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Editorial on the Research Topic

Resident and Ectopic FGF Signaling in Development and Disease

The fibroblast growth factor (FGF) family is one of the largest growth factor families, which consists
of 18 receptor-binging, intrinsic tissue regulatory polypeptides that share similarity in structures
and amino acid sequences (Mckeehan et al., 2009; Wang et al., 2013, 2019). The FGFs are broadly
expressed, which regulate cell proliferation, differentiation, survival, and function. The FGFs elicit
their regulatory activities by binding and activating the FGF receptor (FGFR) transmembrane
tyrosine kinases encoded by four highly homologous genes. Beside the FGF and FGFR, the FGF
signaling complex also includes highly diverse heparan sulfate (HS) polysaccharides and klothos as
co-receptors that not only affect the ligand-binding activity, but also modulate signaling specificity
of the FGFR. Binding of the FGF to the FGFR-HS complex changes the conformation of the
complexes, leading to receptor autophosphorylation, as well as phosphorylation of downstream
signaling molecules, and thus, transmits the signals to downstream effectors. Both FGF and FGFR
are expressed in a highly spatiotemporally and cell type-specific manner. Ectopic expression
of the FGF and FGFR isoforms has been identified as culprits for multiple diseases, including
developmental defects, cancer, and metabolic disorders (Li et al., 2016; Wang et al., 2019).

As an intrinsic cell signaling axis, the FGF and FGFR are expressed almost ubiquitously
in all tissues and stages, function through the autocrine, paracrine, or endocrine mechanisms.
These intrinsic FGF signaling axes play important roles in embryonic development, adult tissue
homeostasis, function, and regeneration. Redundant FGF and FGFR expression are common
in multiple tissues and organs to warrant the signaling conveyance. Loss of FGF signaling has
been reported as culprits for developmental disorders and many other diseases. However, when
ectopically expressed, the FGF signaling axis is pathogenic in many cells and tissues, ranging from
birth defects, metabolic disorders, to cancers and cardiovascular diseases. Multiple mechanisms
have been attributed to ectopic FGF signaling, including ectopic expression of FGF, FGFR, and
heparan sulfate proteoglycans (HSPG), gain-of-function mutations in the FGFR tyrosine kinases,
and possibly other unidentified mechanisms.

Upon activation, FGFRs elicit both canonical and non-canonical signals. The canonical
signals include FRS2α-dependent activation of ERK and PI3K, as well as FRS2α-independent
activation of PLCγ (Zhang et al., 2008a,b, 2010, 2012a,b; Lin et al., 2011; Li et al.,
2016; Wang et al., 2016, 2019); non-canonical signaling pathways include posttranslational
modifications of lactate dehydrogenase A (LDHA) and transforming growth factor β-activated
kinase 1 (TAK1), which increases the stability, as well as the activity of these enzymes

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.00720
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.00720&domain=pdf&date_stamp=2020-08-26
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fenwang@tamu.edu
https://doi.org/10.3389/fcell.2020.00720
https://www.frontiersin.org/articles/10.3389/fcell.2020.00720/full
https://www.frontiersin.org/research-topics/10374/resident-and-ectopic-fgf-signaling-in-development-and-disease


Wang et al. Editorial: Resident and Ectopic FGF Signaling

(Zhang et al., 2004; Lan et al., 2008; Fan et al., 2011; Jin et al.,
2017; Liu et al., 2018; Wang et al., 2018). Although FGFR1-4 are
highly similar, share many common downstream pathways, and
elicit similar canonical signals in some cells, they elicit opposite
signals in many other cell types (Feng et al., 1997; Jin et al., 2003;
Wang et al., 2019). The mechanism underlying this signaling
specificity is poorly understood. Converging data showed
that non-canonical signaling likely accounts for the receptor
isoform-specific signals. However, how the four FGFRs elicit
receptor-isoform signals still largely remains to be elucidated.
This is partly due to the complexity of the FGF signaling axis,
which includes multiple ligands, receptors, and cofactors, as
well as poorly understood non-canonical downstream pathways
that mediate receptor isoform-specific signals (Mckeehan et al.,
2009; Wang et al., 2013; Li et al., 2016). Understanding how
FGFR elicits receptor isoform-specific signals will provide new
strategies for precision medicine for diseases that are caused by
loss of intrinsic FGF signaling or gain of ectopic FGF signaling.

This Research Topic includes several review articles of
important concepts related to how intrinsic FGF signaling
controls stem cell self-renewal and differentiation, organ
development, repair, and regeneration, how dysregulated
FGF19-FGFR4 signaling axis contributes to hepatocellular
carcinoma, as well as several original studies that reveal
novel aspects of how intrinsic FGF signaling alleviates
inflammation responses in the kidney and liver, how ectopic
FGF signaling promotes inflammation in the liver and increases
stemness of cancer stem cells, and how engineered FGF2
has improved therapeutic values by reducing the undesirable
heparin-binding activity.

Stem cells play an important role in regenerative medicine.
Understand how to regulate stem cells to remain dormant, or
activate them to undergo self-renewal and differentiation will
provide new therapeutic strategies for regenerative medicine.
Mossahebi-Mohammadi et al. systematically reviewed the
expression and function of FGF signaling pathway in stem cells,
induced pluripotent stem cells, and epiblast-derived stem cells,
and how it controlled the pluripotency and differentiation of
these stem cells. Furthermore, they also discussed the cross talks
of the FGF pathways with other signaling pathways, including
transforming growth factor β, Wnt, and retinoic acid, to control
stem cell self-renewal and differentiation.

Cancer stem cells are culprits for relapse of malignant
cancer. Both in vitro and in vivo experiments show that
spheroid-forming cancer stem cells have high tumorigenic
activity. Quan et al. reported that the FGF-FGFR signaling
axis is required for maintaining spheroid-forming in vitro and
tumor-forming in vivo of pancreatic ductal adenocarcinoma cells.
They further demonstrated that the FGF signals in these stem
cells are mediated by the AKT pathway, which prevent SOX2
degradation and increase SOX2 nuclear localization. Inhibition
of AKT activity impaired sphere-forming activity in vitro and
tumor-forming activity in vivo. The authors also discussed how
suppression of this signaling axis was of therapeutic value for
pancreatic cancer.

FGF signaling plays an important role in embryonic
development and organogenesis. The rudimentary digestive tract

is initially a tube-like structure that is composed of epithelial cells
surrounded by mesenchymal cells, which develops into distinct
functional regions: the tongue, the pharynx, the esophagus, the
stomach, the duodenum, the small intestine, the cecum, the large
intestine, the colon, and the anus, as well as the pancreas and
the liver. Lv et al. systematically reviewed how FGF10-FGFR2
signaling axis regulated the development of the digestive tract,
including the taste papillae, tongue, salivary gland, stomach,
pancreas, and liver. They also discussed how FGFR2 signaling
regulated intestinal injury repair and the translational use of
recombinant FGF7 and FGF10 to improves the short bowl
syndrome, alleviated inflammatory bowel disease and ulcerative
colitis disease.

As an endocrine FGF, FGF19 secreted from small intestine
activates FGFR4 in the hepatocytes and regulates bile acid
production and secretion (Yu et al., 2000, 2005; Wang et al.,
2014). FGFR4 is an intrinsic FGFR in hepatocytes, it plays
an important role in liver function and suppresses chemical-
induced inflammation and tumorigenesis (Yu et al., 2002, 2003;
Zhao et al., 2006; Huang et al., 2007, 2009; Luo et al., 2010).
However, ectopic expression and activation of the FGF19-
FGFR4 signaling axis is pathogenic. Liu et al. summarized the
expression and signaling pathway of the FGF19-FGFR4 signaling
axis, and how ectopic FGF19-FGFR4 signaling was associated
with many types of cancer. Overactivated FGFR4 promoted
proliferation and prevented apoptosis of hepatocellular
carcinoma. Ectopically activation of FGFR4 was detected in
breast cancer, head and neck squamous cell carcinoma, colorectal
cancer and lung cancer. They also discussed how FGFR4
inhibition, either with small molecular inhibitor or neutralizing
antibodies, could be used to treat cancer that overexpressed
ectopic FGFR4.

Inflammation is a double-edged sword for the host. Overactive
inflammation exacerbates injuries, including acute kidney injury
and liver damage induced by concanavalin A. Tan et al.
reported that treating the mice with FGF2 activated the FGFR
signaling pathway in kidney cells both in vitro and in vivo, and
reduced inflammatory reactions, and thereby, alleviated kidney
damage. Furthermore, they also unraveled that the canonical FGF
downstream pathways, ERK and AKT, were required for FGF2 to
alleviate inflammation in kidney cells. Wang et al. also reported
that human hepatic stellate cells expressed FGF21, FGFR1, and
beta-Klotho (KLB). The expression of this intrinsic FGF signaling
axis likely cross talked with the TNFα pathway. Overexpression
of FGF21 in mice alleviated toxin-induced inflammation and
damages in the liver. However, treating hepatic stellate cells with
FGF1 that bound to FGFR1 independent of KLB activated the
non-canonical TAK1-mediated TNFα pathway and exacerbated
inflammation reaction in the cells. The results demonstrate
that the intrinsic FGF21-FGFR1/KLB signaling axis and ectopic
FGF1-FGFR1 elicit functional opposite signals with respect to
regulating inflammation.

Many members of the FGF family have the heparan
sulfate/heparin binding activity (Li et al., 2016). As a co-factor,
heparan sulfates enhance the binding of FGF and FGFR. They
also determine the receptor-binding profiles of FGF, as well as
signaling profile of the FGFR, and stability of the FGF. Koledova
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et al. tested two engineered FGF2 that have low heparin-
binding activities with respect to stability, heparin dependence,
and dynamics of activating ERK. They found that the two
FGF2 derivatives, FGF2-STAB1 and FGF2-STAB2, had a higher
mitogenic activity than did the wildtype FGF2. They also induced
ERK phosphorylation more potently and at a faster dynamic
than wildtype FGF2. Since the engineered FGF2s do not bind to
heparin and have a high activity in activating the canonical ERK
pathway, they are of transitional values for activating the FGFR-
ERK signaling pathway in the precisionmedicine (Li et al., 2016).

In summary, the FGF signaling is complicated, and in many
cases, the signaling specificity and intensity is not only FGF
and FGFR isoform-dependent, but also heparan sulfate and host
cells-dependent. It can be either a foe or friend, and the only
determinant of what they are is when, where, and how the

signals are elicited. Yet, how resident FGF-FGFR signaling axis
elicits canonical or non-canonical signals to regulate multiple
cellular activities and how ectopic FGF signaling causes diseases
largely remain an enigma. Solving this enigma is needed for
developing FGF-based precision therapies to treat diseases
caused by aberrant FGF signals.
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