel targets for glioma therapy
need to be identified.

Previous studies have confirmed that programmed cell
death (PCD) is related to tumorigenesis (Labi and Erlacher,
2015), progression (Lee et al., 2018) and metastatic processes
(Verschooten et al., 2012). Cancer treatment ultimately aims
to induce cell-specific PCD in tumor tissues. Ferroptosis,
characterized by iron-dependent lipid peroxide accumulation,
is a newly discovered PCD distinct from traditional apoptosis
or autophagic cell death or necrosis (Dixon et al., 2012).
However, the roles of ferroptosis in tumor functions have
yet to be elucidated. Notably, various studies have confirmed
the pivotal role of ferroptosis in tumor development and
therapies (Shen et al., 2018; Gan, 2019; Liang et al., 2019;
Stockwell and Jiang, 2019). Ferroptotic regulatory genes such
as P53 (Junttila and Evan, 2009), FANCD2 (Han et al., 2017),
GPX4 (Liu H. et al., 2018), HSPB1 (Arrigo and Gibert,
2012), and DPP4 (Enz et al., 2019) are closely correlated to
tumorigenesis and progression. Increasing evidence has shown
that numerous tumor cells, including ovarian cancer cells
(Carbone and Melino, 2019), adrenocortical carcinomas cells
(Belavgeni et al., 2019), pancreatic cells (Eling et al., 2015), and
hepatocellular carcinoma cells (Yang et al., 2014), are sensitive
to ferroptosis. Moreover, combined with erastin, a ferroptosis
inducer, chemotherapeutic drugs can improve their curative
effect on GBM cells (Chen et al., 2015), acute myeloid leukemia
cells (Yu et al., 2015), lung cancer cells (Guo et al., 2018), ovarian
cancer cells (Sato et al., 2018), and gastric cancer cells (Zou
et al., 2016). Therefore, ferroptosis can be a potential target
for cancer therapy.

In the present study, we analyzed the differential expression
of ferroptosis-related genes in glioma samples to identify
the enriched pathways and their biological functions. We
determined that ferroptosis-related genes were associated with
the prognosis of glioma. Using the 19 identified ferroptosis-
related genes, we accurately predicted the outcome for glioma
patients. The underlying mechanisms were ultimately
confirmed in in vitro studies. Overall, our data suggest
that ferroptosis-related genes play pivotal roles in glioma

progression and are potential prognostic markers and therapeutic
targets for glioma.

MATERIALS AND METHODS

Datasets
All datasets used in this study were available to the public.
Expression RNA-seq data and clinical and molecular information
of patients were obtained from the Chinese Glioma Genome
Atlas (CGGA) dataset1 as a training set. The Cancer Genome
Atlas (TCGA) dataset, the GSE16011 dataset, the Repository
of Molecular Brain Neoplasia Data (REMBRANDT) dataset,
and associated clinical information were obtained from the
TCGA official website2, GEO website3, and GlioVis website4 as
validation sets. The characteristics of the glioma patients in these
4 datasets—OS, age, gender, WHO grade, TCGA subtypes, and
molecular pathological features—have been recorded in previous
studies (Gravendeel et al., 2009; Bao et al., 2014; Tomczak et al.,
2015; Gusev et al., 2018) (Table 1).

Reagents
Dulbecco’s modified Eagle’s medium (DMEM), and fetal bovine
serum (FBS) were purchased from Gibco (Thermo Fisher
Scientific, Inc., Waltham, MA, United States). Erastin (Catalog
No. S7242), a ferroptosis activator, was purchased from Selleck
Chemicals LLC (Houston TX, USA). Antibodies specific for

1http://www.cgga.org.cn
2https://portal.gdc.cancer.gov
3https://www.ncbi.nlm.nih.gov/geo/
4http://gliovis.bioinfo.cnio.es/

TABLE 1 | Characteristics of patients in CGGA, TCGA, GSE16011, and
REMBRANDT datasets.

Characteristic N CGGA TCGA GSE16011 REMBRANDT

Total cases 1783 325 699 284 475

Gender

Male 974 203 368 182 221

Female 608 122 268 92 126

Age (years)

≤40 356 31 246 79

>40 795 208 390 197

Grade

I 8 8

II 455 109 223 24 99

III 486 72 245 85 84

IV 605 144 168 159 134

Subtype

Classical 256 74 92 90

Mesenchymal 313 68 105 140

Proneural 514 102 250 162

Neural 278 81 115 82

IDH Status

Mutation 666 142 443 81

Wildtype 554 168 246 140
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PD-L1 (ab213524) were supplied by Abcam (Cambridge, MA,
United States). PARP (#9542) and LC3A/B (#12741) were
purchased from Cell Signaling Technology (Danvers, MA,
United States). β-actin (66009-1-Ig) was supplied by Proteintech
(Rosemont, United States).

Cell Culture
The human glioma cell line U87MG was obtained from the Cell
Resource Center, Peking Union Medical College (Beijing, China),
and U251MG was provided by the American Type Culture
Collection (Manassas, VA, United States). Temozolomide
(TMZ)-resistant U87MG cells (U87TR) and TMZ-resistant
U251MG cells (U251TR) of GBM sub-cell lines, were established
by repetitive exposure to increasing TMZ concentrations in vitro
in our laboratory. Cells were cultured in the DMEM culture
medium supplemented with 10% FBS with a standard humidified
incubator under 5% CO2 at 37◦C.

RNA Sequencing of Glioma Cell Lines
Total RNA from U251MG, U87MG, U251TR, and U87TR cell
lines were extracted and quantified. Up to 3 µg RNA per sample
was used as the input material for library preparation. The
library preparation was conducted using the standard Illumina
HiSeq platform, and 150 bp paired-end reads from transcriptome
sequencing were generated. After quality control procedures,
the data were mapped to the human hg19 reference by STAR
(Dobin et al., 2013). The expression level (Fragments per Kilobase
Million, FPKM) of each gene was calculated based on the
length of the gene and the read count mapped to this gene
The RNA seq dataset was submitted to https://figshare.com/s/
7af369b94634a51b11f1 for reference.

Cell Viability Assay
Cell Counting Kit-8 Assay Kits (CCK-8; Dojindo, Kumamoto,
Japan) were used to determine cell viability. The cells were seeded
at a density of 2 × 103 cells/well in 96-well plates and were
incubated with serum-containing media for 24 h. The cells were
treated with erastin at varying concentrations (0, 10, 20, 30, 40,
and 50 µM) on U251MG, U251TR, U87MG, and U87TR cells
for 24 h. The medium was replaced with 100 µL of the fresh
medium, and 10 µL of the CCK-8 solution was added to each
well. Blank controls without cells were prepared. Subsequently,
100 µL of each sample was transferred to a new 96-well plate and
was analyzed with the plate reader Infinite 200 PRO (Tecan Life
Sciences). The absorbance values were determined at 450 nm.

Western Blot Assay
The procedures for Western blot were described in detail in a
previous study (Liu H. J. et al., 2018). In the current study, after
incubation with primary antibodies, the HRP labeled anti-rabbit
or anti-mouse secondary antibody was used for incubation at
room temperature for another period of 1 h. Specific protein
bands were detected using an ECL Western blotting kit, following
the recommended procedure. β-actin was used as an internal
control for sample loading and standardization.

Migration Assay
The Transwell system (24 wells, 8 µm pore size with a
polycarbonate membrane) was used for in vitro migration
assays. The U251MG, U251TR, U87MG, and U87TR cells were
pretreated with erastin (50 µM) or without erastin. A total of
1 × 105 cells were suspended in 100 µL serum-free medium
and then added to the upper chamber. The medium containing
10% FBS and erastin at different concentrations was added
to the lower chamber. The cells in the upper chamber were
carefully wiped using a cotton swab after 2 h for the U87MG
and U87TR cells or 7 h for the U251MG and U251TR cells.
The cells that were attached to the lower surface of the
filter were fixed with 4% paraformaldehyde and then stained
with crystal violet. The migrated cells on the lower surface
of the membrane filter were photographed using an Axio
Observer3 microscope (Carl Zeiss), and 5 randomized fields
were counted using the Image J software. All experiments were
repeated three times.

Gene Signature Building
We chose 40 genes, which were verified to be involved
in ferroptosis (Stockwell et al., 2017). Univariate Cox
analysis was first performed, and genes with P values
less than or equal to 0.0001 were retained. We then
developed a risk score model for each patient on the
basis of the expression level of the 19 genes, and their
regression coefficients were derived from the univariate
Cox regression analysis. The risk score was expressed as
(exprgene1 × coefficientgene1) + (exprgene2 × coefficientgene2) + · · ·

+ (exprgene19 × coefficientgene19). The regression coefficients
derived from the training set were then applied into the three
other validation sets (TCGA, GSE16011, and REMBRANDT
datasets) to calculate the risk scores.

Statistical Analysis
The receiver operating characteristic (ROC) curve and a
nomogram were used to show the predictive accuracy of the
gene signature with the R package “survival ROC” (Heagerty
et al., 2000) and “rms” (Feng et al., 2017). The area under the
curve (AUC) of the ROC curves, concordance index (C-index),
and calibration curves of nomograms were calculated. Gene
ontology (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were applied in DAVID5

(Dennis et al., 2003) for functional annotation of the genes
positively correlated with risk score in the 4 cohorts. Gene
Set Variation Analysis (GSVA) was conducted to detect the
difference in expression with risk score by using the R package
GSVA (Hanzelmann et al., 2013). We classified the patients
in each dataset into two groups (high-risk-score and low-
risk-score groups) in accordance with the median risk score
of the ferroptosis-related gene signature. Kaplan–Meier curves
and the log-rank test were used to assess the differences
in OS between two groups. Independent prognostic factors
were identified by univariate and multivariate Cox regression
analysis. All statistical analyses were conducted using SPSS,

5http://david.abcc.ncifcrf.gov/home.jsp
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GraphPad Prism 7, or the R software. P < 0.05 was considered
statistically significant.

RESULTS

Identification of 19 Ferroptosis-Related
Genes
To characterize the ferroptosis-related gene expression pattern
in gliomas, we examined the RNA-seq data of glioma patients
from 4 datasets (CGGA, TCGA, REMBRANDT, and GSE16011).
First, univariate Cox regression analysis was performed to
identify the genes related to patient survival in the CGGA
dataset. Subsequently, 19 of the 40 ferroptosis-related genes
were selected in glioma patients (SAT1, ATP5G3, FANCD2,
HSPB1, HMGCR, CBS, GCLC, GCLM, CD44, ALOX12B,
ALOX5AP, CISD1, NFE2L2, EMC2, ALOX5, DPP4, AKR1C2,
LPCAT3, and NCOA4, P < 0.0001). A gene-based prognostic
model was then established to evaluate the risk of each
patient as described in the methods. Details on the 19 genes
are presented in Table 2. The risk scores of each patient
in these four datasets (CGGA, TCGA, REMBRANDT, and
GSE16011) were calculated. Heat maps were shown to present
the different expression levels of the 19 selected genes and
clinical information ordered by risk score in the CGGA
(Figure 1A), TCGA (Figure 1B), GSE16011 (Figure 1C), and
REMBRANDT (Figure 1D) datasets. In the CGGA cohort,
with an increase in risk score, the expression levels of
EMC2, AKR1C2, ALOX12B, CISD1, CBS, HMGCR, NCOA4,
and GCLC were distinctly downregulated. Meanwhile, the
expression levels of FANCD2, LPCAT3, ATP5G3, HSPB1,
ALOX5, ALOX5AP, CD44, GCLM, SAT1, DPP4, and NFE2L2
were upregulated. Clinical and molecular features, such as
WHO grade, age, classical subtypes, mesenchymal subtypes,
and IDH wild types were enriched in high-risk-score gliomas.
The other three cohorts showed similar patterns of genes and
clinical information. Notably, the MGMT gene with promoter
unmethylation was enriched in high-risk-score glioma in the
TCGA dataset. These results suggest that the risk score of
signatures of the 19 ferroptosis-related genes positively correlated
with glioma malignancy, and the expression levels of the 19
genes in the gliomas exhibit a pattern similar to those of the
other three datasets.

Association of Risk Scores With Patient
Prognosis and Glioma Grade
The distribution of risk scores in the CGGA, TCGA, GSE16011,
and REMBRANDT datasets is presented (Figures 2A–D).
Glioma patients were divided into low-risk and high-risk-
score groups on the basis of their median risk scores.
The OS of each patient was shown in the CGGA, TCGA,
GSE16011, and REMBRANDT (Figures 2E–H) datasets.
The patients with a low-risk-score had a markedly lower
mortality rate than those with a high-risk-score in these
four datasets. Meanwhile, with an increase in glioma grade,
the risk score increased. The highest increase in risk score

TABLE 2 | P-value and regression coefficient of 19 ferroptosis-related genes.

Gene p-value Coefficient

SAT1 9.19E-19 0.03262

ATP5G3 2.47E-19 0.690305

HSPB1 6.11E-17 0.545296

FANCD2 9.25E-17 1.059988

HMGCR 2.03E-12 −1.84672

CBS 3.60E-11 −1.44061

GCLC 2.60E-10 −1.09568

GCLM 3.67E-10 0.082152

CD44 5.78E-10 2.363275

ALOX12B 1.63E-08 −4.62635

ALOX5AP 1.01E-07 3.924738

CISD1 2.69E-07 −0.10964

NFE2L2 4.98E-07 0.815403

EMC2 7.77E-07 −0.04527

ALOX5 1.21E-06 6.23031

DPP4 1.00E-05 0.052881

AKR1C2 1.04E-05 −17.1096

LPCAT3 3.07E-05 0.04055

NCOA4 3.09E-05 −1.87573

was found in the WHO grade IV patients, whereas the
lowest increase in risk score was observed in the WHO
grade II patients. The WHO grade III patients were assigned
moderate risk scores in the CGGA, TCGA, GSE16011, and
REMBRANDT datasets (Figures 2I–L). All results were
significantly different, except for those in the GSE16011 dataset,
which could be attributable to the limited number of WHO
grade II patients.

Validation of 19 Ferroptosis Related
Gene Signature in Survival Using
Kaplan–Meier Curves
Patients with different kinds of glioma, such as pan-glioma
and WHO grade II–IV glioma, were divided into two groups
based on their median risk scores. The Kaplan–Meier curve
for the CGGA dataset showed that the high-risk patients
had significantly shorter OS than low-risk patients in the
glioma (Figure 3A), WHO grade II glioma (Figure 3B),
WHO grade III (Figure 3C), and WHO grade IV glioma
(Figure 3D) groups. Consistency of results was validated
for the TCGA (Figures 3E–H), GSE16011 (Figures 3I–
L), and REMBRANDT (Figures 3M–P) datasets. Moreover,
univariate Cox regression and multivariate Cox regression
of the signature of the 19 ferroptosis-related genes were
performed in the CGGA dataset (p < 0.001, univariate Cox
regression; p < 0.05, multivariate Cox regression, Table 3).
The independence of the clinical prognostic significance of
the signature in glioma was verified. The risk score showed
significance in both univariate Cox regression and multivariate
Cox regression. These consistent results were also validated in
the TCGA (Table 4), GSE16011 (Table 5), and REMBRANDT
(Table 6) datasets.
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FIGURE 1 | Ferroptosis-related genes expression profiles and correlation between signature risk score, gene expression and clinical or molecular pathological
features in CGGA, TCGA, GSE16011, and REMBRANDT datasets. (A–D) Heatmaps show the different expression levels of 19 ferroptosis-related genes horizontally
clustered in the CGGA dataset and clinical or molecular pathological features ranked by risk score of the signature of 19 ferroptosis-related genes in CGGA (A),
TCGA (B), GSE16011 (C), and REMBRANDT (D) datasets. Chinese Glioma Genome Atlas (CGGA); The Cancer Genome Atlas (TCGA); The Repository of Molecular
Brain Neoplasia Data (REMBRANDT); isocitrate dehydrogenase (IDH); methylguanine methyltransferase (MGMT); Karnofsky Performance Status (KPS); classical
(CL), mesenchymal (MES), neural (NE), and proneural (PN); alpha thalassemia/mental retardation syndrome X-linked (ATRX); telomerase reverse transcriptase (TERT);
chromosome (Chr); wild type (WT); codeletion (codel); female (F); male (M); grade (G); astrocytoma (A); oligodendroglioma (O); oligoastrocytoma (OA); anaplastic
astrocytoma (AA); anaplastic oligodendroglioma (AO); anaplastic oligodendroglioma (AOA); pilocytic astrocytoma, (PA); glioblastoma multiforme (GBM); loss of
heterozygosity (LOH).

FIGURE 2 | Distribution of risk score, OS, WHO grade in CGGA, TCGA, GSE16011 and REMBRANDT datasets. (A–D) mRNA risk score distribution and (E–H)
overall survival (OS) status in the four datasets. (I–L) association of risk score with WHO grades. ***P < 0.001, ****P < 0.0001.
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FIGURE 3 | Kaplan–Meier survival analysis for glioma patients with low and high risk scores in CGGA, TCGA, GSE16011, and REMBRANDT datasets. Kaplan–Meier
survival curve for glioma patients with a high risk score (red line) and a low risk score (blue line), classified as WHO grade II to IV in CGGA, TCGA, GSE16011, and
REMBRANDT datasets.

TABLE 3 | Univariate and multivariate Cox analysis of signature in CGGA dataset.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Signature 1.212 (1.174–1.251) <0.001 1.182 (1.126–1.242) <0.001

Age 1.038 (1.023–1.054) <0.001 0.987 (0.969–1.005) 0.155

WHO Grade 3.477 (2.716–4.452) <0.001 2.388 (1.739–3.280) <0.001

Chemotherapy 1.378 (0.963–1.971) 0.079 0.648 (0.439–0.958) 0.030

Radiotherapy 0.429 (0.296–0.622) <0.001 0.383 (0.258–0.570) <0.001

TABLE 4 | Univariate and multivariate Cox analysis of signature in TCGA dataset.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Signature 1.017 (1.014–1.020) <0.001 1.006 (1.001–1.010) 0.009

WHO Grade 4.794 (3,798–6,051) <0.001 2.332 (1.645–3.305) <0.001

Age 1.073 (1.061-1.084) <0.001 1.037 (1.021–1.054) <0.001

KPS 0.954 (0.944–0.965) <0.001 0.986 (0.973–1.000) 0.045
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TABLE 5 | Univariate and multivariate Cox analysis of signature in GSE16011 dataset.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Signature 1.028 (1.021–1.035) <0.001 1.025 (1.016–1.035) <0.001

Age 1.042 (1.032–1.053) <0.001 1.028 (1.014–1.042) <0.001

WHO Grade 2.574 (2.047–3.240) <0.001 1.731 (1.256–2.386) 0.001

Chemotherapy 1.571 (1.013–2.436) 0.044 1.420 (0.895-2.254) 0.136

Radiotherapy 0.983 (0.725–1.333) 0.912 0.947 (0.336–2.671) 0.918

KPS 0.980 (0.973–0.986) <0.001 0.987 (0.978–0.997) 0.009

TABLE 6 | Univariate and multivariate Cox analysis of signature in REMBRANDT dataset.

Variable Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Signature 1.047 (1.037–1.056) <0.001 1.034 (1.020–1.047) <0.001

WHO Grade 1.694 (1.422–2.019) <0.001 1.272 (1.037–1.559) 0.021

Prognostic Validity of the Signature of 19
Ferroptosis-Related Genes for Glioma
The ROC curve was plotted to illustrate the sensitivity and
specificity of risk score in predicting the 5-year survival
of glioma patients. The signature of the 19 ferroptosis-
related genes exhibited striking prognostic validity, with
AUC values of 0.903, 0.76, 0.806, 0.772 in CGGA, TCGA,
GSE16011, and REMBRANDT (Figures 4A–D). A 5-year
survival nomogram prediction model was then built with
independent prognostic parameters for the OS of patients
in the CGGA dataset (Figure 4E). The C-indices were
0.79 in the primary CGGA dataset, 0.849 in the TCGA
dataset, 0.75 in the GSE16011 dataset, and 0.653 in the
REMBRANDT dataset as validation. Meanwhile, the calibration
plot for the probability of 5-year survival showed an optimal
agreement between observation and prediction in these datasets
(Figure 4F). These results indicated that the signature of the 19
ferroptosis-related genes was a reliable prognostic indicator in
glioma patients.

Functional Annotation of the Signature of
19 Ferroptosis-Related Genes
To clarify the potentially functional characteristics of the
signature of 19 ferroptosis-related genes in glioma, GO
analysis and KEGG analysis were conducted. We first
created a list of genes that were positively correlated with
risk score, as revealed by Pearson correlation analysis in
the CGGA (Pearson R > 0.6, p < 0.05), TCGA (Pearson
R > 0.5, p < 0.05), GSE16011 (Pearson R > 0.6, p < 0.05),
and REMBRANDT (Pearson R > 0.6, p < 0.05) datasets
(Supplementary Table S1). We then explored the biofunctions
of the genes in each dataset by GO analysis and KEGG
analysis using DAVID Bioinformatics Resources 6.8. Genes
with the p value of gene functions > 0.05 were excluded.
The GO terms of the remaining genes in the CGGA

(Supplementary Table S2), TCGA (Supplementary Table S3),
GSE16011 (Supplementary Table S4), and REMBRANDT
(Supplementary Table S5) datasets were listed. These gene
functions were excluded from the intersection of these
four datasets, as reflected in the Venn diagram of the
resulting GO terms in these datasets (Figure 5A). Ten of
the GO terms were included in all datasets (Figure 5B):
inflammatory response, innate immune response, antigen
processing and presentation of peptide antigen via MHC
class I, cellular defense response, antigen processing and
presentation, immune response, response to wounding,
cell death, and actin cytoskeleton organization and protein
processing. These functions play a key role in tumorigenesis
and progression. KEGG analysis was performed based on the
aforementioned gene list. Gene pathways with a p-value > 0.05
were excluded. The remaining gene pathways in the CGGA
(Supplementary Table S6), TCGA (Supplementary Table S7),
GSE16011 (Supplementary Table S8), and REMBRANDT
(Supplementary Table S9) datasets are listed. The results of
the KEGG pathway analysis in these datasets are reflected
in the Venn diagram in Figure 5C. Seven cancer-related
terms in KEGG were included in at least three datasets
(Figure 5D), which was consistent with the GO results. The
terms were hsa04670: leukocyte transendothelial migration,
hsa04210: apoptosis, hsa04610: complement and coagulation
cascades, hsa04142: lysosome, hsa05416: viral myocarditis,
hsa04510: focal adhesion, and hsa04810: regulation of actin
cytoskeleton. Subsequently, 14 gene sets related to the
GO terms were applied to GSVA analyses for validation.
Consistent with the GO results, heat maps showed that
the risk score was positively associated with these gene
sets in the CGGA, TCGA, GSE16011, and REMBRANDT
datasets (Figure 5E). All aforementioned results suggest that
the signature of the 19 ferroptosis-related genes is related
to cancer biology, particularly cell death, migration, and
immune-related functions.
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FIGURE 4 | ROC curves and a nomogram of the signature of 19 ferroptosis-related genes predicting survival in glioma patients. (A–D) ROC curves showing the
sensitivity and specificity of predicting 5-year survival with the ferroptosis-related gene signature in CGGA (A), TCGA (B), GSE16011 (C), and REMBRANDT (D)
datasets. (E) A nomogram for predicting 5-year cancer-specific survival in the CGGA dataset. (F) Calibration curves for the nomogram predicting 5-year survival in
glioma patients in the CGGA, TCGA, GSE16011, and REMBRANDT datasets.

Association of Ferroptosis With Glioma
Drug Resistance
To determine the relationship between ferroptosis and glioma
drug resistance, we periodically treated glioma cell lines U87
and U251 with TMZ and constructed their corresponding
drug-resistant strains U87TR and U251TR, respectively. The
mRNA expression profiling technique was used to detect the
expression levels of ferroptosis-related genes in different glioma
cell lines. Changes in the expression pattern of the 19 ferroptosis-
related genes were consistent (Figures 6A,B). Differences in
the risk score of the characteristics of the ferroptosis-related
genes were consistent as well. Meanwhile, the risk scores of
the drug-resistant cells were lower than those of the normal
tumor cells (Figures 6C,D). In the CGGA glioma dataset,
the risk score of the signature of the 19 ferroptosis-related
genes was negatively correlated to the expression level of the
well-recognized gene MGMT for TMZ resistance (Figure 6E),
verifying the results for the risk scores of resistant cells
cultured in vitro. We used erastin to treat the normal and
drug-resistant glioma cell lines at increasing doses and CCK-
8 assay to evaluate cell proliferation activity. We found that
the U87TR and U251TR cell lines were more sensitive to
erastin, compared with the U87MG and U251MG cell lines
(Figures 6F,G). These results indicate that compared with normal
glioma cells, TMZ-resistant cells are more likely to induce
ferroptosis. The lower their risk scores, the more likely the
occurrence of ferroptosis.

Relationship Between Ferroptosis and
Autophagy and Apoptosis
In the CGGA dataset, we analyzed the risk scores of the signature
of the 19 ferroptosis-related genes and autophagy markers
(SQSTM1, MAPLC3C, BECN1, and ATG9B), apoptosis markers
(CASP3, BCL2, BAX, and BAK1), and immune checkpoint
markers (PD-1, TIM3, LAG3, and B7-H3). We found that the
highest risk scores were positively correlated with these markers,
except BCL2 (Figures 7A–C). Moreover, we determined the
relationship between erastin-induced ferroptosis and autophagy,
apoptosis, and immune function in the GBM cell lines. Erastin
at different concentrations (0–50 µM) was used to treat the
U251 and U87 GBM cell lines. Erastin treatment increased
the expression of LC3 (an autophagy marker) and PD-L1 (an
immune checkpoint marker) (Figure 7D). However, treatment
with erastin failed to change the expression level of cleaved PARP,
an apoptotic molecule. These data suggest that erastin-induced
ferroptosis is closely related to autophagy and immune function
in tumor cells but not to apoptosis.

Ferroptosis Is Positively Associated With
Glioma Cell Migration
To determine the relationship between ferroptosis and glioma
cell migration, we analyzed the relationship between the risk
scores of the signature of 19 ferroptosis-related genes and
migration-related genes. The risk score was positively correlated
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FIGURE 5 | Altered functional characteristics related to the signature of 19 ferroptosis-related genes. Functional annotation of genes positively correlated with the
risk score using the GO terms of biological processes, the KEGG pathway, and GSVA in the CGGA, TCGA, GSE16011, and REMBRANDT datasets. (A) Wayne
Diagram shows the results of GO analysis in the four datasets. (B) Intersection of GO terms in the four datasets. (C) Wayne Diagram shows the results of KEGG
analysis in the four datasets. (D) Intersection of the KEGG pathways in the four datasets. (E) Heatmaps of the GSVA results in different gene sets in the four datasets.

to the oncogenes S100A4, TWIST1, CDH2, and POSTN, which
were critically involved in glioma migration and invasion
(Figure 8A). We then determined the migration ability of
glioma cell lines (U251 and U87) treated with a vehicle or
erastin by using Transwell migration assay. Compared with the
vehicle-treated U251 and U87 cells, the erastin-treated U251
and U87 cells increased in migratory ability (Figures 8B–D).
These data suggest that ferroptosis enhances cell migration
in glioma cells.

DISCUSSION

Selective induction of cancer cell death is the most effective
anticancer therapy. Increasing evidence has shown that
ferroptosis, a recently discovered PCD, plays a crucial role in
tumorigenesis and cancer therapeutics. However, profiling of
ferroptosis in glioma has yet to be clarified. In this study, we used
high-throughput expression analysis to investigate variations

in expression profiling of ferroptosis-related genes in glioma.
On the basis of these analyses, we identified the signature of
the 19 ferroptosis-related genes. We further explored tumor
clinicopathological features and prognosis, which were closely
related to tumorigenesis.

Previous studies suggest that ferroptotic cell death results
from fatal lipid peroxidation (Gao et al., 2015). In this regard,
the accumulation of intracellular iron caused by the depletion
of ferritin or iron transporters and subsequent peroxidation
are fundamental mechanisms that lead to the accumulation
of lipid peroxides and ferroptosis (Stockwell and Jiang, 2019).
Among the 19 identified genes related to ferroptosis, CISD1
alleviated iron accumulation in the mitochondria, and NCOA4
promoted intracellular iron accumulation, whereas HSPB1
decreased intracellular iron accumulation. Polyunsaturated
fatty acyl tail-containing phospholipids, the substrate of lipid
peroxidation, is considered essential for ferroptosis. Lipid
peroxidation is negatively regulated by AKRIC2 and NFE2L2
but positively regulated by DPP4, ALOXs, HMGCR, LPCAT3,
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FIGURE 6 | Relationship of risk score and glioma drug resistance and cell viability analysis after erastin treatment in U251 and U87 cells. (A,B) Heatmaps showing
gene expression × coefficient as revealed by RNAseq in the glioma cell lines U251 (A) and U87 (B). (C,D) Risk scores were significantly lower in the drug-resistant
groups (U251TR and U87TR) than in the drug-sensitive groups (U251MG and U87MG). (E) Curve of the risk score and MGMT expression levels. Notably, low risk
scores were correlated with high expression of MGMT. (F,G) Treatment with erastin at different concentrations (0, 10, 20, 30, 40, and 50 µM, 24 h) further inhibited
cell viability, indicating the proliferation of glioma cells in TMZ-resistant lines (U251TR and U87TR) rather than in regular glioma cell lines (U251MG and U87MG).
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FIGURE 7 | Relationship between risk scores of the ferroptotic signature and autophagy. (A–C) In the CGGA database, correlation analysis of ferroptosis-related
gene risk scores and autophagy markers (A, SQSTM1, MAPLC3C, BECN1, and ATG9B), apoptosis markers (B, CASP3, BCL2, BAX, and BAK1), and immune
checkpoint markers (C, PD-1, TIM3, LAG3, and B7-H3). (D) Western blot analysis showing the expression levels of LC3 PARP and its cleaved-PARP, and PD-L1 in
U251 and U87 glioblastoma cell lines treated with erastin (50 µM for 24 h). Data are presented as mean ± SEM. *P < 0.05 compared with respective controls.

and SAT1. Malfunctioning of scavenging lipid peroxide also
leads to ferroptosis. After being transported intracellularly
by the system XC-, cystine may become cysteine, which is
used to synthesize glutathione. GPX4 and GSH scavenge lipid
peroxide to inhibit ferroptosis (Lewerenz et al., 2006). In
the signature genes, CD44, CBS, and GCLC were positive
regulators, whereas GCLM, ATP5G3, and FNDC2 were negative
regulators for synthesizing GPX4. Thus, the coexistence of
the aforementioned factors may trigger ferroptosis (Figure 9).
In the current study, we found that higher risk scores
were associated with worse prognosis in glioma patients.
Moreover, high risk scores were insensitive to ferroptosis in
glioma cell lines. To verify this finding, cell death pathways
were shown to be frequently disturbed in human cancers
(Bebber et al., 2020).

By focusing on the specific function of the 19 ferroptotic
genes, previous studies have demonstrated that most of these
genes played a pivotal role in cancer cells, including glioma.
For instance, high expression of HSPB1 is correlated with a
low survival rate in glioma patients. HSPB1 also enhances
proliferation via SIRT2-mediated G6PD activation in glioma cells
(Ye et al., 2016). The increased expression of SAT1 in GBM
was related to the resistance of tumor cells to radiotherapy
(Brett-Morris et al., 2014). During lung carcinogenesis, NFE2L2
accelerates progression via the KRAS signaling pathway (Satoh
et al., 2013). Decreased expression of CBS promotes the
formation of glioma tumors by increasing the HIF-2α protein
levels and HIF-2 target gene expression (Takano et al., 2014).
These genes are either positively or negatively related to the

regulation of ferroptosis and are distinctly expressed in the high-
risk-score or low-risk-score groups. This occurrence is consistent
with their gene functions in cancers. Notably, not all 19 genes
had expression levels consistent with their functions in previous
reports. Busek et al. (2012) indicated that DPP4, which is highly
expressed in gliomas with a high risk score, inhibits glioma cell
growth independent of its enzymatic activity. Another study
showed that DPP4 was related to the stemness of glioma stem
cells (Sakamoto et al., 2019). Sohn et al. (2013) demonstrated
that CISD1 that was highly expressed in human epithelial breast
cancer cells suppressing CISD1 expression significantly inhibited
cell proliferation and tumor growth. ARK1C2 was found to
positively regulate proliferation in cancer cells (Ji et al., 2004).
We found that ARK1C2 expression was low in high-risk-score
groups. Therefore, the specific role of these genes in glioma has
to be clarified.

We further demonstrated that the risk scores of the signature
of the 19 ferroptosis-related genes were highly associated with
the WHO tumor grades. The ROC curve generated using
the risk scores of the signature of the 19 ferroptosis-related
genes predicted patient OS. In addition, the signature of the
19 ferroptosis-related genes was independent of other clinical
factors, including age, radiotherapy, grade, and chemotherapy.
These results suggested that the activated process of ferroptosis
in glioma cells were associated with improved survival of
glioma patients.

Functional annotation of the signature of the 19 ferroptosis-
related genes showed that biological functions such as
immune response, cellular defense response, actin cytoskeleton
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FIGURE 8 | Ferroptosis is positively correlated with glioblastoma cell migration. (A) Analysis in the CGGA database showing the positive correlation between risk
score and migration-related genes. (B–D) Images under a light microscope and a summary of data showing that treatment with erastin (50 µM) increased the
migration of U251MG, U251TR, U87MG, and U87TR cells relative to those of vehicle-treated cells. Data are presented as mean ± SEM of three samples
(***P < 0.001, ****P < 0.0001; ERA, erastin).
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FIGURE 9 | Diagram illustrates signaling pathways that trigger ferroptosis. Polyunsaturated fatty acids (PUFAs); mitochondrion (mt).

organization, cell death, and protein processing could contribute
to the poor clinical outcome of patients. KEGG analysis
indicated that the signature of the 19 ferroptosis-related genes
corresponding to biological functions were closely related to
apoptosis, focal adhesion, regulation of actin cytoskeleton,
leukocyte transendothelial migration, and lysosome pathways,
which are strongly linked to tumorigenesis. Wang et al. (2019)
recently reported that CD8-positive T cells induced ferroptosis
in tumor cells. Chen et al. (2017) reported that ATF4, a gene
that sensitizes tumor cells to ferroptosis, promotes glioma
cell migration. Hong et al. (2017) suggested the involvement
that the p53-independent CHOP/PUMA axis in response to
ferroptosis inducers, which could play a key role in ferroptotic
agent-mediated sensitization to TRAIL-induced apoptosis.
Emerging evidence suggests that ferroptosis often shares
common pathways with other types of biological functions,
including cell death (Bock and Tait, 2019), immune response
(Stockwell and Jiang, 2019), and migration (Chen et al.,
2017). We found that the risk scores of the signature of the
19 ferroptosis-related genes was negatively correlated to the
expression of the well-recognized gene MGMT for TMZ
resistance, suggesting the association of ferroptosis with glioma
drug resistance. We further found that in glioma cell lines,
erastin-induced ferroptosis is closely related to autophagy
but not apoptosis because erastin increased the autophagy
marker LC3 level but not the apoptosis marker PARP levels.
Notably, erastin promoted cell migration in glioma cell lines.
Increased cell migration likely occurred prior to the ferroptosis
of the glioma cells.

In summary, this study is the first to investigate ferroptotic
gene expression patterns in glioma patients and identify
their relationship to patient outcome. The ferroptotic
signature identified in our study exhibited potential as a
biomarker of OS in glioma patients. Understanding the
mechanisms underlying ferroptosis and its effect on OS,
as well as its implications for the treatment of glioma, can
provide insights into the identification of therapeutic targets
for glioma.
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