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Lung adenocarcinoma (LUAD) is a devastating disease with poor patient survival.
Cancer immunotherapy has revolutionized the treatment of LUAD, but only a limited
number of patients effectively respond to this treatment. Thus, the work to elucidate the
LUAD immune heterogeneity could be crucial in developing new immunotherapeutic
strategies with better efficacy. Non-negative matrix factorization-based deconvolution
was performed to identify robust clusters of 489 LUAD patients in The Cancer Genome
Atlas (TCGA) and verify their reproducibility and stability in an independent LUAD cohort
of 439 patients from the Gene Expression Omnibus (GEO). We used the graph learning-
based dimensionality reduction to visualize the distribution of individual patients. In
this study, four reproducible immune subtypes, Clusters 1–4 (C1–C4) associated with
distinct gene module signatures, clinicopathological features, molecular and cellular
characteristics were identified and validated. The immune-cold subtype, C3, was
associated with the Dead event, the most advanced T stage, N stage, TNM stage and
the worst prognosis for LUAD patients. Moreover, C3 exhibited the lowest infiltrating
levels of B cells, T cell receptor (TCR) repertoire diversity and the highest level of
neoantigen and mutation rate among C1–C4. On the other hand, the immune-hot
subtype (C4) exhibited the highest infiltration of six types of infiltrating immune cells as
well as the greatest leukocyte fraction, TCR and B cell receptor (BCR) repertoire diversity.
C1 and C2 subtypes showed diverse clinicopathological and immunological features.
Finally, our investigations discovered a complex immune landscape with a scattered
immune subtype profile. This work may help inform immunotherapeutic decision-making
and design advanced immunotherapy strategies for the treatment of lung cancer.

Keywords: lung adenocarcinoma, tumor immune microenvironment, immune subtypes, clinicopathological
features, molecular and cellular characteristics
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INTRODUCTION

Lung cancer is a devastating disease worldwide because it
has the highest morbidity and mortality rate among all
cancers (Bray et al., 2018). Non-small cell lung cancer
(NSCLC) accounts for approximately 85% of lung cancers,
and lung adenocarcinoma (LUAD) is the most common
histological type of NSCLC (Herbst et al., 2008; Sivakumar
et al., 2017). Although many therapeutic strategies including
surgery have shown immense progress, the 5-year survival
rate of LUAD is very low (Heist and Engelman, 2012).
Immunotherapy, such as anti-PD-1 therapy, has been proven to
have enormous potential in the treatment of LUAD; however,
immune agents benefit only a subset of patients (Alatrash
et al., 2013; Garon et al., 2015). Thus, it is urgent to identify
novel immune subgroups correlated with treatment response
(Binnewies et al., 2018).

An increasing number of studies have found that the
immune-related features of cancers such as the intensity of
CD8+ T cell infiltrates, leukocyte fraction, T cell receptor
(TCR) and B cell receptor (BCR) repertoire (Tang et al.,
2016; Li et al., 2019; Zeng et al., 2019) were correlated
with immunotherapeutic responsiveness in various cancers,
including lung cancer, however, the immune-related features
themselves alone are not a sufficient predictor of response
to immunotherapeutic intervention (Riaz et al., 2017; Moya-
Horno et al., 2018). Multiple changes in the tumor immune
microenvironment (TIME) were able to powerfully impact and
even determine the heterogeneous response to immunotherapy
(Binnewies et al., 2018).

Encouragingly, genomic and transcriptomic data based on
The Cancer Genome Atlas (TCGA) have been employed to
study the TIME, investigation of the immune landscape and
definition of immune subtypes of human cancer comprising
33 diverse cancer types (Binnewies et al., 2018; Thorsson
et al., 2018). Previous studies reported that the distribution
of immune subtypes was tissue-specific within the different
tumor types (Thorsson et al., 2018; Li et al., 2019). In
addition, various immune subtypes and landscapes in TCGA
set were illuminated in lung squamous cell carcinoma, head
and neck squamous cell carcinoma, cervical squamous cell
carcinoma, esophageal squamous cell carcinoma, papillary
thyroid cancer, gastric cancer, breast cancer (He et al., 2018),
and other cancers (Park et al., 2017; Kim et al., 2018;
Canning et al., 2019; Chen et al., 2019; Li et al., 2019;
Lin et al., 2019). The three LUAD subtypes including the
terminal respiratory unit, proximal proliferative, and proximal
inflammatory subtypes, displayed differences in the tumor
immune landscape (Wilkerson et al., 2012; Faruki et al., 2017).
Nevertheless, to our knowledge, the LUAD tumor landscape
and immune subtypes impacting clinical outcomes remain
largely unknown.

In this study, the proposed computational algorithms were
applied to discover (Kim et al., 2018; Chen et al., 2019;
Zeng et al., 2019), and validate four robust immune clusters
in LUAD based on immune-related genes (IRGs) (Li et al.,
2019). Next, we characterized the four immune subtypes. As a

result, each immune subtype was correlated with distinct gene
module signatures, clinicopathological signatures, molecular and
cellular features. Ultimately, an immune landscape composed of
both continuous spectrum and discrete clusters across LUAD
patients was delineated.

MATERIALS AND METHODS

Discovery and Validation of the Immune
Subtypes
This study was approved by the Institutional Ethics Committee
of Harbin Medical University, China. The discovery
cohort consisted of 489 patients with LUAD from TCGA
(Supplementary Table S1). An independent meta-cohort from
Gene Expression Omnibus (GEO) (GSE68465) was used for
further validation (Supplementary Table S2). Based on IRGs,
we identified robust immune clusters of patients and immune-
related signatures by non-negative matrix factorization (NMF)
clustering analysis (Supplementary Methods; Kim et al., 2018;
Chen et al., 2019).

Evaluating Clinicopathological,
Molecular and Cellular Features
Correlated With the Immune Subtypes
First, we assessed the proportion of immune subtypes and
immune related signatures in LUAD patients from TCGA.
Relationships between clinicopathological features and immune
subtypes were analyzed by parametric (Chi-square test) and
non-parametric (Fisher’s exact) assessments where appropriate.
Overall survival (OS) and progression-free survival (PFS) rate
were analyzed according to the Kaplan–Meier method, and
differences between survival distributions were assessed with
the log-rank test. The prognostic effect of immune-related
signatures was determined by Cox regression. Receiver operating
characteristic curves (ROCs) were drawn for the predicted 1, 3,
5-year OS based on the nearest neighbor method, and area under
the curve (AUC) was calculated. ANOVA was used to detect the
association between immune subtypes and all kinds of immune-
related molecular and cellular features (Thorsson et al., 2018;
Supplementary Methods).

Immune Landscape Analysis
Using the reduceDimension function of the Monocle
package with a Gaussian distribution, graph learning-based
dimensionality reduction analysis was performed as previously
described (Trapnell et al., 2014; Li et al., 2019). The discriminative
dimensionality reduction with trees (DDRTree) was used to
conduct dimension reduction (Qiu et al., 2017). In summary, we
projected data points in a high-dimensional space to latent points
in the low-dimensional space in the form of a tree structure
(Qi et al., 2017; Wang and Mao, 2019). The presented immune
landscape establishes a linkage among patients in a nonlinear
manifold that might make up for the discrete immune subtypes
in the linear Euclidean space (Supplementary Methods).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 July 2020 | Volume 8 | Article 550

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00550 July 1, 2020 Time: 18:35 # 3

Song et al. Immune Subtypes of Lung Adenocarcinoma

RESULTS

Immune Subtypes and Gene Module
Signatures in LUAD
The previous study by Li et al. (2019) integrated single-cell and
bulk tumor RNA-seq data and presented a recognizable datasheet
of 1989 IRGs in squamous cell carcinoma. The corresponding
mRNA expression of 1318 genes of these IRGs was intermediate
or high in LUAD based on TCGA and GEO (GSE37745 and
GSE3141) data sets. Furthermore, the 376 genes impacting the
prognosis of LUAD patients by univariate Cox regression analysis
were included in subsequent analysis (Supplementary Table S3).

Non-negative matrix factorization clustering results showed
that four robust clusters (C1–C4) were identified in the
TCGA discovery cohort (Figures 1A,B and Supplementary
Figure 2). Simultaneously 5 was regarded as the optimal
gene module number according to the Bayesian Information
Criterion index, providing gene module signatures 1–5 (defined
as gSig1–5, Figures 1A,B, Supplementary Figure 3, and
Supplementary Table S4).

The Correlation Between Immune
Subtypes and Gene Module Signatures
Every immune cluster was correlated with a specific gene
module signature (Figure 1A). The linear correlation coefficients
between immune subtypes and gene module signatures are
shown in Figure 2A. The immune subtypes correlated with gene
module signatures (Figure 2B, Supplementary Figure 4, and
Supplementary Table S5). GO enrichment analysis indicated
that gSig4 and gSig5 were positively associated with the mediation
of immune activation (Figure 2C and Supplementary Table S6).
On the other hand, gSig1, gSig2, and gSig3 were closely
related to metabolism, cell architecture and signal transduction
(Supplementary Figure 5 and Supplementary Table S6).
Additionally, our gene modules of gSig4 and gSig5 mostly
mapped the previously proposed gene module “inflammation,”
which was regarded as a subtype with superior prognosis relative
to other subtypes by Li et al. (2019), suggesting that gSig4 and
gSig5 were associated with inflammation and improved survival
(Supplementary Figure 6 and Supplementary Table S7). As
expected, with the increases of clinical T stage, N stage,
M stage, and TNM stage the expression levels of both
gSig4 and gSig5 were significantly elevated in LUAD patients
(Supplementary Figures 7A–D). We also found that the high
expression levels of gSig4 and gSig5 were associated with female
gender and, importantly, favorable survival of LUAD patients
(Supplementary Figures 7E,F). The expression level of gSig1–
3 was not associated with any clinicopathological or prognostic
characteristic (Supplementary Figure 8).

Of note, C3 had the lowest expression in the gene modules
of gSig4 and gSig5, suggesting an immune-cold phenotype, while
C4 had the highest expression in the gene modules of gSig4
and gSig5, suggesting an immune-hot phenotype (Figure 2B). In
addition, we found that C3 also had the lowest expression in the
gene modules of gSig1, and C4 had the highest expression in the
gene modules of gSig2 and gSig3 (Supplementary Figure 4).

The Clinicopathological Signature of the
Immune Subtypes
Among all subtypes C3 was associated with the Dead event
(Figure 3A), the most advanced T stage (Figure 3B), N stage
(Figure 3C), TNM stage (Figure 3E) compared to C1, C2, and
C4 in the LUAD cohort of TCGA. C3 was not well associated
with M stage, age and gender compared with the other immune
subtypes (Figures 3D,F,G). Furthermore, the OS and PFS yielded
the worst prognosis for the LUAD patients with C3 compared
with those with C1, C2, and C4 (Figures 3H,I). Moreover, we
found C3 could effectively predict 1, 3, and 5 years OS by ROCs
(P < 0.05; Supplementary Figure 9A). To validate our findings
in the TCGA cohort, we investigated the reproducibility of the
immune subtypes in an independent GEO cohort (GSE68465).
Using the in-group proportion (IGP) and Pearson correlation
among centroids of gene module scores, the consistency was
found in subtype identification at both patient and subtype
levels in the discovery and validation cohorts (P < 1e-5). In
line with the finding from TCGA, C1–C4 were identified, and
C3 predicted the worst survival among the immune subtypes
(Supplementary Figures 9B,C).

In this study, we found that the immune subtype C3 was a
robust prognostic biomarker.

Cellular and Molecular Features of LUAD
Immune Subtypes
The relationship between cellular features and immune subtypes
was revealed. C4 was enriched with immune cells including
activated B cells, CD4+ T cells, CD8+ T cells, neutrophil
cells, macrophages and dendritic cells by the tumor immune
estimation resource (TIMER) (Figure 4A and Supplementary
Table S8). In contrary, the C3 subtype exhibited the least
number of B cells, in line with the unfavorable prognostic
significance of C3.

Previous studies reported that the analysis of leukocyte
fraction, TCR and BCR repertoire diversity inference are
several important techniques to access the immune landscape
(Thorsson et al., 2018; Li et al., 2019). Next, we explored
the relationship between the immune subtypes and molecular
features. The immune subtype C3 was associated with a lower
TCR repertoire diversity, a higher neoantigen load and a higher
rate of silent mutation and non-silent mutation compared to
C1, C2, and C4 (Figure 4B and Supplementary Table S9).
Consistent with an immune-hot phenotype, tumors in C4 had
the highest leukocyte fraction, TCR repertoire diversity and BCR
repertoire diversity compared to C1, C2, and C3 (Figure 4B and
Supplementary Table S9).

Immune Landscape of LUAD
Next, we sought to make visualization of the immune landscape
with the function plot cell trajectory with the color corresponding
to the immune subtype identified above. In detail, we employed a
graph-based learning approach to perform dimension reduction
based on previously described procedures (Qi et al., 2017;
Wang and Mao, 2019). The results demonstrated that 489
individual LUAD patients were cast into a manifold with
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FIGURE 1 | The immune subtypes and gene module signatures in the TCGA LUAD cohort. (A) Columns and rows represent patients and genes, respectively.
Patients (TCGA dataset, n = 489) are arranged based on their immune subtypes and genes are ordered based on the gene module signatures. OS and survival
events are annotated for each patient. (B) The distribution of immune subtypes and gene module signatures in the TCGA cohort. C1, Cluster 1; C2, Cluster 2; C3,
Cluster 3; C4, Cluster 4.

sparse tree structures and depicted the immune landscape
of LUAD based on the TCGA database (Figure 5A). The
location of individual patients in the five tree structures
signified the comprehensive characterization of TIME in the
distinct immune subtypes. In lines with the identified immune
subtypes above, we found that many patients were divided
into distinct clusters and there was a significant overlap
of patients between five tree structures and four identified
immune subtypes (P < 1e-5, Figure 5B and Supplementary
Table S10). For example, C4 mainly gathered on the end of
horizontal coordinate on left, while most of C3 was located
on the end of the vertical axis at the bottom (Figure 5A).
Consequently, these findings regarding the distribution of LUAD

immune subtypes suggested the reproducibility of our defined
immune subtypes.

DISCUSSION

Immunotherapy has shown a considerable clinical success in
the treatment response of many LUAD patients; however, when
provided with the same immunotherapeutic intervention, little
or no clinical benefit is unsatisfactorily found in the many more
patients (Forde et al., 2018; Passiglia et al., 2018; Almutairi
et al., 2019). As technology has advanced in techniques such
as high-resolution single-cell RNA sequencing, the diversity and
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FIGURE 2 | The correlation between immune subtypes and gene module signatures in TCGA. (A) The heatmap of expression of the gene module signatures among
the C1–C4 immune subtypes. (B) The expression of gSig4 and gSig5 in the C1–C4. (C) UpSet plot shows the significant enrichment of Gene Ontologies (GO) of
gSig4 and gSig5. The bar chart above represents the number of genes contained in each type of group. The dotted line at the bottom right shows the types of
events contained in the group. ***P < 0.001.

complexity of the immune context of TIME impacted tumor
initiation and immunotherapeutic responsiveness in lung cancer
(Binnewies et al., 2018; Clarke et al., 2019). In this study,
four reproducible immune subtypes of LUAD were identified,
independently validated and comprehensively characterized. We
discovered that each of the immune subtypes was associated with
distinct gene module signatures, clinicopathological features, and
accordingly demonstrated widely different patterns in tumor
genetic aberrations, molecular and cellular characteristics. The
parsing of four distinct classes of TIME in LUAD is likely to help
to benefit the identification of patient populations responsive
to current immunotherapy and immune therapeutic modulation
(Binnewies et al., 2018).

This study was different from recent immune subtype reports
on squamous carcinomas and pan-cancer (Thorsson et al., 2018;

Li et al., 2019), and we only focused on LUAD, which displays
common etiology and histological characterization. A previous
study by Li et al. (2019) identified six immune subtypes across
four major cancer types, namely, head and neck, lung, cervical
and esophageal squamous cell carcinoma, and showed that
approximately 75% of lung squamous cell carcinomas were
clustered into subtypes 1 and 5, which predict almost identical
clinical outcomes, while a majority (∼80%) of cervical squamous
cell carcinomas were clustered into subtypes 4 and 6 (Li et al.,
2019). The results reported by Thorsson et al. (2018) also
revealed that the distribution of immune subtypes across 33
kinds of cancer tissues was tissue-specific. In addition, there is
also evidence that immune prognostic value varied according
to histology (Chifman et al., 2016). There is a growing need
to explore distinct subclasses of TIME immune subtypes in
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FIGURE 3 | The clinicopathological signatures of the immune subtypes in TCGA. The patients were classified according to the clinical features including (A) survival
event, (B) T stage, (C) N stage, (D) M stage, (E) TNM stage, (F) age, (G) gender in the immune subtypes. (H,I), Five-year Kaplan–Meier curves for overall survival
(OS) and progression-free survival (PFS) of LUAD patients from the TCGA cohort stratified by the immune subtypes. The P-value was calculated by the log-rank test
among subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 4 | Cellular and molecular features of LUAD immune subtypes in TCGA. (A) Immune score distribution of six immune cells in immune subtypes among the
C1–C4 immune subtypes. (B) The index distribution of leukocyte fraction, BCR/TCR repertoire diversity, single nucleotide variant (SNV) neoantigen, silent mutation
rate and non-silent mutation rate among the C1–C4 immune subtypes. Kruskal–Wallis test was used. ***P < 1e-5.

individual tumor types, which correlated with the likelihood
of response to immunotherapeutic intervention targeting a
specific type of cancer.

A great deal of studies have demonstrated the significance
of IRGs in recognition, surveillance, clinical prognosis and
chemotherapeutic and immunotherapeutic responsiveness of

human cancer (Gnjatic et al., 2017; Li B. et al., 2017; Park et al.,
2017; Prat et al., 2017; Anichini, 2019; Lin et al., 2019). In
lung cancer, based on IRG pairs, the proposed clinical-immune
signature as a potential biomarker was able to predict OS for
patients with nonsquamous NSCLC (Li B. et al., 2017). IRGs or
signatures related to the response and PFS after immunotherapy
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FIGURE 5 | The immune landscape of LUAD in TCGA. (A) Each point represents a patient with colors corresponding to the immune subtype defined previously.
(B) Distribution of five tree structures (defined as T1–T5) among C1–C4.

are found in several types of cancer including lung cancer (Prat
et al., 2017). The IRGs in our work were derived from a previous
study by Li et al. (2019) in which they focused on five different
categories: (1) immune cell-specific genes derived from single-
cell RNA-seq data, (2) genes of co-stimulatory and co-inhibitory
molecules, (3) genes of cytokine and cytokine receptors, (4)
genes involved in antigen processing and presentation, and (5)
other IRGs. Compared with the IRGs in previous studies in
IRGs, a larger number of and more diverse IRG datasets were
included in the study.

In line with the finding by Li et al. (2019), the immune-
cold subtype that we defined had the lowest expression in
the gene modules of gSig4 and gSig5, which mostly mapped
the previously proposed gene module “inflammation,” while C4
had the highest expression in the gene modules of gSig4 and
gSig5, suggesting an immune-hot phenotype. Our current study
showed that the immune-cold subtype related to Dead event,
the most advanced T stage, N stage, and TNM stage. In line
with our studies, the Exhausted Immune Class was associated
with late pathologic T-status in head and neck squamous cell
carcinoma (Chen et al., 2019), and the low ImmuneScore group
was significantly associated with advanced T stage, lymph node
metastasis, and advanced AJCC stage in papillary thyroid cancer
(Kim et al., 2018; Na and Choi, 2018; Lin et al., 2019), There
was a significant association between our immune subtypes
and clinicopathological signatures such as pathological stage,

suggesting that the immune subtypes might influence on tumor
initiation and progression.

Here, we found that the immune-cold subtype was
reproducibly associated with the worst prognosis for LUAD
patients. In agreement with our conclusion, the previously
described role of the immune-cold subtype or the subclass
exhausted immune responses as an indicator of poor survival
(Park et al., 2017; Kim et al., 2018; Na and Choi, 2018; Chen
et al., 2019; Li et al., 2019; Lin et al., 2019). Although there was
a trend in differences in survival rate between the immune-hot
subtype and other subtypes, there was no significant prognostic
value for C4. This result might be explained by the limitation
of our study in that some IRGs that impacted TIME of LUAD
were not included in our study because of the gene expression
profiles from the squamous cell carcinoma data sets (Li et al.,
2019). Future studies will be performed using a combination of
gene expression profiles from multiple data sets and used larger
number of IRGs for LUAD.

Our results further demonstrated that the immune-cold
subtype exhibited the lowest infiltrating levels of B and CD4+
T cells, while the immune-hot subtype disclosed the highest
infiltration of six types of infiltrating immune cells among four
immune clusters using the Tumor Immune Estimation Resource
(TIMER). Instead of CIBERSORT (Gentles et al., 2015; Li et al.,
2019), PRECOG (Gentles et al., 2015) and TCIA (Charoentong
et al., 2017) utilized in the previous studies, TIMER
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(Li T. et al., 2017), which is a comprehensive and an innovative
and computational method that integrates and deconvolves
multi-dimensional datasets, was used in our study. It is
well known that immune infiltrates might influence clinical
responsiveness and be heterogeneous in different patients with
LUAD (Li T. et al., 2017; Liu et al., 2017). For instance, tumors
lacking in B cells predicted unfavorable outcomes for LUAD
patients at an early clinical stage (Liu et al., 2017).

Our current results indicated that the immune subtypes
have the potential to act as predictors of immune cell
infiltration elevation. Moreover, the immune-cold subtype was
linked to the lowest level of TCR repertoire diversity, while
the immune-hot subtype was correlated with the greatest
leukocyte fraction and TCR/BCR repertoire diversity, which
was consistent with previous reports (Li et al., 2019). The
positive correlation of leukocyte fraction, TCR/BCR repertoire
diversity and upregulation of the checkpoint inhibitors on
tumors and immune cells was observed in previous studies
(Riaz et al., 2017).

It is imaginable that the patients with the immune-
hot subtype of LUAD would be more likely to respond
to immunotherapy, while the patients with the immune-
cold subtype of LUAD would be less likely benefit
from immunotherapy than patients with other LUAD
subtypes. Our results should be noted that our findings
require further validation in immunotherapy-treated LUAD
tumors. The findings should be interpreted with this
limitation in mind.

Recent publication highlighted the potential limitations of
studies using TCGA database without considering the effect of
tumor heterogeneity (Li et al., 2014; Jia et al., 2018). Sequencing
more tumors with the TCGA approach of single time-point
sampling can neither capture the heterogeneity between different
parts of the same tumor nor catch the heterogeneity (Li et al.,
2014). There can be no doubt that intratumoral spatial and
temporal heterogeneity becomes a confounding factor to this
study. Different methods to enhance identifying cancer targets
may be necessary, such as single cell technology (Hu et al.,
2020), real time imaging of cancer cells with a biological global
positioning system (Li et al., 2010), and cross-referencing big data

sets (Li et al., 2014). These methods are offered as ways to address
sampling discrepancies in the face of tumor heterogeneity.

Taken together, our findings identified four immune subtypes
of LUAD that relate to distinct clinicopathological, cellular and
molecular characteristics. Immune subtyping could be utilized to
identify LUAD patients who will be affected by TIME and might
guide a personalized approach to cancer immunotherapy.
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