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Background: Breast cancer (BRCA) ranks among the top most common female
malignancies and was regarded as incurable when combined with bone and distant
metastasis. Alternative splicing events (ASEs) together with splicing factors (SFs) were
considered responsible for the development and progression of tumors.

Methods: Datasets including RNA sequencing and ASEs of BRCA samples were
achieved from TCGA and TCGASpliceSeq databases. Then, a survival model was built
including 15 overall-survival-associated splicing events (OS-SEs) by Cox regression and
Lasso regression. The co-expressed SFs of each bone-and-distant-metastasis-related
OS-SE were discovered by Pearson correlation analysis. Additionally, Gene Set Variation
Analysis (GSVA) was performed to identify the downstream mechanisms of the key
OS-SEs. Finally, the results were validated in different online platforms.

Results: A reliable survival model was established (the area under ROC = 0.856), and
CIRBP was found co-expressed with FAM110B (R = 0.320, P < 0.001) associated with
the fatty acid metabolism pathway.

Conclusion: Aberrant SF, CIRBP, regulated a specific ASE, exon skip (ES) of
FAM110B, during which the fatty acid metabolism pathway played an essential part
in tumorigenesis and prognosis of BRCA.

Keywords: breast cancer, alternative splicing event, splicing factor, prognostic model, pathway, bone metastasis

Abbreviations: AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AS, alternative splicing; ASEs,
alternative splicing events; AT, alternate terminator; AUC, area under the ROC curve; BRCA, breast cancer; ES, exon skip;
GEPIA, Gene Expression Profiling Interactive Analysis; GO, Gene Ontology; GSVA, Gene Set Variation Analysis; KEGG,
Kyoto Encyclopedia of Genes and Genomes; M, metastasis; ME, mutually exclusive exons; N, regional lymph node; OS,
overall survival; PI, prognostic index; RI, retained intron; ROC, receiver operating characteristic curve; SE, splicing events;
SF, splicing factor; TCGA, The Cancer Genome Atlas; TNM stage, T: tumor.
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INTRODUCTION

Breast cancer (BRCA) ranks among the top most common female
malignancies in the world (Harbeck et al., 2019). Surgery of the
primary tumor remains a cornerstone of curative breast cancer
treatment (Mclaughlin, 2013). Systemic therapies for primary
breast cancer are quite effective, and adjuvant chemotherapy and
adjuvant endocrine therapy are able to decrease the mortality
of breast cancer by one third (Early Breast Cancer Trialists’
Collaborative Group, Davies et al. 2011, 2012). Unfortunately,
advanced BRCA is a virtually incurable disease, while metastases
are the cause of death in almost all patients, the median overall
survival of it is 2–3 years, and the common sites of spread
are the bone (most frequent cite), the lungs, and the liver
(Cardoso et al., 2018). In order to improve the prognosis of BRCA
more efficiently, it is an urgent need to explore the pathogenic
mechanism in metastasis and prognosis.

Alternative splicing (AS) took place in human genes quite
commonly (Wang et al., 2008) and was critically associated with
the carcinogenic process (Zhao et al., 2020) during which splicing
factors (SFs) play key roles. Dysregulating the network built by
SFs and alternative splicing events (ASEs), the aberrant AS for
some genes and somatic mutations of SFs have been reported
that they would cause epithelial–mesenchymal transition and
might modulate malignant transformation of cells (Sveen et al.,
2016; Kouyama et al., 2019; Wu et al., 2019; Xing et al., 2019).
Identification of the aberrant regulation network of SFs and
ASEs could not only help predict prognostic and metastatic
molecular biomarkers but also find out the potential therapeutic
targets (Lee and Abdel-Wahab, 2016; Wang et al., 2019). Most
previous studies of BRCA concentrated on alteration at the
transcriptome level, but no researchers have studied the analysis
of the posttranscriptional process so far.

In this study, based on an all-round analysis of the
BRCA dataset, we identified overall-survival-related alternative
splicing events (OS-SEs) using Pearson correlation analysis and
established a prognostic model by Cox regression accordingly.
We then detected the metastasis-related ASEs and their
corresponding co-expressed, survival-related SFs and pathways
of BRCA. Consequently, the prognostic model we constructed
was of great significance for the prediction of BRCA prognosis;
we also proposed a potential molecular mechanism and
therapeutic target of BRCA.

MATERIALS AND METHODS

Data Collection and Preprocessing
This study was approved by the Ethics Committee of The
First Affiliated Hospital of Zhengzhou University. The RNA-
seq data of the data used in this study could be downloaded
in the Cancer Genome Atlas (TCGA) database1. Demographics,
tumor information, and follow-up data of all patients were
also retrieved from the database. Furthermore, the seven types
of ASE data [alternate acceptor (AA); alternate donor (AD);

1https://portal.gdc.cancer.gov/

alternate promoter (AP); alternate terminator (AT); exon skip
(ES); mutually exclusive exons (ME); retained intron (RI)]
along with the Present Spliced In (PSI) values were available
in the TCGASpliceSeq database2 (Ryan et al., 2016). In order
to have more reliable results, the data was cleaned under the
following rules:

(1) Samples containing over 25 of the missing PSI values or
without follow-up records were excluded, and the rest of the
missing values were supplemented utilizing the K-nearest
neighbor algorithm (k = 10).

(2) ASEs whose mean value of PSI less than 0.01 or standard
deviations value of PSI less than 0.01 were ruled out.

Independent Prognostic Model
Construction
Upset plots were presented to display the relationship between
the ASEs and genes directly. For further exploring the
contribution of ASE on survival, the univariate Cox regression
analysis was adopted using the clinical data to calculate the
hazard ratio and its p-value of each filtered ASE. A volcano plot
was adopted to show the prognosis-related as well as unrelated
ASEs. The top 20 OS-SEs of each splicing pattern were screened
according to p-value and were presented in Bubble plots. In
addition, to prevent the overfitting of the prognostic model, the
selected OS-SEs were used to perform Lasso regression, deleting
highly correlated OS-SEs. Accordingly, the final significant OS-
SEs were confirmed; n denotes the total number of the selection.
The mentioned data of OS-SEs and patents’ living status were
applied to the multivariate Cox regression model. Thus, the
regression coefficient of the jth OS-SE was calculated, denoted
as βOS−SEj, j = 1, 2, . . . , n, and the PSI value of the ithsample
and the jth OS-SE was represented as PSIOS−SEij, j = 1, 2, . . . , n.
Mathematically, the risk score (RS) of each sample can be
described in the following equation:

RSi =
n∑
j=1

βOS−SEj × PSIOS−SEij

In addition, the samples were then classified into the high-
risk group as well as the low-risk group on the basis of the
median value of the risk score, and the ROC curve was applied
to demonstrate model accuracy. At last, to better compare
the difference between the two groups, the survival curve of
each group was estimated by Kaplan–Meier survival analysis
and the risk curve, scatterplot, and expression heat map were
demonstrated as well.

Consequently, both univariate and multivariate Cox
regression analyses were applied to the processed dataset
with age, gender, grade, stage, TNM stage, and risk score. Then,
factors whose p-value of both univariate and multivariate Cox
regression analyses were less than 0.05 were finally considered as
independent prognostic factors.

2https://bioinformatics.mdanderson.org/TCGASpliceSeq/
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Discoveries of Relationship Between SF,
Metastasis, Stage, and OS-SEs
The dataset with 390 SF factors was achieved from the SpliceAid2
database (Piva et al., 2009). The correlation coefficients and
p-values between SFs and OS-SEs were calculated by Pearson
correlation analysis to discover their relationship. The SFs and
OS-SEs were selected if their absolute value of correlation was
more than 0.3 and their p < 0.001. Metastasis information
and TNM stage were pivotal paraments of breast cancer so the
relationship with OS-SEs may be of great worth. The Kruskal–
Wallis test and Mann–Whitney–Wilcoxon test were performed
and drawn in Beeswarm plots.

Based on the analyses above, Cytoscape (3.7.1) (Shannon et al.,
2003) was used to present the interaction of SF, metastasis, stage,
and OS-SEs with high risk as red circles, low risk as purple
circles, and the related SF as arrows and the lines indicating
their relationships.

Downstream Signaling Pathway Analysis
In order to better compare the results of enrichment analysis
and conduct co-expression analysis, quantitative results were
quite essential. In this case, Gene Set Variation Analysis
(GSVA) (Hanzelmann et al., 2013) was adapted to find out
the possible KEGG pathways in BRCA. Prognosis-related ones
were selected by univariate Cox analysis. Based on the results
above, KEGG pathways co-expressed with metastasis-related
OS-SEs were discovered by Pearson analysis. In this way,
the potential mechanism of the bone metastasis related to
BRCA was identified.

Multidimensional Validation
Genes in the core of the protein–protein interaction networks in
ties with the KEGG pathway were detected by Pathway Card3.
The results of the critical biomarkers were validated to reduce bias
conclusions in different dimensions. The significant biomarkers
above need external validation to reduce the false-positive
rate. Then, a multidimensional validation was performed here.
PROGgeneV2 (Goswami and Nakshatri, 2014), Gene Expression
Profiling Interactive Analysis (GEPIA) (Tang et al., 2017),
UALCAN (Chandrashekar et al., 2017), Linkedomics (Vasaikar
et al., 2018), cBioportal (Cerami et al., 2012), and Kaplan–Meier
plotter (Nagy et al., 2018) showed the relationship between
key genes and patients’ survival. The Human Protein Atlas
(Uhlen et al., 2015) and Genotype-Tissue Expression (GTEx)
(Consortium, 2015) demonstrated the expression levels of genes
and proteins at the tissue level. Oncomine (Rhodes et al., 2004)
presented the results of a multi-study meta-analysis of key genes
at the transcriptional level. The Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019) illustrated the co-expression of the
key genes at cellular levels, and String (Snel et al., 2000) displayed
the network of SFs and OS-SEs and the key members of the
potential pathway. More importantly, they validate in different
omics levels. CCLE, cBioportal, and Linkedomics validate at
the genomics level; cBioportal, CCLE, UALCAN, Linkedomics,

3https://pathcards.genecards.org/

GEPIA, PROGgeneV2, and SurvExpress validate at the clinical
level. All datasets except String mentioned in this section perform
at the transcriptomic level.

Independent Dataset Validation and
Spatial Transcriptome Validation
One independent dataset with a metastasis-free survival (MFS)
endpoint was used for independent dataset validation (accession
number: GSE11121)4 (Schmidt et al., 2008).

Additionally, the RNA binding proteins are involved in
many biological processes such as RNA maturation, transport,
localization, and translation. SFs are a special class of RBPs
that can mediate alternative splicing. We have speculated
that aberrant SF, CIRBP, regulated a specific ASE, exon skip
(ES) of FAM110B, during which the fatty acid metabolism
pathway might play an essential part in tumorigenesis, bone
metastasis, and prognosis of BRCA. However, the regulation
mechanism of SF-mediated AS needs to be demonstrated by
molecular biological experiments (e.g., RNA Binding Protein
Immunoprecipitation (RIP), Luciferase reporter gene assay).
Therefore, spatial transcriptome combined with single-cell RNA
sequence (scRNA-seq) data of BRCA was used to identify the cell
subtype localization of the key genes in the speculative regulatory
mechanism5. In terms of quality control (QC), genes with count
greater than 1 and expressing in at least three single cells were
considered for further analysis. Cells with either fewer than
100,000 transcripts or fewer than 1,500 genes were filtered out.

The Seurat method was applied for integrated data analysis
(Butler et al., 2018). After the “sctransform” algorithm for
normalization, the “vst” method was used to identify variable
genes while the “markvariogram” method was performed to find
spatial-specific genes. Variable genes were the input as initial
features for principal component analysis (PCA) (Butler et al.,
2018). Then, the principal components (PCs) with P < 0.05
were filtered by jackstraw analysis and were incorporated into
further t-distributed Stochastic Neighbor Embedding (t-SNE),
UMAP (Uniform Manifold Approximation and Projection), and
Hematoxylin and Eosin (HE) staining slide to identify cell
subclusters (resolution = 0.50) (Chung and Storey, 2015). Only
the genes with | log2 fold change (FC)| greater than 0.5 and false
discovery rate (FDR) value < 0.05 were selected as differentially
expressed genes (DEGs) among cell subclusters. The (spatial)
feature plots and violin plots were utilized to illustrate the
distribution and expression of DEGs, respectively. Additionally,
scMatch (Hou et al., 2019), singleR (Aran et al., 2019), and
CellMarker (Zhang X. et al., 2019) databases were used as
references for defining each cluster. Furthermore, 50 hallmark
gene sets were retrieved from the Molecular Signatures Database
(MSigDB) v7.16 and Gene Set Variation Analysis (GSVA) was
performed to absolutely quantify the signaling pathway activity
in each single cell (Hanzelmann et al., 2013; Liberzon et al., 2015).

4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11121
5https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_
Breast_Cancer_Block_A_Section_1
6https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Statistical Analysis
Statistical analyses were performed on R 3.6.1 software (R
Foundation for Statistical Computing, Vienna, Austria)7 with
packages of impute, glmnet, UpSetR, survminer, survivalROC,
ggplot2, rms, forestplot, beeswarm, and preprocessCore. P < 0.05
were considered statistically significant except for the selection of
SFs and OS-SEs where the p < 0.001.

RESULTS

The Overview of the Analysis and
Dataset
The schematic view of this integrated analysis is depicted in
Figure 1. Supplementary Table S1 summarizes the baseline
characteristics of all patients. Patients were not one-to-one
congruent with samples. The total amount of primary BRCA
patients was 1,097, and the average survival time of the patients
was 1,199 days with an average age of 58.5 years. In addition, there
were only 1,080 primary samples; 32 of them underwent bone
metastasis in the experimental group, and 1,048 samples did not
experience bone metastasis in the control group.

7www.r-project.org

There were 5,433 ASEs found in 2,933 parent genes in
the samples with 2,728 ESs including 1,801 genes; 1,304 APs
including 518 genes; 444 AAs including 396 genes; 414
ADs including 374 genes; 254 RIs including 229 genes; 251
ATs including 117 genes; and 38 MEs including 37 genes.
One ASE could take place in different kinds of genes, and
one gene could locate in different kinds of splicing patterns
(Figure 2A and Supplementary Table S2). 294 of OS-ASEs were
associated with survival status. Ranked by the magnitude of the
association strength with survival, ES came first, followed by
AP, AA, RI, and AD.

Discoveries About Prognostic Model
Prognosis-related ASEs and their P-values were shown in the
Upset plot and Volcano plot, respectively (Figures 2B, 3A).
The Bubble plots illustrated the top 20 OS-SEs in seven
types of splicing patterns (Figures 3B–H). Among all the
ASEs, WDR55-73715-AA, KHNYN-27003-AD, DYRK3-9590-
AP, USH2A-9805-AT, MTRR-71539-ES, GRB10-79717-ME, and
COPZ1-22159-RI were the most significant events for AA, AD,
AP, AT, ES, ME, and RI, respectively.

Based on the top 20 OS-SEs, we built a prognostic model for
BRCA. For avoiding over-fitting, Lasso plot (Figure 4A) and the
Lambda plot (Figure 4B) were performed. Finally, 15 OS-SEs

FIGURE 1 | Schematic overview of the whole study.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 790

http://www.r-project.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00790 August 23, 2020 Time: 12:52 # 5

Huang et al. Bone Metastasis-Specific Alternative Splicing Events

FIGURE 2 | Overview of dataset. (A) The Upset plots of seven types of alternative splicing events and their parent genes. (B) The Upset plots of seven types of
prognosis-related alternative splicing events and their parent genes. The lower part of each plot describes the permutations of the alternative splicing events; for
each circumstance, the alternative splicing event is included if its corresponding place is filled with a red dot. The upper part of the plot represents the number of
genes for each circumstance. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive
exons; RI, retained intron.

were selected to apply to the multivariate Cox regression analysis.
The result of the regression was quite reliable with the ROC
area under the curve (AUC) of 0.856 (Figure 4C). The median
value of the risk score was 0.97, thus dividing the whole samples
into two groups. The survival analysis results (Figure 4D)
showed the survival probability of each group, indicating a
vast difference between them, and the Kaplan–Meier curve
demonstrates the reliability of the model by a p < 0.001. The

risk curve and scatterplot indicated that samples with higher risk
scores had a higher risk of mortality (Figures 4E,F). The heat map
revealed that WDR55-73715-AA, CENPI-89632-ES, COPZ1-
22159-RI, CHMP7-83072-ES, PARPBP-24042-ES, DYRK3-9590-
AP, USH2A-9805-AT, ETFA-31939-ES, and TMEM25-19023-AA
might have positive effects on BRCA while MTRR-71539-ES,
HSPBP1-52052-AP, COL3A1-485139-ES, and SUPT20H-25670-
AD may have adverse effects (Figure 4G).
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FIGURE 3 | Discovery of prognosis-related ASEs and OS-SEs. (A) The volcano plot of the boundary between significant prognosis-related (red dots) and insignificant
prognosis-related alternative splicing events (blue dots). (B–H) The Bubble plots of overall-survival-associated splicing events in each type of splicing patterns. AA,
alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron.

In order to verify the independence of the risk score, both
univariate and multivariate Cox regression analyses were applied
to age, gender, stage, TNM stage, and risk score. With both
p-values of the risk score in two analyses less than 0.001
and hazard ratios which were 1.053 [95% confidence interval
(CI): 1.029–1.077] and 1.042 (95% CI: 1.023–1.062), the risk
score proved to be a well-predicting model (Figures 4H,I).
Consequently, SFs can serve as a predictor regarding survival.

The Detection of the Potential Splicing
Regulatory Network
There were 185 pathways detected by GSVA, which had potential
prognostic predictive abilities. Then, just 26 pathways were
selected as the prognosis-related pathways by univariate Cox
analysis. Among them, ubiquitin-mediated proteolysis had the
highest score of 3.36 (P = 0.027).

The interacting and correlating relationship between SFs and
OS-SEs was illustrated in the network (Figure 5A). During the
detection of cancer status-related OS-SEs, 27, 23, and 43 OS-
SEs were found related to distant metastasis, bone metastasis,
and co-expression, respectively, and only 2 of them were
collapsed (Figure 5B). The two OS-SEs in relation with both
metastasis and stage were UNKL-33078-AP and FAM110B-
83922-ES. The different expressions of these two OS-SEs
between specific metastasis and primary tumor were depicted
in boxplots (Figures 5C–F). The correlations between KEGG
pathways and the two OS-SEs were showcased in the heat
map (Figure 6) according to the result of Pearson analysis.
Pyrimidine metabolism was the pathway most connected to
UNKL (R =−0.385, P < 0.001), and fatty acid metabolism was
the pathway most related to FAM110B (R = 0.223, P < 0.001).

External Validation
The Human Protein Atlas (Supplementary Figure S1A) showed
that FAM110B had a higher protein level in cells of BRCA than
normal ones while UNKL was not detected in either normal
or breast cancer. Thus, the study and conclusions were mainly
focused on FAM110B and the related SF, CIRBP (R = 0.320,
P < 0.001). The fatty acid metabolism, the most related KEGG
pathway of FAM110B, revealed that ACAT2, ACAT1, ALOX15B,
DHCR7, and ACAA1 were the five genes among the most
centered genes (Supplementary Figure S11A). The Human
Protein Atlas (Supplementary Figures S1B–F) demonstrated
that all of these five genes have a relatively high level of
protein expression.

The expression levels of CIRBP, FAM110B, ACAT1, ACAT2,
ACAA1, ALOX15B, and DHCR7 from online databases are
summarized in Supplementary Table S3. GTEx (Supplementary
Figure S2) revealed that ACAT2 was lowly expressed in
normal thyroid. ACAT1 and ACAT2 were lowly expressed,
while FAM110B, ALOX15B, and DHCR7 were highly expressed
at the tissue level in BRCA Oncomine (Supplementary
Figure S9). CCLE (Supplementary Figure S10) demonstrated
that FAM110B and ALOX15B were lowly expressed, while CIRBP,
ACAT1, ACAT2, ACAA1, and DHCR7 were highly expressed at
the tissue level in BRCA.

Then, a survival analysis of each gene was carried out
using different databases, and the results are summarized
in Supplementary Table S4. PROGgeneV2 (Supplementary
Figure S3) demonstrated that FAM110B (P = 0.043), CIRBP
(P < 0.001), ACAT2 (P < 0.001), ACAT1 (P = 0.003),
ALOX15B (P = 0.010), DHCR7 (P < 0.001), and ACAA1
(P < 0.001) were independent prognostic factors. GEPIA
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FIGURE 4 | Construction and results of independent prognostic model. (A) The Lasso plot which determine of the number of overall-survival-associated splicing
events in survival analysis by Lasso regression. (B) The Lambda plot which determine of the number of overall-survival-associated splicing events in survival analysis
by Lasso regression. (C) The receiver operator characteristic curve (ROC) of survival analysis; the area under the ROC curve is 0.856. (D) The Kaplan–Meier plotter
of the survival analysis in which low-risk patients (purple curve) is more likely to live longer than high-risks patients (red curve). (E) The scatterplot of survival time and
the risk score of both low-risk patients (green points) and high-risk patients (red points). (F) The risk plot of both low-risk patients (green points) and high-risk patients
(red points). (G) The heat map of 15 final-selected overall-survival-associated splicing events’ expression from the TCGA dataset. AA, alternate acceptor; AD,
alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron. (H) The forest plot of univariate
Cox regression analysis. (I) The forest plot of multivariate Cox regression analysis.
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FIGURE 5 | OS-SEs related to distant metastasis and bone metastasis. (A) The network of overall-survival-associated splicing events and their co-expressed
splicing factors. (B) The Venn plot of overall-survival-associated splicing events related to distant metastasis and bone metastasis. (C) The Beeswarm plot of
UNKL-33078-AP expression comparing both bone metastasis and primary tumor. (D) The Beeswarm plot of UNKL-33078-AP expression comparing both distant
metastasis and primary tumor. (E) The Beeswarm plot of FAM110B-83922-ES expression comparing both bone metastasis and primary tumor. (F) The Beeswarm
plot of FAM110B-83922-ES expression comparing both distant metastasis and primary tumor.

(Supplementary Figure S4) showed that CIRBP was related to
survival (P = 0.010). The Kaplan–Meier plotter (Supplementary
Figure S5) illustrated that FAM110B (P < 0.001), CIRBP
(P < 0.001), ACAT2 (P < 0.001), ACAT1 (P < 0.001), ALOX15B
(P < 0.001), DHCR7 (P < 0.001), and ACAA1 (P = 0.019) were
all shown to be prognostic indicators. UALCAN (Supplementary
Figure S6) manifested that FAM110B (P = 0.004), CIRBP
(P = 0.008), ACAT2 (P = 0.002), ACAT1 (P = 0.020), ALOX15B
(P = 0.029), DHCR7 (P = 0.013), and ACAA1 (P = 0.026)
were all prognostic indicators. Linkedomics (Supplementary
Figure S7) revealed that ACAT1 (P = 0.193), ALOX15B
(P = 0.016), and ACAA1 (P = 0.014) were related to overall
survival of prognosis. cBioportal (Supplementary Figure S8)
demonstrated that FAM110B (P < 0.001), CIRBP (P = 0.045),
ACAT1 (P < 0.001), and DHCR7 (P = 0.003) were significantly
related to prognosis.

In the end, the interaction PPI network of FAM110B,
CIRBP, ACAT2, ACAT1, ALOX15B, DHCR7, and ACAA1 from
String (Supplementary Figure S11B) was shown. Thus, we
hypothesized that aberrant CIRBP regulated FAM110B-83922-
ES in ties with the tumorigenesis, metastasis, and prognosis of
BRCA via fatty acid metabolism, and the schematic diagram of
this scientific hypothesis is depicted in Figure 7.

Independent Dataset Validation and
Spatial Transcriptome Validation
In GSE11121, univariate Cox regression analysis suggested that
CIRBP (P < 0.001), FAM110B (P = 0.013), ACAA1 (P = 0.045),
ACAA2 (P = 0.043), ACAT2 (P = 0.037), and ALOX15
(P < 0.001) had a significant association with metastasis-free
survival (MFS) of BRCA patients (Figure 8A). Then, these key
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FIGURE 6 | CorHeatmap of KEGG Pathways and Selected ASEs. The aim of this plot is to find out pathways correlated to overall-survival-associated splicing events
associated with bone and distant metastasis.

genes were incorporated into the multivariate Cox model and
the risk score for each BRCA patient was calculated by the
formula of the multivariate model. The risk line and scatterplot
illustrated the distribution of the risk score among all patients
(Figures 8B,C). The Kaplan–Meier survival curve showed the
significantly prognostic value of the risk score (Figure 8D,
P < 0.001). Furthermore, the accuracy and goodness of fit
(GOF) of the multivariate Cox regression model was illustrated
by the ROC curve (AUC = 0.710) and the residual plot
(Figures 8E,F).

Spatial transcriptome combined with scRNA-seq data of
BRCA was used to identify the cell subtype localization
of the key genes in the speculative regulatory mechanism.
Eleven clusters and nine clusters were identified by t-SNE and
UMAP, respectively (Figure 9A). Invasive ductal carcinoma and

intraductal carcinoma in situ as well as normal tissue were
clearly demonstrated in HE staining slides (Figure 9A). The
feature plots and spatial feature plots were utilized to illustrate
the distribution and expression of CIRBP, FAM110B, ACAA1,
ACAT1, and DHCR7, showing that these key genes were highly
expressed in the invasive ductal carcinoma tissue (cluster 2, 5,
8) (Figures 9B,C). Additionally, the cell-cycle analysis suggested
that most cells highly expressing these key genes were in the phase
of G2M and S (Figures 9D,E), and those cell-division-related
signaling pathways such as HALLMARK_G2M_CHECKPOINT
and HALLMARK_E2F_TARGETS were activated while some
tumor-suppressor signaling pathways such as HALLMARK_
P53_PATHWAY and HALLMARK_TNFA_SIGNALING_VIA_
NFKB were downregulated in the invasive ductal carcinoma
tissue (Figure 9F).
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FIGURE 7 | Schematic diagram of the scientific hypothesis. OS-SEs (FAM110B-83922-ES) regulates SF (CIRBP) by the downstream pathway (Fatty acid
metabolism pathway).

DISCUSSION

BRCA is women’s most common neoplasm, whose 5-year
survival rate is less than 40% in some areas of the world (Akram
et al., 2017). The incidence and mortality rates of BRCA are
still expected to increase in the next 5–10 years (Anastasiadi
et al., 2017). BRCA could be spread to sites like bone, lungs,
the liver, and axillary lymph nodes (Harbeck et al., 2019);
death is more likely to occur due to metastasis (Akram et al.,
2017). Therefore, it is quite essential for us to delve into BRCA
wishing for an improvement of the diagnosis and treatment. ASEs
frequently happened in eukaryote lineages (Bush et al., 2017),
and alternatively spliced isoforms are generated in more than
ninety-five percent of multi-exon genes in human beings (Pan
et al., 2008; Wang et al., 2008). In addition, ASEs along with
SFs are considered to have essential impacts on the development
and progression of tumors (Srebrow and Kornblihtt, 2006), and
AS changes might become independent oncogenic processes
(Climente-Gonzalez et al., 2017). Most previous studies of BRCA
are focused on alterations at the transcriptome level, but analysis
of the posttranscriptional process is largely ignored. One study
found that some ASEs in gene NF-YA are associated with
BRCA (Dolfini et al., 2019). Another study also focused on
some OS-SEs in BRCA and analyzed some genes associated
with OS-SEs (Zhang D. et al., 2019). Despite the significance,
metastasis-related ASEs and potential therapeutic targets were
ignored, and the relationship between SF and ASEs was
also not analyzed.

In this study, univariate Cox regression and Lasso regression
selected 15 OS-SEs and a prognostic model was established

showing that SFs could well predict survival. Two OS-SEs were
identified to be associated with tumorigenesis and metastasis,
and their related SFs were selected along with corresponding
prognostic KEGG pathways. After multidimensional validation,
we finally assumed that CIRBP regulated FAM110B-83922-ES of
BRCA via fatty acid metabolism, and five proteins involved in
fatty acid metabolism were demonstrated to be highly related
to survival as well. The prognostic model could be an effectual
tool for doctors in the future, and the assumption might
provide an idea for finding a particular target to increase the
survival rate of BRCA.

CIRBP, cold-inducible RNA-binding protein, belonging to
the cold-shock protein family, is expressed in different cell
types and was involved in various cancer pathological processes,
including cell survival, cell proliferation, and cancer (Zhu
et al., 2016; Su et al., 2020). It was reported that CIRBP had
different effects in various cancers according to the cell context
such as acting as a tumor suppressor in rectal carcinoma,
endometrial carcinoma, and ovarian tumor and having pro-
tumorigenic influences on melanoma, colorectal cancer, prostate
cancer, central-nervous-system-related tumor, liver-pancreas
carcinomas, skin squamous cell carcinoma, bladder cancer, and
pituitary corticotrope adenoma (Zhu et al., 2016; Liao et al.,
2017; Zhong and Huang, 2017; Chen et al., 2018; Colasanti et al.,
2018; Lujan et al., 2018; Lin et al., 2019). Some studies found
down-expressed CIRBP to be always related with poor-survival
cell-cycle process and disease stage in BRCA patients (Joe
and Nam, 2016; Rodrigues-Peres et al., 2019). Additionally, a
protein microarray experimental study sheds light on CIRBP
as an autoantibody target potentially used for early BRCA

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2020 | Volume 8 | Article 790

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00790 August 23, 2020 Time: 12:52 # 11

Huang et al. Bone Metastasis-Specific Alternative Splicing Events

FIGURE 8 | Independent dataset validation by GSE11121. In GSE11121, univariate Cox regression analysis suggested that CIRBP (P < 0.001), FAM110B
(P = 0.013), ACAA1 (P = 0.045), ACAA2 (P = 0.043), ACAT2 (P = 0.037), and ALOX15 (P < 0.001) had a significant association with metastasis-free survival (MFS) of
BRCA patients (A). Then, these key genes were incorporated into the multivariate Cox model, and the risk score for each BRCA patient was calculated by the
formula of the multivariate model. The risk line and scatterplot illustrated the distribution of risk score among all patients (B,C). The Kaplan–Meier survival curve
showed the significantly prognostic value of the risk score (D, P < 0.001). Furthermore, the accuracy and goodness of fit (GOF) of the multivariate Cox regression
model were illustrated by the ROC curve (AUC = 0.710) and the residual plot (E,F).

detection (Lacombe et al., 2014). Studies also identified CIRBP
as a potential prognosis-related gene which could be used
in BRCA prognostic prediction (Shimizu and Nakayama,

2019). Acting as a cold-inducible RNA-binding protein,
CIRBP also had a positive influence on HuR protein levels
concerned with BRCA formation (Kotta-Loizou et al., 2016).
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FIGURE 9 | Spatial transcriptome validation. Spatial transcriptome combined with scRNA-seq data of BRCA was used to identify the cell subtype localization of the
key genes in the speculative regulatory mechanism. Eleven clusters and nine clusters were identified by t-SNE and UMAP (A). Invasive ductal carcinoma and
intraductal carcinoma in situ as well as normal tissue were clearly demonstrated in HE staining slides (A). The feature plots and spatial feature plots were utilized to
illustrate the distribution and expression of CIRBP, FAM110B, ACAA1, ACAT1, and DHCR7, showing that these key genes were highly expressed in the invasive
ductal carcinoma tissue (clusters 2, 5, 8) (B,C). Additionally, the cell-cycle analysis suggested that most cells highly expressing these key genes were in the phase of
G2M and S (D,E), and those cell-division-related signaling pathways such as HALLMARK_G2M_CHECKPOINT and HALLMARK_E2F_TARGETS were activated
while some tumor-suppressor signaling pathways such as HALLMARK_P53_PATHWAY and HALLMARK_TNFA_SIGNALING_VIA_NFKB were downregulated in the
invasive ductal carcinoma tissue (F).
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A study also found the co-regulated expression of SFs in BRCA,
indicating that CIRBP expressed much lower in tumor tissue than
in metastatic tissue (Koedoot et al., 2019).

FAM110B, family with sequence similarity 110 member
B, localized in centrosomes, and the progress in the G1
phase of the cell cycle is affected by the ectopic expression
of its protein (Hauge et al., 2007). Much of the researches
focused on the relationship between FAM110B and BRCA.
FAM110B played a negative role in the translational regulation
of BRCA1, which is a tumor suppressor of BRCA (Dacheux
et al., 2013). Previous studies have also demonstrated that
the signature of FAM110B along with 40 other genes can
serve as a survival predictor for BRCA. The signature
was associated not only with age and ER status but also
with overall survival and distant metastasis-free survival (Yin
et al., 2014). What is more, FAM110B expressed significantly
lower in young women compared to older women with
BRCA, so that it may play quite different roles in the
development of BRCA in young women than in older women
(Colak et al., 2013).

Until now, there is no evidence about the direct
regulation between CIRBP and FAM110B. Furthermore,
they are both involved in cell-cycle progression based on
the up-to-date reports (Hauge et al., 2007; Zhu et al.,
2016; Su et al., 2020), and we found out that they are
co-expressed in the BRCA database. To go through the
mechanism of CIRBP regulating FAM110B-83922-ES, fatty
acid metabolism was detected as the possible pathway
connecting them.

Through divergent mechanisms, endogenous fatty acid
status could have a great impact on health and disease
(Brenna et al., 2018). Consistent with our study, many studies
illustrated the significance of fatty acid metabolism in BRCA.
Characteristics of different types of BRCA vary in fatty acid
metabolism (Yamashita et al., 2017). In addition, fatty acid
metabolism was engaged in BRCA progression, and some
proteins related to fatty acid transport revealed to enhance
the possibility of migration and invasion of BRCA (Yen et al.,
2018). Furthermore, evidence demonstrated that fatty acid
metabolism was considered a potential target for BRCA therapy
(Kinlaw et al., 2016).

In sum, although the results of our study were quite
reliable, our study still had some limitations. The result was
only based on one single chart of sequencing data and
computer analyses where the sample size of the dataset and
the accuracy of molecular mechanisms were limited. However,
the most important shortcoming is that systematic errors could
not be avoided and wet experiments and clinical trials are
required to perform to verify the results. The inherent vice
of in silico analysis was bias based on different platforms,
and our scientific hypothesis only based on bioinformation
instead of mechanism exploring. In addition, a small sample
size for bone metastasis samples may result in an unbalance
of the datasets. In order to better diminish the bias, external
multidimensional validation was followed to minimize the
negative impact of this limitation, showing the reliability
of our findings.

CONCLUSION

In this comparative bioinformatics analysis, we constructed a
prognostic model of BRCA. In addition, our further findings
suggest that the aberrant splicing factor, CIRBP, regulated an
alternative splicing event, the exon skip of FAM110B, during
which the fatty acid metabolism pathway might play an essential
part in tumorigenesis and prognosis of BRCA. This scientific
proposition might provide direct instruction for the following
biological experiments.
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FIGURE S1 | External validation of FAM110B (A), ACAT1 (B), ACAT2 (C), ACAA1
(D), ALOX15B (E), and DHCR7 (F) by the Human Protein Atlas.

FIGURE S2 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by GTEx.

FIGURE S3 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by PROGgeneV2. CIRBP,
FAM110B, ACAT1, and ACAA1 high-expressed in tissue level in BRCA; while
ACAT2 and DHCR7 low-expressed in tissue level in BRCA.

FIGURE S4 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by GEPIA.

FIGURE S5 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by The Kaplan Meier plotter.
CIRBP, FAM110B, ACAT1, ALOX15B, and ACAA1 high-expressed in tissue level
in BRCA; while ACAT2 and DHCR7 low-expressed in tissue level in BRCA.

FIGURE S6 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by UALCAN. ALOX15B expressed
lowly in BRCA; CIRBP, FAM110B, ACAT1, ACAT2, ACAA1, and DHCR7
expressed highly in normal thyroid and BRCA.

FIGURE S7 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by Linkedomics.

FIGURE S8 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by cBioportal.

FIGURE S9 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by Oncomine. ACAT1 and ACAT2
low-expressed, while FAM110B, ALOX15B, and DHCR7 high-expressed in
tissue level in BRCA.

FIGURE S10 | External validation of CIRBP (A), FAM110B (B), ACAT1 (C), ACAT2
(D), ACAA1 (E), ALOX15B (F), and DHCR7 (G) by CCLE. FAM110B and
ALOX15B low-expressed, while CIRBP, ACAT1, ACAT2, ACAA1, and DHCR7
high-expressed in cellular level in BRCA.

FIGURE S11 | The protein-protein interaction networks. (A) The protein network
of fatty acid metabolism pathway from Pathcards. (B) The protein network of
CIRBP, FAM110B, ACAT1, ACAT2, ACAA1, ALOX15B, and DHCR7 from String.

TABLE S1 | Description of patients’ dataset.

TABLE S2 | Number of ASEs and number of ASEs in different ASE type.

TABLE S3 | The external validation of CIRBP, FAM110B, ACAT1, ACAT2, ACAA1,
ALOX15B, and DHCR7.

TABLE S4 | Summary of external validation.
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